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Abstract We categorify the commutation of Nakajima’s Heisenberg operators P±1 and their infinitely
many counterparts in the quantum toroidal algebra Uq1,q2 (g̈l1) acting on the Grothendieck groups
of Hilbert schemes from [10, 24, 26, 32]. By combining our result with [26], one obtains a geometric
categorical Uq1,q2 (g̈l1) action on the derived category of Hilbert schemes. Our main technical tool is a
detailed geometric study of certain nested Hilbert schemes of triples and quadruples, through the lens
of the minimal model program, by showing that these nested Hilbert schemes are either canonical or
semidivisorial log terminal singularities.
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1. Introduction

1.1. The description of our result

The quantum toroidal algebra Uq1,q2(g̈l1) (Definition 1.3) is an affinisation of the quantum

Heisenberg algebra which has been realised in several contexts:

• the elliptic Hall algebra in [2, 30],
• the double shuffle algebra in [8, 9, 23],
• the trace of the deformed Khovanov Heisenberg category in [4](when q1 = q2).

Given a smooth quasiprojective surface S over k = C, let

M=

∞⊔
n=0

S[n]

be the Hilbert schemes of points on S. Schiffmann-Vasserot [32], Feigin-Tsymbaliuk [10]
and Neguţ [26] constructed the Uq1,q2(g̈l1) action on the Grothendieck group of M. It

generalises the action of

• the Heisenberg algebra (Nakajima [22] and Grojnowski [11])
• the W algebra (Li-Qin-Wang [21])

on the cohomology of Hilbert schemes.
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The main result of this paper is a weak categorification of the above quantum toroidal
algebra action. First let us state our results precisely. Given a nonnegative integer n, let

S[n,n+1] be the nested Hilbert scheme

S[n,n+1] := {(In,In+1,x) ∈ S[n]×S[n+1]×S|In+1 ⊂ In,In/In+1 = kx},

which is a closed subscheme of S[n]×S[n+1]×S. There is a tautological line bundle L on

S[n,n+1], such that its fibre at each closed point is In/In+1. We abuse the notation to

denote I as the universal ideal sheaf on M×S. We will write S1,S2 for two copies of S, in
order to emphasise the factors of S×S. Let Δ :M×S→M×M×S1×S2 be the diagonal

embedding and ι :M×M×S1×S2→M×M×S2×S1 be the involution map which changes

the order of two copies of S. We denote Db(X) to be the (bounded) derived categories of
coherent sheaves on a given scheme X. We prove that

Theorem 1.1 (Theorem 5.1, see Section 1.8 for the notations). Consider the Fourier-

Mukai kernels ek,fk :Db(M)→Db(M×S) induced from:

ek := LkOS[n,n+1] ∈Db(S[n]×S[n+1]×S)

fk := Lk−1OS[n,n+1] [1] ∈Db(S[n+1]×S[n]×S).

(1) For every two integers m and r, there exists natural transformations⎧⎪⎨
⎪⎩
frem−r → ι∗em−rfr if m> 0

ι∗em−rfr → frem−r if m< 0

fre−r = ι∗erf−r⊕OΔ[1]

, (1.1)

where Δ is the diagonal of M×M×S×S.

(2) When m �= 0, the cone of the natural transformations in (1.1) has a filtration with

associated graded object ⎧⎪⎪⎨
⎪⎪⎩

m−1⊕
k=0

RΔ∗(h
+
m,k) if m> 0

0⊕
k=m+1

RΔ∗(h
−
m,k) if m< 0

,

where h+
m,k,h

−
m,k ∈ Db(M×S) are complexes of wedge and symmetric product of

universal sheaves on M×S.

It is natural to expect that Theorem 1.1 should be compatible with the computation
in [24], which we show in Theorem 3.2.

The nontriviality of the extension is a feature of the derived category statement, which

is not visible at the level of Grothendieck groups. Proposition 6.3 provides a precise
extension formula.

1.2. The weak categorification of an algebra action

Categorification can take place in a very general setting. Roughly speaking, it lifts a

certain quantity to a chain complex whose Betti number is the quantity. Here we follow
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the notation of Savage [29] for the naive, weak and strong categorifications of algebra and

representations.

Let A be a commutative ring and B = ({bi}i,∈I,{cj}j∈J) be a unitial associative
A-algebra, where {bi}i∈I is the generating set and {cj}j∈J is a set of relations which

generate all the relations in B. LetM be a B -module. The action of each bi defines an endo-

morphism bMi of M and each cj defines a relation in the endomorphism ring of M which
we denote as cMj . For a triangulated category M, we denote K0(M) as the Grothendieck

group of M. For any F ∈M, we denote [F ] ∈K0(M) as the class generated by F.

Definition 1.2 (Weak categorification). A weak categorification of (B,{bi},{ci},M) is a

quadruple (M,φ,{Fi}i∈I,{Ei}j∈J ), where

(1) M is a triangulated category with an isomorphism φ :K0(M)→M ;

(2) for each i∈ I, Fi :M→M is an triangulated endofunctor of M, such that [Fi] = bMi
under the isomorphism φ;

(3) for each j ∈ J , Ej = {E1
j

e1j−→ E2
j

e2j−→ E3
j }, where E1

j ,E
2
j ,E

3
j are endofunctors of M

which are generated by Fi, e
1
j and e2j are natural transformations, such that for

each element K ∈M, E1
j (K)

e1j (K)
−−−−→E2

j (K)
e3j (K)
−−−−→E3

j (K) is an exact triangle in M
and the relation cMj = {[E1

j ]− [E2
j ]+ [E3

j ] = 0} under the isomorphism φ.

Now we recall an integral version of the quantum toroidal algebra Uq1,q2(g̈l1).

Definition 1.3 ([26]). Given two formal parameters q1 and q2, let q= q1q2. LetK=Z[q1+
q2,q,q

−1]. The quantum toroidal algebra Uq1,q2(g̈l1) is the K-algebra with generators:

{Ek,Fk,H
±
l }k∈Z,l∈N

modulo the following relations:

(z−wq1)(z−wq2)(z−
w

q
)E(z)E(w) = (1.2)

= (z− w

q1
)(z− w

q2
)(z−wq)E(w)E(z)

(z−wq1)(z−wq2)(z−
w

q
)E(z)H±(w) = (1.3)

= (z− w

q1
)(z− w

q2
)(z−wq)H±(w)E(z)

[[Ek+1,Ek−1],Ek] = 0 ∀k ∈ Z (1.4)

together with the opposite relations for F (z) instead of E(z), as well as:

[E(z),F (w)] = δ(
z

w
)(1− q1)(1− q2)(

H+(z)−H−(w)

1− q
), (1.5)

where

E(z) =
∑
k∈Z

Ek

zk
, F (z) =

∑
k∈Z

Fk

zk
, H±(z) =

∑
l∈N∪{0}

H±
l

z±l
, (1.6)
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where

δ(z) =
∑
n∈Z

zn ∈Q{{z}}.

We will set H+
0 = q and H−

0 = 1.

The weak categorification of relations (1.2), (1.3), (1.4) was obtained in the main

theorem of [26]. Hence, we still need to categorify (1.5) to obtain a weak categorification
of the quantum toroidal algebra action, which is the purpose of Theorem 1.1.

1.3. Outline of the proof

Let us first review the categorification of the commutation of ek and el for different k and

l in [26]. Consider the moduli spaces Z2,Z
′
2 which parameterise diagrams

In−1 In In+1
x y

(1.7)

In−1 I ′
n In+1,

y x (1.8)

respectively, of ideal sheaves, where each successive inclusion is colength 1 and supported

at the point indicated on the diagrams. Then ekel and elek are the derived pushfoward

of line bundles on Z2 and Z′
2 to S[n−1]×S[n+1]×S×S, respectively. In order to compare

ekel and elek, [26] introduced the quadruple moduli space Y which parameterises the

diagram

In

In+1 In−1

I ′
n

yx

y x

(1.9)

of ideal sheaves, where each successive inclusion is colength 1 and supported at the point
indicated on the diagrams. Y is smooth and induces resolutions of Z2 and Z′

2. Proposition

2.30 of [26] proved that Z2 and Z′
2 are rational singularities, based on the fact that any

fibre of the resolution has dimension ≤ 1. Thus, ekel and elek could be compared through
line bundles on Y.

Now in order to compare frem−r and em−rfr, we introduce the triple moduli spaces

Z+,Z− which parameterise diagrams

In

In+1

I ′
n

x

y

(1.10)
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In

In−1

I ′
n

y

x

(1.11)

Then frem−r and em−rfr are the derived pushforward of line bundles on Z+,Z−,
respectively. The quadruple moduli space Y still induces resolutions of Z−, but Z+ have

two irreducible components. One irreducible component is S[n,n+1], denoted by W1, and

the other irreducible component is denoted by W0 in Section 6. Y induces a resolution
of W0.

In order to compare frem−r and em−rfr through line bundles on Y, one must prove

that Z− and W0 are rational singularities. The approach in [26] did not work here, as the
fibre could have pretty large dimensions. Instead, we study the singularity structure of

Z+ and Z− through the viewpoint of the minimal model program (MMP) [17, 18]. We

prove that

Proposition 1.4 (Propositions 4.6 and 4.13). The pair (Z+,0) is semi-dlt. Z− and W0

are canonical singularities.

We prove Proposition 1.4 by explicitly computing the discrepancy (see Section 6

for the definitions of semi-dlt, canonical singularities and the discrepancy). Canonical

singularities are always rational singularities by Theorem B.7.

Remark 1.5. One should notice the elliptic Hall algebra of [2] contains more relations

than Definition 1.3, which we would investigate in the future. The main obstacle of
generalising our result to the elliptic Hall algebra is that for the action of other

operators, the corresponding nested moduli space is not Cohen-Macaulay, and, hence, the

enhancement in derived algebraic geometry has to be considered. It is also the obstacle of
generalising our result to the quantum toroidal algebra action on the Grothendieck group

of higher rank stable sheaves [26], as Z+ is no longer equidimensional in this situation.

