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Abstract

We study the harmonicity of maps to or from cosymplectic manifolds by relating them to maps to or from
Kahler spaces.
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1. Introduction

The theory of harmonic maps between Riemannian manifolds has taken an enormous
flight since its conception [3-6]. Combining both global and local aspects and bor-
rowing both from Riemannian geometry and from analysis, the theory has developed
in many diverse branches. In particular, there is now a whole battery of deep and
interesting results about harmonic maps to or from complex manifolds and Kahler
spaces. These even-dimensional spaces can be described using complex coordinates,
and hence one can use the methods and results from complex function theory.

Within contact geometry, there are several classes of manifolds that can be con-
sidered as odd-dimensional analogs of Kahler spaces, the most important ones being
Sasakian and cosymplectic spaces. Even though many of the concepts of Kahler
geometry have counterparts in contact geometry, the theory of harmonic maps to or
from contact manifolds is only in its initial stages [8,10]. One reason seems to be the
absence of something like complex coordinates for these manifolds.

In this paper, we develop a theory of harmonic maps and cosymplectic manifolds
analogous to the one in the Kahler context. The idea is not to mimic the proofs
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for Kahler manifolds (which may be nearly impossible when these use complex
coordinates) but instead to use the results for Kahler manifolds to prove similar
results for cosymplectic manifolds. In order for this scheme to work, we must be
able to go back and forth between cosymplectic and Kahler manifolds and between
corresponding mappings. This turns out to be surprisingly easy, but at the same time
constitutes a very powerful tool.

The paper is organized as follows. After recalling the necessary facts about har-
monic maps between general Riemannian manifolds, we motivate why we consider
cosymplectic manifolds (rather than, say, Sasakian manifolds). Then we describe
how to construct a Kahler space from a cosymplectic manifold and how to 'lift' map-
pings accordingly. These lifts behave very well both with respect to harmonicity and
with respect to the cosymplectic and Kahler structures. In Section 5 and Section 6,
we put our construction to work to prove various results about harmonic maps and
cosymplectic manifolds, analogs of known results for Kahler spaces.

During the preparation of this manuscript, the authors visited each other's uni-
versities in the context of an agreement between the Royal Flemish Academy of
Belgium for Sciences and Arts and the Romanian Academy. They want to express
their gratitude to both Academies for their financial support.

2. Harmonic maps on Riemannian manifolds

In this section we recall some well-known general facts concerning harmonic maps.
Let (Mm, g) and (Nn, h) be two Riemannian manifolds and F: (M, g) -> (N, h)

a smooth map. The energy density of F is the smooth function e(F): M -*• [0, oo)
given by

e(F)p = ^\\dFp\\
2 = i Tr(F*h)(p) = ^Y^h{dF{ei),dF{ei))

for p e M and any orthonormal basis {eu ..., em) of TPM. If M is a compact
Riemannian manifold, then the energy E{F) of F is the integral of its energy density

E(F)
=L

where (xM is the volume measure associated with the metric g on M. A map
F: (M, g) ->• (N, h) is said to be harmonic if it is a cricital point of the energy
functional E on the set of all maps between (M, g) and (N, h).

In order to describe the critical point condition for the functional E, we look at the
differential dF. It is a section of the bundle T*M ® F~l TN - • M. This bundle has a
connection V induced from the Levi Civita connection VM on TM and the pull-back
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connection VF on F~l TN. Applying this connection to dF, one obtains the second
fundamental form a F e T{Q2T*M ® F~lTN). Explicitly,

aF(X, Y) = (VdF)(X, Y) = V£{dF(Y)) - dF(V% Y),

for vector fields X, Y e V(TM). A map F for which aF vanishes identically is called
totally geodesic. We will also need the second fundamental form of the composition
of two smooth maps F and G. This is given by the formula (see, for example, [4])

(1) aGoF = dGoaF + ac(dF,dF).

The section r (F) e T(F~] TN), defined by t(F) = Trg aF is called the tension field
of F. A smooth map F on a compact Riemannian manifold M is harmonic precisely
when r(F) = 0 on M [3]. More generally, we say that a map F on M is harmonic if
it satisfies the critical condition r(F) = 0, regardless of the compactness of M.

Now, let (M, g) be a compact Riemannian manifold and F: (A/, g) —> (N, h) a
harmonic map. We take a smooth variation FSJ with parameters s, t e (—e, +s) and
with Fo,o = F. The corresponding variation fields are denoted by V and W. The
Hessian HF of a harmonic map F is defined by

dt (i.r)=(0.0)

The second variation formula of E is [13,18]

HF(V,W)= [
M

where JF is a second-order selfadjoint elliptic differential operator acting on the space
of variation vector fields along F (which can be identified with T{F~X(TN))), and is
defined by

JF(V) -=-J2 ( v i X - Vv«,,) V -

for any V e r(F~\TN)) and any local orthonormal frame [eu ..., em) on M. Here,
RN is the curvature tensor of (N, h).

The i'mfcc of a harmonic map F is defined as the dimension of the largest subspace
of F(F~l(TN)) on which the Hessian HF is negative definite. A harmonic map F is
said to be stable if its index is zero and otherwise is said to be unstable.
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3. Cosymplectic manifolds

Let M be a smooth manifold of dimension 2n + l. We recall that an almost contact
structure on M is a triple (f, r], <p), where £ is a vector field, r] is a one-form and <p is
a tensor field of type (1,1) which satisfy [1]

<p2 = — Id +17 <S> ^ and r)(tj) = 1,

where Id is the identity endomorphism on TM. Then we have <p £ = 0 and r\ o <p = 0.
Furthermore, if g is an associated Riemannian metric on M, that is, a metric which
satisfies

then we say that (£, rj, tp, g) is an almost contact metric structure. A manifold equipped
with such a structure is an almost contact metric manifold. The existence of an almost
contact structure on M is equivalent to the existence of a reduction of the structural
group to U(n) x 1. The fundamental 2-form <t> of an almost contact metric manifold M
is defined by 4>(X, Y) = g(X, <pY) for X, Ye r(TM).

An almost contact manifold (M, £, r], <p) is said to be normal if the almost complex
structure J on M x K given by

where a is a C°° function o n M x K , is integrable, which is equivalent to the condition
Nv + 2dr) ® ^ —0, where N<p denotes the Nijenhuis tensor of (p.

Now, let (£, t), <p, g) be an almost contact metric structure on M. We define an
almost Hermitian structure (7, h) on M x K, where J is the above almost complex
structure and h is the Hermitian metric defined by

An almost contact metric structure (£,??, <p, g) is said to be trans-Sasakian if M x
0& endowed with the almost Hermitian structure (7, h) belongs to the class a>4 in
the classification of Gray and Hervella [9]. Equivalently, an almost contact metric
manifold (M, %,r),<p, g) of dimension 2n + 1 is trans-Sasakian if and only if [16]

(2) (V*V) (10 = a{g(X, Y)$ - r](Y)X) + P{g{<pX, Y)$ - ri(Y)<pX},

where a = 8<t>(i-)/2n and fi = -8r]/2n.
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An almost contact metric structure (£, r], <p, g) is said to be if 5 if it is trans-Sasakian
with a = 0; Kenmotsu if it is % with /J = 1; *J^ if it is trans-Sasakian with ft = 0;
Sasakian if it is 1f6 with a = 1; cosymplectic if it is trans-Sasakian with a = P = 0 .

In this article, we are interested in a theory of harmonic maps on almost contact
metric spaces. As these are the odd-dimensional analogues of almost Hermitian
manifolds, it is instructive to look at harmonic maps on such spaces. If (M, J, h) is a
Kahler manifold and N is a Riemannian manifold, then a smooth map F: M —> N is
called pluriharmonic if its second fundamental form aF satisfies the condition

aF(X, Y) + aF(JX,JY) = 0

for any X, Y e F(TM). Clearly, any pluriharmonic map is a harmonic map [15].
In [10], an analogous concept is considered for the class of almost contact met-

ric manifolds. If (M, %,r),<p, g) is an almost contact metric manifold and N is a
Riemannian manifold, then a smooth map F:M-+Nis called <p-pluriharmonic if

aF(X, Y)+aF(<pX,<pY)=0

for any X, Y e F(TM). In particular, aF(X, £) = 0 for any tangent vector X. It is
not difficult to show that <p-pluriharmonicity implies harmonicity.

Secondly, one can look at structure-preserving mappings between almost Hermitian
and almost contact metric manifolds, as analogues of the well-known holomorphic
mappings in complex geometry. There are three different situations:

1. A smooth map F: M -± N from an almost contact metric manifold (M, £, j),
(p, g) to an almost Hermitian manifold (N, J, h) is (<p, J)-holomorphic if dF o cp =
J o dF. Note that dF(%) = 0 for such a map.

2. A smooth map F: N —*• M from an almost Hermitian manifold (N, J, h) to
an almost contact metric manifold (Af, £, rj, <p, g) is (7, <p)-holomorphic if dF o J =
if> o dF. Now, ImdF _L £.