1.4. Categorical Heisenberg actions

Khovanov [16] defined the Heisenberg category through graphical calculus. Cautis-Licata
[5] constructed a categorical Heisenberg action on the derived category of Hilbert schemes

of points of the minimal resolution of the type ADE singularities. Krug [20] constructed

the weak categorical Heisenberg action on the derived category of Hilbert schemes of
points on smooth surfaces. Our categorification is different from those above, as it

is given in terms of explicit correspondences and independent of the derived McKay

correspondence.
Although the higher Nakajima operators were categorified by the objects e(0,...,0) of

[26], the relations between them (as well as the morphisms between them in Khovanov’s

Heisenberg category) are still unclear to us.
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1.5. Double categorified Hall algebra

The study of Cohomological Hall algebra was initiated by Kontsevich-Soibelman [19]

and Schiffmann-Vasserot [31]. Kapranov-Vasserot [15] and the author [37] constructed

the K -theoretic Hall algebra on surfaces, which was categorified by Porta-Sala [27]. It

also categorified the positive half of Uq(g̈l1) when S = A2. The relation between the
categorified Hall algebra of minimal resolution of type A singularities and quivers was

studied by Diaconescu-Porta-Sala [6]. On the other hand, the Drinfeld double of the

categorified Hall algebra is still mysterious. As an attempt to understand the action of
the ‘double Categorified Hall algebra’, it is natural to expect that our approach could

be generalised to categorifications in other settings, like those of Toda [36] and Rapcak-

Soibelman-Yang-Zhao [28].

1.6. Other related work

Recently, Addington-Takahashi [35] studied certain sequences of moduli spaces of sheaves
on K3 surfaces and showed that these sequences can be given the structure of a geometric

categorical sl2 action in the sense of [3]. It would be interesting to explore the interactions

between their action and ours.
Another related work is Jiang-Leung’s projectivisation formula [14]. Through this

formula, they obtained a semiorthogonal decomposition of the derived category of the

nested Hilbert schemes.

1.7. The organisation of the paper

The proof of the main theorem is in Section 5 and the extension formula is in Section 6.
The other sections are organised as follows:

Section 2: we review the action of Uq1,q2(g̈l1) on the Grothendieck group of Hilbert
schemes [10, 24, 26, 32];

Section 3: we define h+
m,k ∈Db(M×S) and prove the third part of Theorem 1.1;

Section 4: we study the singularity structures of Z− and Z+ through the singularity
theory of the minimal model program.

1.8. Notations

In this paper, we will always work over k = C.

1.8.1. Derived categories and the Grothendieck groups. For any scheme X,

we denote Dqcoh(X) as the derived category of quasicoherent sheaves on X. We denote
Du(X) as the full subcategory of Dqcoh(X) which consists of elements, such that all the

cohomologies are coherent sheaves on X. We denote Db(X) as the full subcategory of

Du(X), such that the cohomologies are bounded. We denote K(X) :=K0(D
b(X)).

1.8.2. Fourier-Mukai transforms associated to a surface. We will write S1,S2

for two copies of S, in order to emphasise the factors of S×S and write M1, M2 and

M3 for three copies of M, in order to emphasise the factors of M×M×M. We define

elements P in Db(M1×M2×S) to be the Fourier-Mukai kernels associated to S. Given
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P ∈ Db(M1×M2×S1) and Q ∈ Db(M2×M3×S2), we define the composition QP ∈
Db(M1×M3×S1×S2) by

QP :=Rπ13∗(Lπ
∗
12P ⊗Lπ∗

23Q),

where π12,π23 and π13 are the projections from M1×M2×M3×S1×S2 to M1×M2×
S1, M2×M3×S2 and M1×M3×S1×S2, respectively.

1.8.3. Complexes. In this paper, we adapt the cohomological degree for complexes,
that is the degree of a complex is always increasing. For any complex

{· · · → C−1 → C0 → 0},

we will assume that C0 has cohomological degree 0 unless explicitly pointing out the

cohomological degree. Given a two term complex of locally free sheaves U := {W s−→ V },
we denote the symmetric product and the wedge product complexes:

Sk(U) := {∧kW · · · → · · · →W ⊗Sk−1V → Sk(V )}
∧k(U) := {SkW → ·· · → ∧k−1(V )⊗W →∧k(V )}

and Sk(U) = ∧k(U) = 0 when k < 0. At the level of Grothendieck groups, we have

[∧k(U)] :=

k∑
i=0

(−1)i[SiW ][∧k−iV ] [Sk(U)] :=

k∑
i=0

(−1)i[∧iW ][Sk−iV ].

We define det(U) := det(V )
det(W ) and U∨ as the two term complex

{V ∨ u
∨

−−→W∨}.

Given complexes {Ci|i ∈ Z} with morphisms di : Ci → Ci+1, such that di ◦di+1 = 0, we

will write

{· · · → Ci+1 → Ci → ·· ·}

for the total complex of the double complex C•. Given a complex C• and an integer k,

we denote the complex C•[k], such that the degree n term is Cn+k.

2. The quantum toroidal algebra Uq1,q2(g̈l1) and the K -theory of Hilbert

scheme of points on surfaces

In this section, we will review the action of Uq1,q2(g̈l1) on the K -theory on Hilbert scheme
of points on surfaces from [10, 24, 26, 32]. The main theorem will be formulated in

Theorem 2.6.

2.1. Hilbert and nested Hilbert schemes

Given an integer n > 0 and a smooth quasiprojective surface S over k = C, let

S[n] := {In ⊂O|O/In is dimension 0 and length n}
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be the Hilbert scheme of n points on S. There is a universal ideal sheaf on S[n]×S, which
we still denote as In. Let Zn ⊂ S[n]×S be the closed scheme of S[n]×S with the ideal

sheaf In. We define the Hilbert schemes of points on S as

M :=

∞⊔
n=0

S[n].

Proposition 2.1 (Proposition 2.11 of [26]). There exists a resolution of In by

0→Wn
s−→ Vn →In → 0, (2.1)

where Wn and Vn are locally free coherent sheaves with the same determinant. Let wn

and vn be the rank of Wn and Vn, respectively. Then vn−wn = 1.

Definition 2.2. The nested Hilbert scheme S[n,n+1] is defined to be

S[n,n+1] := {(In,In+1,x) ∈ S[n]×S[n+1]×S|In+1 ⊂ In,In/In+1 = kx}

with natural projection maps

S[n,n+1]

S[n] S S[n+1]

p−
np+

n πn
(2.2)

(In,In+1,x)

In x In+1

p−
np+

n πn
(2.3)

and let

pn := (p+n ,πn) : S
[n,n+1] → S[n]×S.

We abuse the notation to denote In and In+1 as the universal sheaf on S[n,n+1]×S. Then
In+1 ⊂ In and the pushforward of In/In+1 to S[n,n+1] is a line bundle, which we denote

as L. The fibre of L at each closed point (In+1 ⊂ In) is In/In+1.

2.2. The quantum toroidal algebra action on the K -theory of Hilbert schemes

Definition 2.3 (Definitions 4.10 and 4.11 of [26]). Let ΔS : S → S×S be the diagonal
embedding. For any group homomorphisms x,y :K(M)→K(M×S), we define:

xy|ΔS
= {K(M)

y−→K(M×S)
x×IdS−−−−→K(M×S×S)

IdM×Δ∗
S−−−−−−→K(M×S)}

[x,y] = {K(M)
y−→K(M×S2)

x×IdS2−−−−−→K(M×S1×S2)}

−{K(M)
x−→K(M×S1)

y×IdS1−−−−−→K(M×S1×S2)}.
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We define

[x,y]red = z

for a group homomorphism z :K(M)→K(M×S) if

[x,y] = ΔS∗(z).

The definition is unambiguous, since ΔS∗ : K(S) → K(S ×S) is injective, and so z is

unique.

Definition 2.4. Let ωS be the canonical line bundle of S. We define h+
0 := [ωS ], h

−
0 := 1,

and when m> 0

h+
m := (1−ωS)

m−1∑
j=0

[ω−j
S ]

j∑
i=0

(−1)i[Sm−iIn][∧iIn] (2.4)

h−
m := (1−ωS)

m−1∑
j=0

(−1)j [ωj
S ]

j∑
i=0

(−1)i[∧m−iI∨
n ][S

iI∨
n ] (2.5)

as elements in K(S[n]×S). Here, we abuse the notation to denote

In := {Wn
s−→ Vn}

in the short exact sequence (2.1).

Remark 2.5. Definition 2.4 is equivalent to the definition of h±
m in [24]. We will prove

it in Appendix A.

Theorem 2.6 (Theorem 1.2 of [24]). Let T ∗S be the cotangent bundle of S and ωS be

the canonical bundle of S. The morphism:

q1+ q2 → [T ∗S] q = q1q2 → [ωS ]

induces a homomorphism:

K→K(S).

We regard S[n,n+1] as a closed subscheme of S[n]×S[n+1]×S and S[n]×S as a closed
subscheme of S[n]×S[n]×S through the diagonal embedding and consider the following

element:

ẽi := [LiOS[n,n+1] ] ∈K(S[n]×S[n+1]×S),

f̃i :=−[Li−1OS[n,n+1] ] ∈K(S[n+1]×S[n]×S),

h̃±
i := [h±

i OS[n]×S ] ∈K(S[n]×S[n]×S).

All the elements ẽi, f̃i and h±
i could be regarded as operators K(M)→K(M×S) through

the K-theoretic correspondences. Then there exists a unique K-homomorphism

Φ : Uq1,q2(g̈l1)→Hom(KM,KM×S),

such that
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(1)

Φ(Ei) = ẽi, Φ(Fi) = f̃i, Φ(H±
i ) = h̃±

i

(2) For all x,y ∈ Uq1,q2(g̈l1), we have

Φ(xy) = Φ(x)Φ(y)|ΔS

[Φ(x),Φ(y)]|red =Φ(
[x,y]

(1− q1)(1− q2)
).