3. A smooth map F: Mi —> M2 between almost contact metric manifolds (A/,, £,-,
>?;> <Pii gi)yi = li 2,is<p-holomorphicifdFo(pi — <p2odF. In particular, dF(^) C ^

When dF intertwines the structures up to a minus sign, we speak about (<p, J)-anti-
holomorphic, (7, <p)-anti-holomorphic and (p-anti-holomorphic mappings.

PROPOSITION 3.1. Any (<p, J)-holomorphic mapping F from a cosymplectic mani-
fold M to a Kdhler manifold N is <p-pluriharmonic and thus a harmonic map.

PROOF. Using the formula dFo<p = JodFv/e easily find

(3) J(aF(X, Y)) + (V£( J O7) (dF(Y)) = dF ((V»<p) Y) + aF(X,<pY)
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for any (<p, /)-holomorphic map from an almost contact metric manifold to an almost
Hermitian manifold. (A similar formula holds for holomorphic, (J, ^>)-holomorphic
and <p-holomorphic maps, see [8].)

Now, if M is a cosymplectic manifold and N is a Kahler manifold, then VM<p = 0
and V"7 = 0, and we have J(aF(X, Y)) = aF(X,<pY) for any X, Y e T(TM).
Replacing Y by cpY, we obtain J(aF(X,<pY)) = —aF(X, Y). Using the symme-
try of aF, we have J(aF(<pX,<pY)) = -aF(<pX, Y) = -J(aF(X, Y)) and hence
aF(X, Y) + aF(<pX,<pY) = 0 for any X, Y e F(TM). So F is (p-pluriharmonic and
thus harmonic. •

It is known that the Hopf fibration 52 m + l —> <CPm is a harmonic map from a Sasakian
manifold onto a Kahler manifold. On the other hand, it easy to show that the Hopf
fibration is not a <p-pluriharmonic map. So it is natural to ask under which conditions
a (<p, J)-holomorphic map is <p-pluriharmonic. Within the class of trans-Sasakian
manifolds, we have a full answer.

THEOREM 3.2. Let(M, <p, t-, r), g) be a trans-Sasakian manifold, (N, J, h)aKdhler
manifold and F: M -* N a (<p, J)-holomorphic submersion. If F is (p-pluriharm-
onic, then M is a cosymplectic manifold.

PROOF. We recall that dF(%) = 0 for a (<p, J)-holomorphic map. As M is trans-
Sasakian and N is Kahler, we have from (2)

Using (3) we obtain

J(aF(X, JO) = -rj(Y){adF(X) + fidF(<pX)) + aF(X,<pY)

for any X, Y e F(TM). On the other hand, as F is a ^-pluriharmonic map, we have
aF(X, £) = 0 for any X € Y{TM). So, taking Y = £ in the above relation, we obtain

for any X € r ( T M ) .
Now, if we replace X by <pX, we obtain adF(<pX) — fidF(X) — 0 for any

X e r{TM). From the last two relations it follows that (a2 + p2)dF(X) = 0 for
any X 6 T(TM). As F is a submersion, this implies that a = ft = 0, that is, M is a
cosymplectic manifold. •

COROLLARY 3.3. There are no ((p, J)-holomorphic (p-pluriharmonic maps from a
Sasakian (or Kenmotsu) manifold into a Kahler manifold.

The above results indicate that cosymplectic manifolds are the first candidates for
a nice theory of harmonic maps in the context of contact geometry.
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4. Products of cosymplectic manifolds

We have already mentioned in the introduction that we want to use the results
about harmonic maps on Kahler manifolds to deduce similar ones for harmonic maps
on cosymplectic manifolds. To do this, we build a Kahler manifold starting from a
cosymplectic manifold.

Let (Mi, £i, jji, <pu gi) and (M2, £2, I2, <Pi, gi) be two almost contact metric struc-
tures. On Mj x M2 we define the (1, l)-tensor field J * by

(4) J*(XU X2) = (p,X, - r]2{X2)Hu <PiX2 + i/.CXOfc)

for X — (Xu X2) 6 7(M, x M2). One easily checks that J* o J* = - I d , hence
Jx is an almost complex structure. Moreover, for the product metric # * = # , + g2

on M{xM2, it holds g*(J*X, J* Y) = g*(X, y)foral lX, Ye T(M, x M2). Hence,
(Mi x M2, J *, g*) is an almost Hermitian manifold. The almost complex structure J *
was first defined in [14]; the almost Hermitian structure (J*, g*) on M\ x M2 was
studied in [2]. In particular, it was proved there

PROPOSITION4.1. The almost Hermitian structure (J*,g*) on Ml x M2 is al-
most Kahler if and only if the almost contact metric structures (£1, r)u <P\, g\) and
(£2. *?2> <Pz, gi) are both almost cosymplectic {that is, dr)\ = drj2 = d<t>i = d<£>2 = 0).
Moreover, it is a Kahler structure if and only if both almost contact metric structures
are cosymplectic.