The right-hand side is well defined due to the fact that all commutators in Uq1,q2(g̈l1)

are multiples of (1− q1)(1− q2)(see Theorem 2.4 of [25]).

3. Nested Hilbert schemes and h±
m,k

In this section, we consider the nested Hilbert scheme S[n−1,n,n+1] by the Cartesian
diagram:

S[n−1,n,n+1] S[n,n+1]

S[n−1,n] S[n]×S

qn

(p+
n ,πn)

(p−
n−1,πn−1)

(3.1)

which consists of

{(In−1,In,In+1,x) ∈ S[n−1]×S[n]×S[n+1]×S|In−1/In = kx,In/In+1 = kx}.

Like the definition of the line bundle L in Definition 2.2, we can also define two line bundles

L1,L2 on S[n−1,n,n+1] whose fibres are In/In+1,In−1/In, respectively. We denote

qn : S[n−1,n,n+1] → S[n,n+1]

as the projection morphism.

Example 3.1. Let ΔS : S→ S×S be the diagonal embedding and IΔS
be the ideal sheaf

of the diagonal. Then

S[1,2] =BlΔS
(S×S) = PS×S(IΔS

) S[2] =BlΔS
(S×S)/Z2,

where the Z2 action on BlΔS
(S×S) is induced by the Z2 action

i : S×S → S×S i(x,y) = (y,x).

By [33], the projection morphism

(p−2 ,π2) : S
[1,2] → S[2]×S (I1,I2,x)→ (I2,x)

is a closed embedding with image Z2. By (3.1), S[1,2,3] is the preimage of Z2.
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For two integers k,m, such that m> k ≥ 0, we define h+
m,k ∈Db(S[n]×S) by

h+
m,k :=

{
R(pn ◦ qn)∗(Lm−1−k

1 Lk
2)[1] k > 0

Rpn∗(Lm)[2] k = 0
(3.2)

and if m< k ≤ 0, we define h−
m,k ∈Db(S[n]×S) by

h−
m,k :=

{
R(pn ◦ qn)∗(Lm−1−k

1 Lk
2)[1] k < 0

Rpn∗(L−m−1)[1] k = 0.
(3.3)

The purpose of this section is to prove that

Theorem 3.2. At the level of Grothendieck groups,

[h+
m,k] = [ω−k

S ]

k∑
i=0

(−1)i[Sm−iIn][∧iIn]

[h−
m,k] = (−1)k[ωk

S ]

k∑
i=0

(−1)i[∧m−iI∨
n ][S

iI∨
n ]

and at the level of Grothendieck groups⎧⎪⎪⎨
⎪⎪⎩
(1− [ωS ])

m−1∑
k=0

[h+
m,k] = h+

m m> 0

(1− [ωS ])
0∑

k=m+1

[h−
m,k] = h−

−m m< 0.
(3.4)

3.1. Projectivisation and A categorical projection lemma

Definition 3.3. Let

U := {W s−→ V }

be a two term complex of locally free sheaves over a scheme X, such that W has rank w

and V has rank v. Let Z ⊂ PX(V ) be the closed subscheme, such that OZ is the cokernel
of the composition of morphisms

ρ∗W ⊗OPX(V )(−1)
ρ∗(s)−−−→ ρ∗V ⊗OPX(V )(−1)

taut−−−→OPX(V ),

where ρ : PX(V )→X is the projection morphism. We define Z to be the projectivisation
of U over X, denoted by

Z = PX(U)

if OZ is resolved by the Koszul complex:

0→∧wρ∗(W )⊗OPX(V )(−w)→ ·· · → ρ∗W ⊗OPX(V )(−1)→OPX(V ) →OZ → 0.

When Z is a projectivisation of U over X, we have a categorical projection lemma for

Rρ∗(OZ(k)):
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Lemma 3.4 (Categorical projection lemma). If Z is the projectivisation of U over X in

Definition 3.3, then the tensor contraction

det(U)−1∧w−v−kW∨ = ∧v(V ∨)∧k+v (W )→∧k(W ) (3.5)

induces a morphism of complexes

det(U)−1∧w−v−k (U∨)[k]→ Sk(U) (3.6)

and Rρ∗(OZ(k)) is quasi-isomorphic to its cone.

Proof. OZ(k) is quasi-isomorphic to the complex

{· · · → ∧jρ∗W ⊗OPX(V )(−j+k)→ ·· · → ρ∗W ⊗OPX(V )(k−1)→OPX(V )(k)→ 0}.

Consider the following two complexes

F0 = {· · · → ∧k+v+1ρ∗W ⊗OPX(V )(−v−1)→∧k+vρ∗W ⊗OPX(V )(−v)}[v+k−1]

F1 = {∧k+v−1ρ∗W ⊗OPX(V )(−v+1) · · · → ρ∗W ⊗OPX(V )(k−1)→OPX(V )(k)}.

Then the morphism ∧k+vρ∗W ⊗OPX(V )(−v)→∧k+v−1ρ∗W ⊗OPX(V )(−v+1) induces a

morphism of F0 → F1 with the cone quasi-isomorphic to OZ(k).
By Exercise III.8.4 of Hartshorne [12],

Rρ∗(OP(V )(j)) =

⎧⎪⎨
⎪⎩
Sj(V ) j ≥ 0

0 −v < j < 0

detV −1⊗S−j−vV ∨[1−v] j ≤−v,

(3.7)

and thus,

Rρ∗F0
∼= det(U)−1∧w−v−k (U∨)[−k], Rρ∗F1

∼= Sk(U).

Hence, Rρ∗(OZ(k)) is quasi-isomorphic to the cone

det(U)−1∧w−v−k (U∨)[k]→ Sk(U).

3.2. Nested Hilbert schemes as projectivisation

Recall the short exact sequence (2.1):

0→Wn
sn−→ Vn →In → 0.

Nested Hilbert schemes can be realised as projectivisations, as in the following Proposi-

tions:

Proposition 3.5 (Proposition 2.2 and Lemma 3.1 of [7]). The nested Hilbert scheme

S[n,n+1] is the blow up of Zn in S[n]×S and

S[n,n+1] ∼= PS[n]×S(In)

is smooth of dimension 2n+2. Moreover, S[n,n+1] is the projectivisation of

Wn
s−→ Vn
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over S[n] × S. The tautological line bundle L is the restriction of OP
S[n]×S

(Vn)(1) to

S[n,n+1].

Corollary 3.6. The line bundle L is the exceptional divisor of S[n,n+1] as the blow up

of Zn, that is we have the short exact sequence:

0→L→OS[n,n+1] → p−1
n OZn

→ 0. (3.8)

Proof. It is obvious from Proposition 7.13 of [12].

Let Vn be the kernel of the surjective morphism

p∗nVn →OS[n,n+1](1) = L.

Then Vn is also locally free. The morphism p∗n(Wn) → p∗n(Vn) factors through Vn and

induces a morphsim

Vn
∨⊗ωS → p∗n(W

∨
n )⊗ωS .

Proposition 3.7 (Proposition 4.15 of [25]). The scheme S[n−1,n,n+1] is smooth of

dimension 2n+1. Moreover, it is the projectivisation of

Vn
∨⊗ωS → p∗n(W

∨
n )⊗ωS

over S[n,n+1]. For the two tautological line bundles L1, L2, L1 = q∗n(OS[n,n+1](1)) and L2

is the restriction of OP
S[n,n+1] (p∗

n(W
∨
n )⊗ωS)(−1) in S[n,n+1].

3.3. The derived pushforward of line bundles on S[n−1,n,n+1]

In this subsection, we still abuse the notation to denote

In := {Wn → Vn}, I∨
n := {V ∨

n →W∨
n }.

Lemma 3.8. We have the following formula for the derived pushforward Rpn∗Lj:

Rpn∗(Lj) =

{
Sj(In) j ≥ 0

∧−j−1(I∨
n )[1+ j] j < 0.

(3.9)

Proof. By Proposition 3.5, S[n,n+1] is the projectivisation of

Wn
sn−→ Vn.

Thus, (3.9) follows from Lemma 3.4.

Lemma 3.9. We have the following formula for Rqn∗Lk
2 :

Rqn∗(Lk
2) =

⎧⎪⎨
⎪⎩
{L→OS[n,n+1]} k = 0

ω−k
S ⊗{Lp∗n(∧kIn)L→ ·· · → Lp∗n(In)⊗Lk →Lk+1}[1−2k] k > 0

ω−k
S ⊗{· · · → L−1Lp∗n(S

−k−1I∨
n )[1]→ Lp∗n(S

−kI∨
n )} k < 0,

(3.10)

where Lp∗n :Db(S[n]×S)→Db(S[n,n+1]) is the derived pullback morphism.
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Proof. By Proposition 3.7, S[n−1,n,n+1] is the projectivisation of

Vn
∨⊗ωS → p∗n(W

∨
n )⊗ωS

over S[n,n+1]. We notice that p∗n(W
∨
n )⊗ωS and Vn

∨⊗ωS have the same rank and

det(p∗n(Wn)⊗ωS)

det(Vn)⊗ωS

=
det(p∗n(Wn))

det(Vn)
=

det(p∗n(Vn))

det(p∗n(Vn))L−1
= L.

By Lemma 3.4, we have

• When k = 0,

Rqn∗(OS[n−1,n,n+1]) = {L→OS[n,n+1]}, (3.11)

• When k > 0, we have

Rqn∗Lk
2 = L⊗ω−k

S ⊗{Sk(p∗nWn)→ Vn⊗Sk−1(p∗nWn) · · · → ∧k(Vn)}[1−k].

By the resolution of ∧k(Vn):

0→∧k(Vn)→∧k(Vn)→∧k−1(Vn)⊗L→ ·· · → Lk → 0,

we have

Rqn∗(Lk
2) = ω−k

S ⊗{Lp∗n(∧kIn)L→ ·· · → Lp∗n(In)⊗Lk →Lk+1}[1−2k].