It is worth noting that the Calabi-Eckmann and the Hopf manifolds are special
cases of the above construction [19,22].

In the sequel, when starting from an (almost) cosymplectic manifold (M, £, /j,
cp, g), we will associate to it the (almost) Kahler manifold obtained from the above
product structure where we take Mi = M2 = M. We denote this manifold and its
structure by (M*, J", g").

The next step is to 'lift' maps from or into M to maps from or into the product
manifold M*. For now, let us forget about the cosymplectic structure on M and only
concentrate on metrical aspects. Since, as a Riemannian space, (M x , g*) is simply a
Riemannian product, the following is valid for arbitrary Riemannian manifolds, and
even for more general products. We need three types of lifts in the sequel, depending
whether we switch to the product manifold on both the source and the target manifold,
or only on one of the two.

1. Consider a m a p / i : (Mi, gi) —> (M2, g2)- We define an associated map F\ by
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2. For a map/2 : (M, g) -> (N, h), define the lift

F2: (M*,g*)^(N,h): (x,y)->/2(JC).

Note that F2 = f2 o nx, where 7Ti is the natural projection of M x M on the first factor.
3. Finally, we lift a m a p / 3 : (TV, h) -*• (M, g) to

F3: (N, h) - * (M x , g x ) : * K ( / , W , a)

for an arbitrary fixed a e M. Note that F3 = ix o / 3 , where ix: M -*• M x M:
JC i—>• (x, a) is the natural embedding of M into M x M a s first factor.

PROPOSITION 4.2. With the maps fi, f2, fi and their lifts Fx, F2, F3 as above, it
holds that fj is a harmonic map if and only if F, is a harmonic map. Further, if the
source manifold is compact, we have

£(F,) = 2vol(Af,)E(f1), E(F2) = vol(M) E(f2), E(F3) = E(f3).

PROOF. The proof goes by simple computation. Consider first the second funda-
mental form of F\. It is given in terms of fx by

aF] = (afl(d7ru dnx), afl(dn2, dit2)).

As the projections n\, n2: M\ x M\ —> M\ are Riemannian submersions, we can
take traces on both sides to obtain r(Fx)(x, y) = (r(/i)(;c), i:(fi)(y)). Hence, Fx is
harmonic if and only if/i is.

For F2= f2on\, we use formula (1) to get

(*F2 = df2 o ani + af2(dnu dnx) = ah(dnud7TX)

as nx is totally geodesic. Taking traces, we have r (F2) = T( / 2 ) and F2 is harmonic if
and only if f2 is.

For the lift F3 = ix o / 3 , we get in a similar way

, = dix o ah + ah (cf/3, df3) = dix o ah

as ix is totally geodesic. Taking traces, we obtain r(F3) = dix(r(f3)). Since dix is
one-to-one, r(F3) = 0 if and only if r(/3) = 0.

The assertions about the energy can be checked easily. As an example, we have
forF,

E(FX)= I \dFx\
2(x,y)HM(X) A (AM,(y)

= [ (\dfi\Hx) + \dfx\
2(y))^Ml(x)AnMl(y) = 2\o\{Mx)E{fx).

The other equalities are proved similarly. •
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Moreover, the three lifts preserve stability of harmonic mappings.

PROPOSITION 4.3. Take harmonic maps f i, f2, / 3 on compact source manifolds and
let Fh F2, F3 be the corresponding lifted mappings. Then f",- is a stable harmonic map
if and only if F{ is.

PROOF. We only give the detailed calculations for the lift F2. The other cases are
similar.

Suppose that /2 : (M, g) -*• (N, h) is harmonic and M is compact. Then, as we
have just seen, also F2: (M x ,g*)->- (N,h): (x, y) i-> f2(x) is harmonic. Consider
a vector field V along F2. In a local orthonormal frame [H\, . . . , / / „ } on N, we can
decompose V as V = YH=\ vkix,y)Hk.

Further, let [Eu ... ,Em) and [E\,..., E'm} be local orthonormal frames on M
around the points a e M and b e M, respectively. Then, with slight abuse of notation,
{ £ 1 , . . . , Em, E[, ..., E'm] is a local orthonormal frame on M x around (a, b). Then
we have

V£ V = J^ E,(vk) Hk

or, more precisely,

(V£ V) (a, b) = J^ E,(vk(x, b))\i=aHk\Ma) + J2 vk(a, b)(¥E]Hk)\fM

= {Vf
E]V(-,b))(a).