• When k < 0, we have

Rqn∗(Lk
2) = ω−k

S ⊗{· · · → Vn
∨⊗S−k−1(p∗nW

∨
n )→ S−k(p∗nW

∨
n )}

By the resolution of ∧k(Vn
∨
):

0→Lk → ·· · → ∧−k−1(V ∨
n )L−1 →∧k(V ∨

n )→∧k(Vn
∨
)→ 0,

we have

Rqn∗(Lk
2) = ω−k

S ⊗{· · · → L−1Lp∗n(S
−k−1I∨

n )[1]→ Lp∗n(S
−kI∨

n )} (3.12)

By Lemmas 3.8 and 3.9, we have

Corollary 3.10. We have the following formula for R(pn ◦ qn)∗Lm−1−k
1 Lk

2 :

R(pn ◦ qn)∗(Lm−1−k
1 Lk

2) = (3.13){
ω−k
S ⊗{∧−m(I∨

n )→ ·· · → ∧−m+k(I∨
n )S

−k(I∨
n )}[m−k] m≤ k ≤−1

ω−k
S ⊗{∧k(In)Sm−k(In)→ ·· · → In⊗Sm−1(In)→ Sm(In)}[1−2k] 1≤ k ≤m.

Remark 3.11. When m = k < 0, same as the computation in the Grothendieck group,

the complex

{∧−k(I∨
n )→ ·· · → S−k(I∨

n )}
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is quasi-isomorphic to 0, and thus, we have

R(pn ◦ qn)∗L−1
1 Lk

2 = 0. (3.14)

Proof of Theorem 3.2. It follows from Definition 2.4, Lemma 3.8 and

Corollary 3.10.

4. The quadrulple/triple moduli spaces and the minimal model program

In this section, we introduce the triple moduli spaces Z+,Z− and the quadruple moduli
space Y which parameterise diagrams:

In

In+1

I ′
n

x

y

(4.1)

In

In−1

I ′
n

y

x

(4.2)

In

In+1 In−1

I ′
n

yx

y x

(4.3)

respectively, of ideal sheaves, where each successive inclusion is colength 1 and supported

at the point indicated on the diagrams. We consider line bundles L1,L2,L′
1,L′

2 over

triple/quadruple moduli spaces with fibre In+1/In,In/In−1,In+1/I ′
n,I ′

n/In−1, respec-
tively.

We consider the Cartesian diagram:

Y Z+

Z− S[n]×S[n]×S×S

α+

α−
θ

β+

β−

(In−1,In,I ′
n,In+1,x,y) (In,I ′

n,In+1,x,y)

(In−1,In,I ′
n,x,y) (In,I ′

n,x,y).

α+

α−
θ

β+

β−

(4.4)

(3.1) is the restriction of (4.4) to the diagonal Δ : S[n]×S → S[n]×S[n]×S×S.
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Example 4.1. When n = 1, then I0 = OS , and thus, Y = S[1,2] = BlΔS
(S ×S). The

scheme Z− = S×S and α− is the projection morphism of the blow up. The scheme Z+

is induced by the Cartesian diagram

Z+ BlΔS
(S×S)

BlΔS
(S×S) BlΔS

(S×S)/Z2,

(4.5)

and has two irreducible components, such that each one is isomorphic to BlΔ(S×S).

The main purpose of this section is to compute Rα+∗OY and Rα−∗OY explicitly.

Proposition 4.2. We have the formula

Rα−∗OY =OZ−, Rα+∗OY =OW0
, (4.6)

where W0 will be defined in Section 4.3.

Proposition 4.2 follows from Proposition 4.7 and Corollary 4.14, which will be proved
later in this section. This section would rely on the singularity theory of the minimal

model program, which is summarised in Appendix B.

4.1. The geometry of Y

Theorem 4.3 (Propositions 2.28 and 5.28 of [26]). The scheme Y is smooth of dimension

2n+2. The closed embedding:

ΔY : S[n−1,n,n+1] →Y (In−1,In,In+1,x)→ (In−1,In,In,In+1,x,x)

is a regular closed subscheme of codimension 1. If we abuse the notation to denote

S[n−1,n,n+1] by ΔY, then the morphism of coherent sheaves over Y×S:

In/In+1 →In−1/In+1 →In−1/I ′
n, I ′

n/In+1 →In−1/In+1 →In−1/In
induce short exact sequences

0→L1 →L′
2 →L′

2OΔY
→ 0

0→L′
1 →L2 →L2OΔY

→ 0.

Moreover, L1L′−1
2 = L′

1L−1
2 =O(−ΔY). The normal bundle NY/ΔY

= L−1
1 L2.

Remark 4.4. From now on, we will abuse the notation to denote S[n−1,n,n+1] by ΔY.

Lemma 4.5 (Claim 3.8 of [24]). Let U be the complement of ΔY in Y. Then α+ and α−
in (4.4) are isomorphisms when restricting to U.

4.2. The geometry of Z−

Proposition 4.6. The scheme Z− is an irreducible 2n+2 dimensional locally complete

intersection scheme.
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Proof. First we notice that

Z− = S[n−1,n]×S[n−1] S[n−1,n]

has the expected dimension also equal to 2n+2. Thus, Z− is a locally complete intersection

scheme and, thus, is Cohen-Macaulay.
We recall the Serre’s criterion [34, Tag 033P] for the normality of a variety: to prove that

a variety is normal, we only need to show that it satisfies the Serre’s condition S2 (which

is always satisfied if the variety is Cohen-Macaulay), and R1 (i.e. the singular locus has

at least codimension 1). By Lemma 4.5, α−1
− (U)∼= θ−1(U) is a 2n+2-dimensional smooth

open subscheme and the complement is the 2n-dimensional closed subscheme S[n−1,n] by

(4.4). Hence, Z− satisfies R1 and is normal.

Proposition 4.7. Let KZ− and KY be the canonical divisors of Z− and Y, respectively.

Then

α∗
−KZ− =KY+O(ΔY)

and Z− is a canonical singularity. Moreover, we have the formula

Rα−∗(OY) =OZ− .

Proof. The complement of θ−1(U) in Y is ΔY = S[n−1,n,n+1], and, thus, there exists
a ∈Q, such that

α∗
−KZ− =KY+aO(ΔY).

Given two closed points x,y ∈ S, let Ix and Iy be the ideal sheaf of closed point x,y.

We consider

V2 := {(In−1,x,y) ∈ S[n]×S×S|(In−1,x) /∈ Zn−1 and (In−1,y) /∈ Zn−1}

and regard V2 as an open subvariety of Z− through the embedding

(In−1,x,y)→ (In−1,In−1∩Ix,In−1∩Iy).

Let V1 := α−1
− (V2). We denote Y1 the quadruple moduli space Y when n = 1. By

Example 4.1, Y1 =BlΔS
(S×S) and we have the Cartesian diagram:

V1 Y1

V2 S×S

α−|V2

while the right vertical arrow of the above diagram is the projection morphism of the

blow up. Thus, by Lemma B.2, a = 1 and Z− is a canonical singularity and, hence, a

rational singularity by Theorem B.7.
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4.3. The geometry of Z+

The geometry of Z+ is more complicated, as it is no longer irreducible. We define W0 as

a closed subscheme of Z+ by

W0 := {(In,I ′
n,In+1,x,y) ∈ Z+|(I ′

n,y) ∈ Zn and (In,x) ∈ Zn}.

W0 is the closure of β−1
+ (U) in Z+. We define W1 := S[n,n+1].

Proposition 4.8. The scheme Z+ is a locally complete intersection scheme (and hence,

Cohen-Macaulay) of dimension 2n+ 2, with two irreducible components W0 and W1.

W0∩W1 = p−1
n Zn.

Proof. W1 is 2n+2 dimensional and the complement of W1 in Z+ is β−1
+ (U) = θ−1(U),

which is also 2n+2 dimensional by Lemma 4.5. Thus, Z+ is 2n+2 dimensional and

Z+ = S[n,n+1]×S[n+1] S[n,n+1]

has expected dimension also equal to 2n+2. Hence, Z+ is a locally complete intersection
scheme.

Any closed point of W0 ∩W1 corresponds to (In,In+1,x) ∈ S[n,n+1], such that x has

length ≥ 1 in O/In and, thus, is in p−1
n Zn.

Example 4.9. When n = 2, by Example 3.1, Z2 = S[1,2]. Thus, for any point

(I ′
2,I2,I3,x,y) ∈W0, there exists a unique ideal sheaf I1 with two short exact sequences

0→I ′
2 →I1 → ky → 0 0→I2 →I1 → kx → 0.

Thus, W0
∼=Y.

W0∩W1 = S[1,2,3] by Example 3.1 and is smooth. So (Z+,0) is a semi-snc pair.

Consider the closed subscheme W2 ⊂ p−1
n Zn

W2 := {(In,In+1,x) ∈W1| the length of kx in O/In ≥ 3.}.

Lemma 4.10. The schemes q−1
n (W2) and W2 have dimension less or equal to 2n−1.

Proof. The scheme

S[n−2,n−1,n,n+1] := S[n−2,n−1,n]×S[n−1,n] S[n−1,n,n+1]

has dimension 2n−1 by (5.21) of [26]. The image of the projection morphism

S[n−2,n−2,n,n+1] → S[n,n+1]

is W2, and the image of the projecton morphism

S[n−2,n−2,n,n+1] → S[n−1,n,n+1]

is q−1
n (W2). Hence, q−1

n (W2) and W2 have dimension less or equal to 2n−1.

As the morphism α+ :Y→ Z+ factors through W0, we will abuse the notation to denote

the morphism α+ :Y→W0.
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Lemma 4.11. The morphism α+ : Y → W0 is an isomorphism when restricting
to W0−W2.

Proof. We denote Y2 the quadruple moduli space when n= 2. Let

V3 := {(In−2,(I1,I2,I ′
2,I3,x,y)) ∈ S[n−1]×Y2|In−2+I3 =O}

and V4 := α+V3. The morphism

(In−2,(I1,I2,I ′
2,I3,x,y))→ (In−2∩I1,In−2∩I2,In−2∩I ′

2,In−2∩I3,x,y)

induces an open emebedding V3 ⊂Y. By Example 4.9,

V3
∼= V4.

By Lemma 4.5, α+ is also an isomorphism when restricting to β−1
+ (U). W2 is the

complement of β−1
+ (U)∪V4 in W0.

Let W0 be the normalisation of W0 and W0∩W1,W2 the preimage of W0∩W1 and W2

in the normalisation. The morphism α+ :Y→W0 will factor through α+ :Y→W0.

Lemma 4.12. The scheme W 0 is a canonical singularity, and the pair (W0,W0∩W1)
is plt.

Proof. The codimension of W2 in W0 is 3, and α+ is an isomorphism outside of W2.

The preimage of W0∩W1 in Y is ΔY, which is a smooth divisor of Y. Hence, W 0 is a
canonical singularity and the pair (W0,W0∩W1) is plt.

Proposition 4.13. The pair (Z+,0) is semi-dlt, and W0 is normal.

Proof. Let

V5 := In−2,(I2,I ′
2,I3,x,y)) ∈ S[n−1]×Z

+
2 |In−2+I3 =O},

where Z+
2 =S[2,3]×S[2] S[2,3] is the triple moduli space when n=2. V5 is an open subscheme

of Z+. The pair(V5,0) is a semi-snc by Example 4.9 and so is (V5∪β−1
+ (U),0). W2 is the

complement of V5∪β−1
+ (U) in Z+, and

codimW2
Z+ = 3.

By Definition B.13, W0 ∩W1 is the conductor subscheme of Z+. By Example B.9,

W0∩W1 is a canonical singularity. By the inversion of adjunction theorem Theorem B.4,

the pair (W1,W0∩W1) is plt and, thus, dlt.
By Lemma 4.12, (W0,W0∩W1) is also a plt pair and, thus, a dlt pair.

By Proposition B.17, (Z+,0) is a semi-dlt pair and W0 is normal.

Corollary 4.14. We have the formula

Rα+∗(OY) =OW0
.
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5. The Proof of Theorem 1.1

In this section, we prove Theorem 1.1. Given an integer n, we denote ι : S[n]×S[n]×S1×
S2 → S[n]×S[n]×S2×S1 as the morphism which is identity on S[n]×S[n] but change the

order of two copies of S.

Theorem 5.1. Given two integers m and r and let

em−r = Lm−r
1 OS[n,n+1] ∈Db(S[n]×S[n+1]×S)

fr = Lk−1
1 OS[n,n+1] [1] ∈Db(S[n+1]×S[n]×S).

Then

(1) If m > 0, then there are bkm,r ∈ Db(S[n] ×S[n] ×S×S) for 0 ≤ k ≤ m, such that

bmm,r = ι∗em−rfr and b0m,r = frem−r, with exact triangles

Bk
m,r :RΔ∗(h

+
m,k)[−1]→ bkm,r → bk+1

m,r →RΔ∗(h
+
m,k)

(2) If m < 0, then there are crm,r ∈ Db(S[n] ×S[n] ×S×S) for m ≤ k ≤ 0, such that

cmm,r = ι∗em−rfr and c0m,r = frem−r, and exact triangles

Ck
m,r :RΔ∗(h

−
m,k)[−1]→ ck−1

m,r → ckm,r →RΔ∗(h
−
m,k)

(3) If m= 0, then there is an explicit isomorphism fre−r = erf−r⊕OΔ[1].

Theorem 1.1 follows from Theorems 3.2 and 5.1. We will prove Theorem 5.1 later in

this section.

5.1. ι∗em−rfr and frem−r revisited

As Z− and Z+ are both Cohen-Macaulay of expected dimension, we have the following

formula:

ι∗em−rfr =Rβ−∗(L′m−r
2 Lr−1

2 OZ−)[1] ∈Db(S[n]×S[n]×S×S)

frem−r =Rβ+∗(Lm−r
1 L′r−1

1 OZ+
)[1] ∈Db(S[n]×S[n]×S×S).

By Proposition 4.6, Rα−∗OY =OZ− , and by Theorem 4.3

ι∗em−rfr =Rθ∗(L′m−r
2 Lr−1

2 OY)[1]

=Rθ∗(L′m−r
1 Lr−1

1 O((m−1)ΔY))[1]. (5.1)

5.2. akm,r and Ak
m,r

We recall the short exact sequence

0→OY(−ΔY)→OY →OΔY
→ 0. (5.2)

Definition 5.2. For any integer r, we define

akm,r =Rθ∗(L′m−r
1 Lr−1

1 O(kΔY))[1].
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We define the exact triangles

Ak
m,r : a

k−1
m,r → akm,r →RΔ∗(R(pn ◦ qn)∗Lm−1−k

1 Lk
2)[1]→ ak−1

m,r [1] (5.3)

by applying the functor Rθ∗(−⊗L′m−r
1 Lr−1

1 O(kΔY))[1] to (5.2).

By (5.1), ι∗em−rfr ∼= am−1
m,r . Moreover, when m< 0, by (3.14), R(pn ◦ qn)∗L−1

1 Lm
2 = 0

and ι∗em−rfr ∼= am−1
m,r

∼= amm,r.

5.3. B′0
m,r and C′0

m,r

By Example B.9, Rα+∗OΔY
= OW0∩W1

. Taking the Rα+∗ functor to the short exact
sequence (5.2), we have the short exact sequence

0→Rα+∗O(−ΔY)→OW0
→OW0∩W1

→ 0.

Recalling the short exact sequence in Corollary 3.6:

0→L⊗OW1
→OW1

→OW0∩W1
→ 0.

We have the following commutative diagram:

0 0

Rα+∗O(−ΔY) Rα+∗O(−ΔY)

0 L⊗OW1
OZ+

OW0
0

0 L⊗OW1
OW1

OW0∩W1
0

0 0

∼=

∼=

where all rows and columns are short exact sequences. Thus, we have short exact
sequences:

0→Rα+∗O(−ΔY)→OZ+
→OW1

→ 0 (5.4)

0→L1OS[n,n+1] →OZ+
→OW0

→ 0. (5.5)

Taking the functor Rβ+∗(−⊗L′m−r
1 Lr−1

1 )[1] to (5.4) and (5.5), respectively, we get the
exact triangles

C′0
m,r : a

−1
m,r → frem−r →RΔ∗(Rpn∗Lm−1)[1]→ a−1

m,r[1] (5.6)

B′0
m,r :RΔ∗(Rpn∗Lm)[1]→ frem−r → a0m,r →RΔ∗(Rpn∗Lm)[2]. (5.7)
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5.4. Bk
m,r and Ck

m,r

Definition 5.3. When m > 0, we define bkm.r ∈ Db(S[n] × S[n] × S × S) and natural
transforms Bk

m,r : b
k
m,r → bk+1

m,r by

bkm,r :=

{
frem−r k = 0

ak−1
m,r 1≤ k ≤m

(5.8)

Bk
m,r :=

{
B′0

m,r k = 0

Ak
m,r 1≤ k ≤m−1.

(5.9)

We have b0m,r = frem−r and bmm,r = ι∗em−rfr.

When m< 0, we define ckm,r ∈Db(S[n]×S[n]×S×S) and Ck
m,r : c

k−1
m,r → ckm,r by

ckm,r =

{
frem−r k = 0

akm,r m≤ k ≤−1
(5.10)

Ck
m,r =

{
C′0
m,r k = 0

Ak
m,r m+1≤ k ≤−1.

(5.11)

We have frem−r = c0m,r and ι∗em−rfr = cmm,r.

Proof of Theorem 5.1. When m> 0, we only need to prove that the cone of Bk
m,r is

RΔ∗(h
+
m,k) and the cone of Ck

m,r is RΔ∗(h
−
m,k). It follows from (5.3), (5.6) and (5.7).

When m= 0,

e−rfr =Rβ+∗(Rα+∗(L′−r
1 Lr−1

1 O(−ΔY))).

We have the short exact sequence:

0→L′−r
1 Lr−1

1 OZ+
→L′−r

1 Lr−1
1 (OW0

⊕OW1
)→L−1OW0∩W1

→ 0, (5.12)

and

Rβ+∗(L−1OW0∩W1
) = {Rβ+∗(OW1

→L−1OW1
)}

=RΔ∗{OS[n]×S →OS[n]×S} by Lemma 3.8

= 0.

By (5.4) and (5.12), we have isomorphisms

fre−r
∼=Rβ+∗L′−r

1 Lr−1
1 (OW0

)[1]⊕OΔ[1]

e−rfr ∼=Rβ+∗L′−r
1 Lr−1

1 (OW0
)[1].

6. Extension classes between h±
m,k

When m> 0, the composition of Bk
m,r and Bk+1

m,r in Theorem 5.1 induces an extension of

RΔ∗h
+
m,k−1 and RΔ∗h

+
m,k, that is an extension class of

Hom(RΔ∗h
+
m,k,RΔ∗h

+
m,k−1[1]).
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Similarly, when m< 0, there is also an extension class of

Hom(RΔ∗h
−
m,k,RΔ∗h

−
m,k−1[1])

which relies on m,k,r. The purpose of this section is to study the above extension classes.

First we recall the Hochschild-Kostant-Rosenberg theorem (short for HKR theorem). Let

f :X → Y be a regular embedding of smooth varieties. On X, we have the following short
exact sequence

0→N∨
Y/X

ιY/X−−−→ T ∗Y |X → T ∗X → 0.

Let g : T ∗Y →N∨
Y/X be a splitting of the above short exact sequence, that is g◦ιY/X = id.