On the other hand, as dF2(E'i) = 0, (Vgv)(a,fe) = E E'Ma, y))\y=bHk\Ma).
Hence, we obtain for the Hessian of the energy functional

HFl(V, V)

= f (\VF*V\2(x,y)
JMXM y

2 > )0. dF2{Ei))dF2{Ei), V(x, y))

MxM

'i), V(x,y))\(MM(x)AfiM(y)

, y)\\x) + Y] |V^ V\2(x, y)

(-, yMx)\ /*«(x) A
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, y), V(-, y))»M(y) + f T |Vp V\2fiM(x) A
JMXM ,

[
M

Since the second term is always non-negative, it follows that stability of f2 implies
stability of F2.

Conversely, consider a variation vector field V along / 2 . For the vector field
V(x, y) = V(x) along F2, it holds v£? V — 0, and the formula for the Hessian above

reduces to HFl(V, V) = vol(M) Hfl{V, V). Hence, stability of F2 implies stability
of f2 too. •

We now specialize the three types of lifts above, taking also the cosymplectic
structure on M into account. Consider a m a p / ! : M\ -> M2 between two cosymplectic
manifolds and its lift Fx: MJ* -> Af2

x : (x,y) h-> ( / I O O . / I O O ) between Kahler
manifolds.

PROPOSITION 4.4. F\ is a kolomorphic map between Kahler manifolds if and only
if f \ is a ip-holomorphic map between cosymplectic manifolds.

PROOF. Suppose first that/ i is ip-holomorphic, that is, df\ o<p\ = (p2odf\. As noted
before, this implies dfi(t-f-) c %2 and J / i (£0 = a%2 for some function a on Mi. In
particular, r)2(df (X)) = a JJ, (X). Then, for X,Y e TMU we have

, Y) = dFx(fpxX

= (dfx {fpxX) -arid 10§2, dfx (*>, JO +

= J2
x(dfx(X), df,(Y)) = U2 o dFx){X, Y).

Hence, F\ is holomorphic.
Conversely, suppose that F\ is holomorphic. Then, for X e TMX, we have

and

We deduce that d/^ o <px — <p2 o £?/, a n d / ! is ^-holomorphic. D

Next, we take a map f2:M->N from a cosymplectic manifold to a Kahler man-
ifold. The lift F2: M* ->• N : (x, y) i-»- /2(;c) is a map between Kahler manifolds.
We prove in a similar way as for F\:

PROPOSITION 4.5. F2 is a holomorphic, respectively anti-holomorphic, map if and
only if f2 is (<p, J)-holomorphic, respectively (<p, J)-anti-holomorphic, that is, df2 o
<p = J o df2, respectively df2 o <p = — J o df2 (such that, in particular, df2{£) = 0).
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Finally, starting from a m a p / 3 : N -+ M from a Kahler manifold to a cosymplectic
manifold, the lift F^: N —> M* : x (-»• (fi(x), a) between Kahler manifolds satisfies

PROPOSITION 4.6. F3 is a holomorphic, respectively anti-holomorphic, map if and
only if f-$ is (J, <p)-holomorphic, respectively (J, <p)-anti-holomorphic, that is, df-$ o
J = ip o df-j, respectively dfi o J = — <p o df$ (such that, in particular, Im rf/3 _L £).

Note that we did not mention anti-holomorphic maps in Proposition 4.4 as we did in
Proposition 4.5 and Proposition 4.6, because the lift Fi of a (^-anti-holomorphic m a p / !
is anti-holomorphic only when c?/i(£i) = 0. This condition is not fulfilled for every
^-anti-holomorphic map. To see this, take an anti-holomorphic map Jt: Â i —• N2

between Kahler manifolds and consider the m a p / i :i\f! x I - > JV2x K: ( x , r ) h >
(k(x),t). It is ^-anti-holomorphic for the standard cosymplectic structure on the
product manifolds N, x K and N2 x K, and df (f,) = df (d/dt) = d/dt = £2-

Using these three types of lifts, we will be able to go from the level of cosymplectic
manifolds to that of Kahler spaces and back again.

5. Harmonic maps on cosymplectic manifolds

In the theory of harmonic maps on Kahler manifolds, the following theorem is well
known (see, for example, [4]).

THEOREM 5.1. If F: N\ —> N2 is a holomorphic or an anti-holomorphic map
between Kahler manifolds, then it is a harmonic map. If in addition N\ is compact,
then F is an absolute minimum in its homotopy class for the energy functional.

We are now in a position to prove analogous results when cosymplectic manifolds
are involved.

THEOREM 5.2. Iff : M —> N is a map satisfying one ofthe following conditions

(a) it is a (cp, J)-holomorphic or a (<p, J)-anti-holomorphic map between a cosym-
plectic manifold M and a Kahler manifold N,
(b) it is a (J, <p)-holomorphic or a (J, (p)-anti-holomorphic map between a Kahler

manifold M and a cosymplectic manifold N,
(c) it is a <p-holomorphic map between two cosymplectic manifolds,

thenf is a harmonic map. If in addition M is compact, thenf is an absolute minimum
in its homotopy class for the energy functional.

PROOF. The proofs for the three cases are similar and follow from the results in the
previous section. As an example, let us prove case (c).
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Suppose f : M\ —>• M2 is a ^-holomorphic map between cosymplectic mani-
folds. The lifted map F: M* ->• M2

X : (x,y) - • (f(x),f(y)) is a holomorphic
map between Kahler manifolds by Proposition 4.4, hence a harmonic map. From
Proposition 4.2 it follows that a l s o / is harmonic.

Suppose now that A/i is in addition compact. Then the same holds for M x and from
Theorem 5.1 we know that F has minimal energy within its homotopy class. Suppose
tha t / ! : Mi —> M2 is homotopic t o / via the homotopy/,. Then the corresponding
lifted mapping Ft: M,x -» M2

X is homotopic to F via the lifted homotopy F,. So,
from Proposition 4.2, £ ( / , ) = E(F,)/2vol(Afi) > £(F) /2vol(M,) = E(f), and
/ is a minimum for the energy functional within its homotopy class. •

REMARK. Theorem 5.1 is also valid under the weaker conditions that N\ and N2

are almost Kahler. The theorem above can be strengthened accordingly to the setting
where M and N are almost cosymplectic or almost Kahler.

For an easier formulation in the sequel, we denote from now on by a pair (M, P)
either a Kahler manifold, P = J, or a cosymplectic manifold, P — <p. A mapping
/ : (M, P) -> (N, P') is (P, P')-liolomorphic, respectively (P, /")-anti-holomorph-
ic, if it satisfies df o P = P' o df, respectively df o P = —P' odf.

As a first corollary of Theorem 5.2, we have the following generalization of (9.21)
in [3]

COROLLARY 5.3. Let (M, P) and (N, P') be Kahler or cosymplectic manifolds
with M compact. Iff,: M —>• ̂ V is a smooth deformation of a (P, P')-holomorphic
map through harmonic maps, then every f, is (P, P')-holomorphic.

As a second consequence, we have

COROLLARY 5.4. The identity map Id: M —• M of a compact cosymplectic mani-
fold is a stable harmonic map.

REMARK. This corollary can also be proved by a straightforward calculation as the
one in [21] for a compact Kahler manifold.

COROLLARY 5.5. Every conformal vector field on a compact cosymplectic manifold
is a Killing vector field.

PROOF. This is an immediate consequence of the previous corollary and the estimate
(see, for example, [4]) index(Id) > dim{c/i}, where c denotes the Lie algebra of
conformal vector fields and i the Lie algebra of Killing vector fields. •

A third application of Theorem 5.2 allows to describe a ^-holomorphic mapping
between cosymplectic manifolds a little better.
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COROLLARY 5.6. Letf : Mt —> M2be a (p-holomorphic map between cosymplectic
manifolds. Then df (Si) = al-2, where a is a constant.

PROOF. We have noted before that df (£i) = a £2 for some function a on Mi. Then
f*r)2 = aii and applying the differential we find 0 = da A r?,. Hence Xa = da(X) —
OforX _!_£,.

Next we use Theorem 5.2 which says that/ is harmonic, that is, r(f) = 0. Let us
compute r(f) explicitly:

T ( / ) = a / ( S . , S . ) + > {a/(e,,et) +

where [e\,..., en, <p\e\,..., <p\en, %\} is a local orthonormal frame on M\. Using
VM'<pl = VM*(p2 = 0 and the ^-holomorphicity of/, we calculate

a

,) = -af (et, et) + r]2(af (e,, e,)) S2.

where we have used the symmetry of as in the one but last equality. The formula
for x{f) simplifies to

r(f) = «

Nowrj2(a/)(e,, «,•)) = ^2(^2. ̂ {(4f («•)) ~ 4f i^^1 e()). On a cosymplectic manifold,
| x is autoparallel and df (^) c £2"- It follows that ri2(af(eh e,)) = 0. We are left
with r(f) = «,(!,, Si) = v£(<*/(£i)) - #(V^ 'S , ) = V{,(afc) = ^1(0)^2. A s / is
harmonic, r (/) = 0 and we obtain Si (a) = 0. So, a is indeed constant. •

In the context of Kahler geometry, holomorphic and anti-holomorphic mappings
have been studied extensively as a special class of harmonic maps. We can now extend
many of the results to situations where also cosymplectic manifolds are involved. For
instance, we have the following extension of the Siu's Unique Continuation Theorem
[17].