Theorem 6.1 (HKR isomorphism, Theorem 1.4 and Section 1.11 of [1], see Theorem C.10
for the precise formulation). The splitting g induces a canonical isomorphism

τF,G
N∨

Y/X
:RHomX(F⊗L(

∞⊕
j=0

∧jN∨
Y/X),G)∼=RHomY (Rf∗F,Rf∗G)

which is functorial respect to F,G ∈D(X).

Remark 6.2. The isomorphism τF,G
N∨

X/Y
depends on the choice of the splitting g. For a

different choice of g, the difference of the isomorphism τF,G
N∨

X/Y
is represented by a transition

matrix in Proposition 3.7 of [13].

Now we consider the diagonal embedding Δ : S[n]×S → S[n]×S[n]×S×S. Then

T ∗(S[n]×S[n]×S×S)|Δ = T ∗(S[n]×S)⊕T ∗(S[n]×S), where the conormal bundle is

T ∗(S[n]×S)∼={(x,−x) ∈ T ∗(S[n]×S)⊕T ∗(S[n]×S)}.

We take the split

(T ∗Δ)−1 : T ∗(S[n]×S)⊕T ∗(S[n]×S)→ T ∗(S[n]×S) (6.1)

which maps (a,b) to ( 12 (a− b), 12 (b−a)) and, hence, induce isomorphisms

Hom(RΔ∗h
+
m,k,RΔ∗h

+
m,k−1[1]) =

∞⊕
j=0

HomS[n]×S(h
+
m,k⊗∧jT ∗(S[n]×S),h+

m,k−1[1− j]),

Hom(RΔ∗h
−
m,k,RΔ∗h

−
m,k−1[1]) =

∞⊕
j=0

HomS[n]×S(h
−
m,k⊗∧jT ∗(S[n]×S),h−

m,k−1[1− j]).

In this section, we will be explicitly computing the above extension classes and prove
that

Proposition 6.3. The extension class in Hom(RΔ∗h
+
m,k,RΔ∗h

+
m,k−1[1]) is

(F+
m,k,r,H

+
m,k,0,0, · · ·)

https://doi.org/10.1017/S1474748022000585 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748022000585


920 Y. Zhao

and the extension class in Hom(RΔ∗h
−
m,k,RΔ∗h

−
m,k−1[1]) is

(F−
m,k,r,H

−
m,k,0,0, · · ·),

where F
+
m,k,r, F

−
m,k,r, H

+
m,k and H

−
m,k will be defined in Definition 6.7. The classes H

+
m,k

and H
−
m,k only depend on m,k but not r.

Proposition 6.3 will be proved later in this section.

6.1. A morphism s : L−1
1 L2 → (pn ◦ qn)∗T (S[n]×S)

By restricting θ :Y→ S[n]×S[n]×S×S to the diagonal of S[n]×S[n]×S×S, we get the
Cartesian diagram:

S[n−1,n,n+1] Y

S[n]×S S[n]×S[n]×S×S

pn◦qn

ΔY

θ

Δ

(6.2)

and the normal bundle of S[n]×S in S[n]×S[n]×S×S is T (S[n]×S). Thus, the diagram

(6.2) induces a morphism of short exact sequences:

0 0

TS[n−1,n,n+1] (pn ◦ qn)∗TS[n]×S

TY|S[n−1,n,n+1] (pn◦qn)∗TS[n]×S[n]×S×S |Δ

L−1
1 L2 (pn ◦ qn)∗TS[n]×S

0 0

s′

(6.3)

where NY/ΔY

∼=L−1
1 L2. The purpose of this subsection is to construct a split λ :L−1

1 L2 →
TY|Sn−1,n,n+1 which is compatible with the splitting of tangent bundle (or cotangent

bundle) in (6.1) and give an explicit formulation of s′ in Proposition 6.6. First we recall

the description of the tangent space of S[n−1,n,n+1] and Y in Proposition 5.28 of [26]:
we consider a closed point t ∈ S[n−1,n,n+1] corresponds to two short exact sequences of

coherent sheaves on S :

0→In in−→ In−1
jn−→ kx → 0 0→In+1

in+1−−−→ In
jn+1−−−→ kx → 0.

Let V be the vector space of pairs {(w0,w1) ∈ Ext1(In−1,In−1)⊕Ext1(In,In)}, such
that w0,w1 map to the same element of Ext1(In,In−1). By the proof of Proposition 5.28

of [26], elements in V are in 1-1 correspondence with the commutative diagrams of short
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exact sequences:

0 0 0

0 In A In 0

0 In−1 B In−1 0

0 kx C kx 0

0 0 0

in in

jn jn

and, thus, induce a morphism dp1S : V →Ext1(kx,kx). Let V
′ be the vector space of pairs

{(w′
1,w2) ∈ Ext1(In,In)⊕Ext1(In+1,In+1)},

such that w′
1,w2 map to the same element of Ext1(In,In+1). Then elements in V ′ are in

1-1 correspondence with the commutative diagrams of short exact sequences:

0 0 0

0 In+1 A′ In+1 0

0 In B′ In 0

0 kx C′ kx 0

0 0 0

and, thus, also induces a morphism dp2S : V ′ → Ext1(kx,kx).
Consider the natural morphism:

ŝ1 :Hom(In,kx)⊗Ext1(kx,In)→ Ext1(In,In)
ŝ2 :Hom(In,kx)⊗Ext1(kx,In)→ Ext1(kx,kx),

and the short exact sequences

Hom(In,kx)
ŝ1(−⊗r2)−−−−−−→ Ext1(In,In)→ Ext1(In,In−1)

Ext1(kx,In)
ŝ1(r1⊗−)−−−−−−→ Ext1(In,In)→ Ext1(In+1,In).
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For any element u ∈Hom(In,kx), (ŝ1(u⊗ r2),0) ∈ V . Moreover, by diagram chasing (we

left it to interested readers)

dp1S(ŝ1(u⊗ r2),0) = ŝ2(u⊗ r2). (6.4)

Similarly, for any element v ∈ Ext1(kx,In), (0,ŝ1(r1⊗v)) ∈ V ′ and

dp2S(0,ŝ1(r1⊗v)) = ŝ2(r1⊗v). (6.5)

Lemma 6.4 (Proposition 5.28 of [26]). The tangent space TtY is the space of

(w0,w1,w
′
1,w2,u,v) in

Ext1(In−1,In−1)⊕Ext1(In,In)⊕Ext1(In,In)⊕Ext1(In+1,In+1)⊕Ext1(kx,kx)

⊕Ext1(kx,kx),

such that

(1) (w0,w1) and (w0,w
′
1) are in V.

(2) (w1,w2) and (w′
1,w2) are in V ′.

(3) dp1S(w0,w1) = dp2S(w
′
1,w2) = u,

(4) dp1S(w0,w
′
1) = dp2S(w1,w2) = v.

The tangent space TtS
[n−1,n,n+1] consists of subspace of TtY, such that w1 = w′

1 and
u= v.

Corollary 6.5. The morphism λt : TtY → TtY : (w0,w1,w
′
1,w2,u,v) → (0,w′

1 −w1,w
′
1 −

w1,0,u−v,v−u) induces a splitting λ : L−1
1 L2 → TY|S[n−1,n,n+1] which is compatible with

(6.1). Moreover, under the splitting λ, L1L−1
2 |t is

{(w,v) ∈ Ext1(In,In)⊕Ext1(kx,kx)|(0,w) ∈ V ,(w,0) ∈ V ′,dp1S(0,w) = dp2S(w,0) = u}.

Proof. If (w0,w1,w
′
1,w2,u,v) is in the tangent space, then so is

(2w0,w1+w′
1,w1+w′

1,2w2,u+v,u+v)

2
and (0,w′

1−w1,w1−w′
1,0,u−v,v−u).

Hence, the tangent space TtY decomposes into a direct sum of two subspaces: the subspace

w1 =w′
1, which is TtS

[n−1,n,n+1], and the subspace N, which consists of elements (w1,u)∈
Ext1(In,In)⊕Ext1(kx,kx), such that

(1) w1 maps to 0 in Ext1(In,In−1) and Ext1(In+1,In),
(2) dp1S(w1,0) = dp2S(0,w1) = u.

We define the morphism λt just to be the projection to N, and it induces a splitting

λ : L−1
1 L2 → TY|S[n−1,n,n+1] .

Now we give an explicit description of s′. We first construct two canonical morphisms:

s1 : L−1
1 L2 → (pn ◦ qn)∗TS[n] s2 : L−1

1 L2 → (pn ◦ qn)∗(TS). (6.6)
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Let π : S[n−1,n,n+1]×S → S[n−1,n,n+1] be the projection morphism and Γ be the graph
of the projection map to S. Then there exists short exact sequences:

0→In+1 →In → π∗L1⊗OΓ → 0 0→In →In−1 → π∗L2⊗OΓ → 0

which induce two global sections:

r1 : L−1
1 →Homπ(In,OΓ), r2 : L2 →Ext1π(OΓ,In).

Let projn : S[n]×S → S[n] be the projection map and Γn be the graph of the projection
map from S[n]×S → S. Then

(pn ◦ qn)∗TS[n] = (pn ◦ qn)∗Ext1projn(In,In)
= Ext1π(In,In)

(pn ◦ qn)∗TS = Ext1π(OΓ,OΓ)

by the flat base change theorem. With the composition of the following two natural

homomorphisms:

Ext1π(OΓ,In)⊗Homπ(In,OΓ)→Ext1π(In,In) = (pn ◦ qn)∗TS[n]

Homπ(In,OΓ)⊗Ext1π(OΓ,In)→Ext1π(OΓ,OΓ) = (pn ◦ qn)∗TS,

we get the two canonical morphisms in (6.6)

s1 : L−1
1 L2 → (pn ◦ qn)∗TS[n] s2 : L−1

1 L2 → (pn ◦ qn)∗(TS).

Let

s= (s1,s2) : L−1
1 L2 → (pn ◦ qn)∗T (S[n]×S).