THEOREM 5.7. Letf : (M, P) -> (N, P') be a harmonic map between manifolds
(M, P), (N, P') which are Kahler or cosymplectic. Iff is (P, P')-holomorphic on
some open subset ofM, thenf is (P, P')-holomorphic on the whole ofM. Except for
the case when f is a map between two cosymplectic spaces, this also holds true for
(P, P')-anti-holomorphic maps.
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PROOF. The proof is an easy application of the results of the previous section.
First using the appropriate lift, we obtain a harmonic map F between Kahler mani-
folds which is holomorphic (or anti-holomorphic) on an open subset. Applying Siu's
original continuation theorem, F is necessarily holomorphic (or anti-holomorphic)
everywhere, hence a l s o / is (P, P')-holomorphic (or (P, />')-anti-holomorphic) ev-
erywhere on M. •

This proof and the one of Theorem 5.2 should convince the reader that the method
of making a cosymplectic manifold into a Kahler manifold and lifting mappings
accordingly constitutes a very powerful tool to derive results about harmonic maps
and cosymplectic spaces from analogous results in the Kahler context. We formulate
two more results in this spirit to illustrate that one should be careful nonetheless.

Using the standard procedure, we can prove the following analogues of (9.12)
and (9.13) from [3].

THEOREM 5.8. Let (M, P), (N, P') be almost Kahler or almost cosymplectic with
M compact and such that the sectional curvature KN of N is non-positive. Then two
(P, P')-holomorphic maps which agree at a point are identical.

THEOREM 5.9. If M is a compact almost cosymplectic manifold and N a compact
almost Kahler manifold and if the sectional curvature KN of N is strictly negative,
then there are only finitely many non-constant (<p, J)-holomorphic maps ofM into N.

The difference between these two generalizations is that the first one allows for
both M and N to be cosymplectic whereas the second keeps a Kahler manifold as the
target. The reason is that the necessary curvature condition KN < 0 is not preserved
under the product construction, whereas KN < 0 is.

We now simply list a few theorems on holomorphic maps on Kahler manifolds
and harmonic maps involving curvature conditions, which can be easily generalized
(either strongly as in Theorem 5.8 or weakly as in Theorem 5.9) to a setting involving
cosymplectic manifolds. But there are probably many more.

• Theorem 3.2 in [15], a theorem due to Siu.
• Results by Yau in [23].
• (9.26) in [3], due to Lichnerowicz.

6. <p-pluriharmonic maps on cosymplectic manifolds

It is known that the composition of two harmonic maps is not necessarily a har-
monic map. Harmonic morphisms are by definition mappings which pull back (local)
harmonic functions to (local) harmonic functions. These maps are themselves har-
monic maps which are in addition horizontally weakly conformal [7,11]. They also
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pull back (local) harmonic maps to (local) harmonic maps [12, Proposition 1]. In
complex geometry, Loubeau has introduced the notion of a pluriharmonic morphism
as a map pulling back (local) pluriharmonic functions to (local) pluriharmonic func-
tions [12]. The next proposition basically says that ^-holomorphic mappings between
cosymplectic manifolds qualify as V-plurmarmonic morphisms'.

PROPOSITION 6.1. A smooth map k: Mi -> N from a cosymplectic manifold (Mu

<P\< Iii £1. g\) to a Riemannian manifold N is <p-pluriharmonic if and only if for any
(p-holomorphic map f : M2 -*• M\ from a cosymplectic manifold (M2, <p2, r}2, £2. gi)
to M\, ko f is also <p-pluriharmonic.

PROOF. First we show that the ^-holomorphic mapping / : M2 —> M1 between
cosymplectic manifolds is itself ^-pluriharmonic (see, for example, Proposition 3.1).
As in the proof of Corollary 5.6, we easily calculate

af((p2X,<p2Y) = <plctf(X,<p2Y) = tfaf(X, Y) = -af(X, Y) + 1)1 («/(*, Y))&.

Using df (£2) = a%\ with a constant, we derive as in that same proof that
r)\{af{X, Y)) = 0. Hence, / is (^-pluriharmonic.