Proposition 6.6. The morphism s′ in (6.3) coincides with s in (6.6).

Proof. A closed point t on S[n−1,n,n+1] corresponds to two short exact sequences of
coherent sheaves on S :

0→In in−→ In−1
jn−→ kx → 0 0→In+1

in+1−−−→ In
jn+1−−−→ kx → 0,

which induces r1 ∈ Hom(In,kx) and r2 ∈ Ext1(kx,In). The image of s is (ŝ1(r1 ⊗
r2),ŝ2(r1⊗ r2)), and we only need to prove that it is also the image of N in the proof of

Corollary 6.5. It follows from the fact that

dp1S(ŝ1(r1⊗ r2),0) = dp2S(0,ŝ1(r1⊗ r2)) = ŝ2(r1⊗ r2)

by (6.4), (6.5).
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6.2. The definition of F+
m,k,r,H

±
m,k

We recall the Cartesian diagram (6.2)

S[n−1,n,n+1] Y

S[n]×S S[n]×S[n]×S×S.

pn◦qn

ΔY

θ

Δ

Consider the dual of s

s∨ : (pn ◦ qn)∗T ∗(S[n]×S)→L1L−1
2

and the splitting λ∨ in Corollary 6.5. We define

τkm :R(pn ◦ qn)∗Lm−1−k
1 Lk

2 ⊗L T ∗(S[n]×S)→R(pn ◦ qn)∗Lm−k
1 Lk−1

2 (6.7)

as R(pn◦qn)∗(s∨⊗Lm−k−1
1 Lk

2).

On the other hand, we recall the definition of Definition 5.2

akm,r =Rθ∗(L′m−r
1 Lr−1

1 O(kΔY))[1].

By Lemma C.8, the splitting λ identify an isomorphism between the first order
infinitesimal neighborhood of ΔY in Y with SpecS[n−1,n,n+1](OS[n−1,n,n+1]⊕L1L−1

2 ). We

denote αk
m,r as the Bass-Quillen class (see Appendix C.3 for the definition) of akm,r when

restricting to SpecS[n−1,n,n+1](OS[n−1,n,n+1]⊕L1L−1
2 ).

By Lemma 3.9,

Rqn∗(Lm−1
1 ) = {Lm →Lm−1}

is the cone of Lm to Lm−1. Hence, we have exact triangles

Rpn∗Lm →Rpn∗Lm−1 μm−−→R(pn ◦ qn)∗(Lm−1
1 )

νm−−→Rpn∗Lm[1]. (6.8)

Definition 6.7. When m≥ k > 0, we define

H
+
m,k : h+

m,k⊗T ∗(S[n]×S)→ h+
m,k−1

by

H
+
m,k =

{
τm,k k > 1

νm ◦ τm,0 k = 1,
(6.9)

and when m< k ≤ 0, we define

H
−
m,k : h−

m,k⊗T ∗(S[n]×S)→ h−
m,k−1

by

H
−
m,k =

{
τm,k k < 0

τm,0 ◦μm k = 0.
(6.10)
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Definition 6.8. When m≥ k > 0 and r is an integer, we define

F
+
m,k : h+

m,k⊗T ∗(S[n]×S)→ h+
m,k−1

by

F
+
m,k =

{
αm,k k > 1

νm ◦αm,0 k = 1,
(6.11)

and when m< k ≤ 0, we define

F
−
m,k : h−

m,k⊗T ∗(S[n]×S)→ h−
m,k−1

by

F
−
m,k =

{
αm,k k < 0

αm,0 ◦μm k = 0.
(6.12)

Proof of Proposition 6.3. We only compute the postive part of the extension and only

consider the k > 1 and the case k=1 follows from the (5.5). The extension class is induced
from the short exact sequence on Y:

0→L1L−1
2 arm,kOΔY

→ arm,kO2ΔY
→ arm,kOΔY

→ 0,

where O2ΔY
is the cokernel of O(−2ΔY)→OY. Hence, we obtain the extension formula

through Theorem C.11.

Appendix A. Exterior powers and formal series

Definition A.1. Let V be a locally free sheaf over X, we define the exterior powers of

V by

∧•(xV ) =
∞∑
i=0

(−x)i[∧iV ], ∧• (−xV ) =
∞∑
i=0

xi[SiV ]

as elements in K(X)[[x]].

Definition A.2. For a two term complex of locally free sheaves

U := {W u−→ V },

we define

∧•(−xU) = ∧•(xW )∧• (−xV ) ∧• (xU) = ∧•(xV )∧• (−xW ).n

[Sk(U)] and [∧k(U)] are the xk coefficients of ∧•(−xU) and ∧•(xU), respectively.

Lemma A.3 (Exercise II.5.16 of [12]). For a two term complex of locally free sheaves

U := {W u−→ V },
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we have

∧•(xU)∧• (−xU) = 1. (A.1)

Definition A.4 (Section 3.8 of [24]). For any nonnegative integer m, we define
h±
m ∈K(S[n]×S)

h+
m := [ωS ]

m∑
i=0

(−1)m−i[ω−i
S ][SiIn][∧m−iIn] (A.2)

h−
m :=

m∑
i=0

(−1)i[ωi
S ][∧iI∨

n ][S
m−iI∨

n ], (A.3)

where we abuse the notation to denote

In := {Wn
s−→ Vn}

in the short exact sequence (2.1).

Lemma A.5. Definitions A.4 and 2.4 are equivalent.

Proof. First note that
m∑
i=0

[∧iIn][Sm−iIn] = 0 (A.4)

by (A.1). Thus

[ωS ]

m∑
i=0

(−1)m−i[ω−i
S ][SiIn][∧m−iIn]

= [ωS ]

m∑
i=1

(−1)m−i([ω−i
S ]−1)[SiIn][∧m−iIn] by (A.4)

= ([ωS ]−1)

m∑
i=1

(−1)m−i[SiIn][∧m−iIn]
i∑

j=1

[ω−j+1
S ]

= ([ωS ]−1)

m∑
j=1

[ω−j+1
S ]

m∑
i=j

(−1)m−i[SiIn][∧m−iIn]

= (1− [ωS ])

m−1∑
j=0

[ω−j
S ]

j∑
i=0

(−1)i[Sm−iIn][∧iIn]. by (A.4)

Hence, h+
m are equivalent in two definitions.

Then we note that
m∑
i=0

(−1)i[SiI∨
n ][∧m−iI∨

n ] = 0 (A.5)
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by (A.1). Thus

m∑
i=0

(−1)i[ωi
S ][∧iI∨

n ][S
m−iI∨

n ]

=
m∑
i=1

(−1)i([ωi
S ]−1)[∧iI∨

n ][S
m−iI∨

n ] by (A.5)

= ([ωS ]−1)

m∑
i=1

(−1)i[∧iI∨
n ][S

m−iI∨
n ]

i∑
j=1

[ωj−1
S ]

= ([ωS ]−1)
m∑
j=1

[ωj−1
S ]

m∑
i=j

(−1)i[∧iI∨
n ][S

m−iI∨
n ]

= (1− [ωS ])

m−1∑
j=0

(−1)j [ωj
S ]

j∑
i=0

(−1)i[∧m−iI∨
n ][S

iI∨
n ]. by (A.5)

Hence, h−
m are equivalent in two definitions.

Appendix B. Singularity of the minimal model program

In this section, we will review the singularities in the minimal model program from [17,

18]. We use the notation D to replace Δ in [17, 18], as Δ is already used to denote the
diagonal embedding in our paper. For a normal variety, we will denote KX the canonical

Weil divisor. We will denote by ωX the dualising sheaf when X is Cohen-Macaulay. They

coincide when X is Gorenstein.

B.1. Discrepancy and classification of singularities

Definition B.1 (Definition 2.25 of [18] or Definition 2.4 of [17], Discrepancy). Let (X,D)

be a pair, where X is a normal variety and D =
∑

aiDi,ai ∈Q is a sum of distinct prime

divisors. Assume that m(KX +D) is Cartier for some m > 0. Suppose f : Y → X is a
birational morphism from a normal variety Y. Let E ⊂ Y denote the exceptional locus of

f and Ei ⊂ E the irreducible exceptional divisors. The two line bundles

O(m(KY +f−1D))|Y−E and f∗OX(m(KX +D))|Y−E

are naturally isomorphic. Thus, there are rational numbers a(Ei,X,D), such that

ma(Ei,X,D) are integers and

OY (m(KY +f−1D))∼= f∗OX(m(KX +D))⊗OY (
∑
i

ma(Ei,X,D)Ei),

a(Ei,X,D) is called the discrepancy of Ei with respect to (X,D). We define the centre of

E in X by

centreX(E) := f(E).

When D = 0, then a(Ei,X,D) depends only on Ei but not on f.
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Lemma B.2 (Lemma 2.29 of [18]). Let X be a smooth variety and D =
∑

aiDi a sum of

distinct prime divisors. Let Z ⊂X be a closed subvariety of codimension k. Let p :BlZX →
X be the blow up of Z and E ⊂BlZX the irreducible component of the exceptional divisor
which dominates Z, (if Z is smooth, then this is the only component). Then

a(E,X,D) = k−1−
∑
i

aimultZDi,

where multZDi is the multiplicity of Di in Z.

Definition B.3 (Definition 2.34 and 2.37 of [18], or Definition 2.8 of [17]). Let (X,D) be

a pair, where X is a normal variety and D =
∑

aiDi is a sum of distinct prime divisors,

where ai ∈Q and ai ≤ 1. Assume that m(KX +D) is Cartier for some m> 0. We say that
(X,D) is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

terminal

canonical

klt

plt

dlt

lc

if a(E,X,D) is

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

> 0, for every exceptional E

≥ 0, for every exceptional E

>−1, for every E

>−1, for every exceptional E

>−1, if centreXE ⊂ non-snc(X,D)

≥−1. for every E.