Next, we suppose that k is ^-pluriharmonic and / is ^-holomorphic. Then, from
formula (1), we have

akof(X, Y) + akof(<p2X,<p2Y)

+ ak(df (X), df{Y)) + ak(<Pidf (X), Vldf (Y)) - 0.

So, k o / is also ^-pluriharmonic.
For the converse, take f o r / the identity mapping Id: M -> M. •

We have similar results for (<p, 7)-holomorphic and (J, ^))-holomorphic mappings,
with proofs along the same lines.

PROPOSITION 6.2. Let f : M —*• N be a (<p, J)-holomorphic map from a cosym-
plectic manifold (M, cp, r), £, g) to a Kdhler manifold (N, J, h). Then for any plurihar-
monic map k: N —• P from N to a Riemannian manifold P.kof is <p-pluriharmonic.

PROPOSITION 6.3. Let f : N -+ M be a (J, <p)-holomorphic map from a Kdhler
manifold (N, J, h) to a cosymplectic manifold (M, £, r), <p, g). Then for any <p-
pluriharmonic map k: M —> P from M to a Riemannian manifold N, k o / is
pluriharmonic.
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As we have seen in the previous sections, the various forms of holomorphicity imply
harmonicity when working with Kahler and cosymplectic manifolds. It is natural to
ask the converse question: when does the differential of a harmonic map intertwine
the structures? The problem has some answers in the Kahler case (see [15,20]). We
can now formulate analogues when the source manifold is cosymplectic.

THEOREM 6.4. Let f : M -> N(c) be a smooth map from a cosymplectic manifold
(M ,<p,r],%, g) into a complex space form with constant holomorphic sectional cur-
vature c ^ 0. Suppose that rank df > 3 at some point of M. Iff is (p-pluriharmonic,
then f is a (<p, J)-holomorphic or a ((p, J)-anti-holomorphic map.

PROOF. In order to prove this result, we first lift the map / to the map F: Mx -*•
N(c) as in Proposition 4.5. Now we show that F is a pluriharmonic map between
Kahler manifolds. We recall that F = f o nu where n\: Mx —> M is the projection
on the first factor. As it\ is totally geodesic, we have for any X = (Xu X2), Y =
(Yu Y2) e r(T(M x M)),

aF(X, Y) = af(dnlX,dnlY).

On the other hand, it holds

aF(JxX, Jx Y) = af(d7TiJ
xX, Jxdnx Y)

= ctf((pX\, (pY\) = ctf(<pdjTiX, <pdn\ Y).

From the above two relations and the fact t ha t / is ^-pluriharmonic, we obtain

aF(X, Y) + aF(JxX, JXY) = af(d7tiX, dnx Y) + af {(pditxX, <pdnx Y) = 0

and F is a pluriharmonic map from a Kahler manifold into a complex space form with
non-zero holomorphic sectional curvature.

We also note that rank dF = rank df. So, if rank df > 3 at some point of M,
then by Theorem 1 in [20], we obtain that F is holomorphic or anti-holomorphic.
Finally, from Proposition 4.5 we get that / is (<p, 7)-holomorphic or (cp, 7)-anti-
holomorphic. •

REMARK. Under the same assumptions as in Theorem 6.4, if we suppose moreover
that M is compact, then / is stable.

THEOREM 6.5. Let f : M —> N be a stable (p-pluriharmonic map of a compact
homogeneous cosymplectic manifold into a Kdhler manifold with positive bisectional
curvature. Then f is a ((p, Jr)-holomorphic or (<p, J)-anti-holomorphic map.
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PROOF. Again we lift / : A/ -> N to the map F: M* - • N: (x, y) i-> / (x).

Then F is pluriharmonic and stable (Proposition 4.3). Moreover, M* is still compact

and homogeneous. By [15, Proposition 5.10], F is holomorphic or anti-holomorphic.

Proposition 4.5 finishes the proof. •

As we have seen, ^-pluriharmonicity implies harmonicity. In the following propo-

sition, we give a condition in the cosymplectic case such that harmonicity implies

<p-pluriharmonicity.

PROPOSITION 6.6. Any harmonic map f from a compact cosymplectic manifold to

a Kdhler manifold of strongly nonpositive curvature tensor is <p-pluriharmonic.

PROOF. The idea of the proof is the same as in the previous theorem. We use

the lift of the map / : (M, <p, r?, f, g) -+ (N, J, h) to the map F: M* - • A'. The

result follows from the corresponding result by Siu in the Kahler context (see the

Introduction in [15]) and from Propositions 4.2 and 4.5. •
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