Here klt is short for ‘Kawamata log terminal’, plt for ‘pure log terminal’ and lc for ‘log

canonical’. Above, non-snc(X,D) denotes the set of points where (X,D) is not simple

normal crossing (snc for short). We say that X is terminal (canonical, etc.) if and only if
(X,0) is terminal (canonical, etc.).

Each class contains the previous one, except canonical does not imply klt if D contains

a divisor with coefficient 1.

Theorem B.4 (Theorem 5.50 of [18], or Theorem 4.9 of [17], Inversion of adjunction).
Let X be normal and S ⊂X a normal Weil divisor which is Cartier in codimension 2. Let

B be an effective Q-divisor, and assume that KX +S+B is Q-Cartier. Then (X,S+B)

is plt near S iff (S,B|S) is klt.

B.2. Rational singularities

Definition B.5 (Definition 5.8 of [18]). Let X be a variety over a field of characteristic 0.
We say that X is a rational singularity if there exists a resolution of singularities f : Y →
X, such that

(1) f∗OY =OX(equivalently, X is normal) and

(2) Rif∗OY = 0 for i > 0.

Remark B.6. By Theorem 5.10 of [18], if X is a rational singularity, then for all

resolution of singularities f : Y →X,

(1) f∗OY =OX and

(2) Rif∗OY = 0 for i > 0.
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Theorem B.7 (Theorem 5.22 of [18]). Let X be a normal variety over a field of

characteristic 0. If X is a canonical singularity, then X is a rational singularity. If X

is Gorenstein, then X is a canonical singularity if X is a rational singularity.

Here are also some examples of rational singularities:

Example B.8. By [33], the universal closed subscheme Zn is a rational singularity.

Example B.9. The morphism qn : S[n−1,n,n+1] → S[n,n+1] factors through p−1
n Zn and

induces a resolution of p−1
n Zn. By Lemma 3.9 and Corollary 3.6, p−1

n Zn is a Gorenstein
rational singularity and, thus, is a canonical singularity by Theorem B.7.

B.3. Semi-dlt pairs

Definition B.10 (Definition 1.10 of [17], Semi-snc pairs). Let W be a regular scheme

and
∑

i∈I Ei a snc divisor on W. Write I = IY ∪ID as a disjoint union. Set Y :=
∑

i∈IV
Ei

as a subscheme of W and DY :=
∑

i∈ID
aiEi|Y as a divisor on Y for some ai ∈ Q. We

call (Y ,DY ) an embedded semi-snc pair. A pair (X,D) is called semi-snc if it is Zariski

locally isomorphic to an embedded semi-snc pair.

Example B.11. We have the following three examples of semi-snc pairs (X,D):

(1) X = {z = 0} ⊂ A3 and D = ax(x|X = 0)+ay(y|X = 0).

(2) X = {yz = 0} ⊂ A3 and D = ax(x|X = 0).

(3) X = {xyz = 0} ⊂ A3 and D = 0.

Definition B.12 (Definition 5.1 of [17], Demi-normal schemes). A scheme X is called

demi-normal if it satisfies the Serre condition S2 (see [34, Tag 033P] for the definition of

the Serre condition) and codimension 1 points are either regular points or nodes. Here
we say a scheme X has a node at a point x ∈X if its local ring Ox,X can be written as

R/(f), where (R,m) is a regular local ring of dimension 2, f ∈m2 and f is not a square

in m2/m3.

Definition B.13 (Section 5.2 of [17], conductor). Let X be a reduced scheme and

π : X̄ →X its normalisation. The conductor ideal

condX :=Hom(π∗OX̄,OX)⊂OX

is the largest ideal sheaf on X that is also an ideal sheaf on X̄. We write it as condX̄ when

we view the conductor as an ideal sheaf on X̄. The conductor subschemes are defined as

T := SpecX(OX/condX) T̄ := SpecX̄(OX̄/condX̄).

Definition B.14 (Definition-Lemma 5.10 of [17]). Let X be a demi-normal scheme with
normalisation π : X̄ → X and conductors T ⊂ X and T̄ ⊂ X̄. Let D be an effective Q-

divisor whose support does not contain any irreducible components of T and D̄ the

divisorial part of π−1(D). The pair (X,D) is called semi log canonical or slc if
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(1) KX +D is Q-Cartier and

(2) (X̄,D̄+ T̄ ) is lc.

Definition B.15 (Definition 5.19 of [17]). An slc pair (X,D) is semidivisorial log terminal
or semi-dlt if a(E,X,D)>−1 for every exceptional divisor E over X, such that (X,D) is

not snc at the generic point of centreXE.

Example B.16. A semi-snc pair (X,D) is always semi-dlt.

Proposition B.17 (Proposition 5.20 of [17]). Let (X,D) be a demi-normal pair over a

field of characteristic 0. Assume that the normalisation (X̄,T̄ + D̄) is dlt and there is a

codimension 3 set W ⊂X, such that (X\W,D|X\W ) is semi-dlt. Then

(1) the irreducible components of X are normal,

(2) KX +D is Q-Cartier and

(3) (X,D) is semi-dlt.

Appendix C. The Bass-Quillen class and HKR isomorphism

C.1. The extension of a scheme by a coherent sheaf

Given a scheme X, let Coh(X) be the abelian category of coherent sheaves on X. Let

Xfi be the category of schemes with finite morphisms to X. Given a coherent sheaf
M ∈Coh(X), we consider the scheme XM := SpecX(OX⊕M), where OX⊕M is regarded

as an OX algebra, such that the multiplication on M is 0. We have the contravariant

functor:

X− : Coh(X)→Xfi

M →XM := SpecX(OX⊕M).

The functor X− maps surjective morphisms to closed embeddings. For every coherent

sheaf M, we denote the closed embedding iM :X →XM as the image of M → 0 under the
functor X− and the projection morphism prM :XM →X as the image of 0→M under

the functor X−. We have prM◦iM = id.

Remark C.1. One should notice that the scheme XM and X have the same topological
space, and prM and jM are identity at the level of topological spaces. The difference

between XM and X are their structure sheaves, where OXM
∼= OX⊕M .

For the category of coherent sheaves, we have

Coh(XM ) = {(F,d)|F ∈ Coh(X),d ∈HomX(F⊗M,F ),(M⊗d)◦d= 0}. (C.1)

The ideal sheaf of X in XM is (M,0), which is square zero. The functors jM∗, j
∗
M , iM∗,

i∗M between the category of coherent sheaves could be represented by:
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jM∗ : Coh(XM )→ Coh(X) (F,d)→ F

iM∗ : Coh(X)→ Coh(XM ) F → (F,0)

j∗M : Coh(X)→ Coh(XM ) F → (F⊕F⊗M,dF )

i∗M : Coh(XM )→ Coh(X) (F,d)→ coker(d),

where dF is induced by the following transition matrix from F⊗M2⊕F⊗M to F⊗M⊕F

dF :=

(
0 id
0 0

)
.

Lemma C.2. Given a morphism f :X → Y and M ∈ Coh(X), we have

{g ∈Hom(XM,Y )|g◦iM = f}=HomX(f∗ΩY ,M),

where ΩY is the sheaf of differentials on Y.

Proof. At the level of topological spaces, f and g are the same. Let f# : OY →
f∗OX be the induced sheaf of rings homomorphism of structure sheaves. Then any
g ∈ Hom(XM,Y ), such that g◦iM = f is in one-to-one correspondence with mor-

phisms of OY -algebras (f#,h#) : OY → f∗OX⊕f∗M . Thus, h# ∈ DerOY
(OY ,f∗M) =

HomY (ΩY ,f∗M) =HomX(f∗ΩY ,M) by the adjunction formula.

C.2. The HKR isomorphism on the first order neighborhood

Let M be a locally free sheaf on X. Thus, XM is the first order infinitesimal neighborhood

of X in the total space of M∨. The projection morphism jM is flat, since OX⊕M is

also locally free as a OX module. We recall the description of Coh(XM ) in terms of
coherent sheaves on X by (C.1). Then OXM

∼=(OX⊕M,dOX
) and j∗MM∼=(M⊕M⊗M,dM ).

Moreover, dOX
induces a OXM

morphism between j∗MM and OXM
, which we denote as

sM . We consider the following complex:

K⊗M
• : · · ·→j∗MM⊗2→j∗MM→OXM

→0

induced by the contraction morphism of sM . The complex K⊗M
• is a resolution of

iM∗(OX) and, hence, induces a canonical isomorphism

tFM :RiM∗F∼=Lj∗MF⊗L
XM

K⊗M
•

for any element F ∈Du(X). The isomorphism tFM is functorial with respect to F ∈Du(X).

We notice that

Li∗M (Lj∗MF⊗L
XM

K⊗M
• )∼=F⊗L

∞⊕
k=0

M⊗k[k].

Hence, by the adjunction formula, we induce a canonical morphism:

bFM : Lj∗MF⊗XM
K⊗M

• →RiM∗(F⊗L
X

∞⊕
k=0

M⊗k[k]),
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such that the composition of the following morphisms

RHomX(F⊗L
∞⊕
k=0

M⊗k[k],G)
RiM∗−−−−→RHomXM

(RiM∗(F⊗L
∞⊕
k=0

M⊗k)[k],RiM∗G)

RHom(bFM,−)−−−−−−−−−→RHomXM
(Lj∗MF⊗LK⊗M

• ,RiM∗G)

is an isomorphism for any G ∈Du(X). It induces a canonical isomorphism

tF,G
M :RHomX(F⊗L

∞⊕
k=0

M⊗k[k],G)∼=RHomXM
(RiM∗F,RiM∗G).

Now we prove that the isomorphism tF,G
M is compatible with the morphisms between

schemes:

Lemma C.3. Let f : X → Y be a projective morphism of schemes. Let M be a locally

free sheaf on Y and M ′ := f∗M . Let fM : XM ′ → YM be the induced morphism from f.
Then we have the following commutative diagram:

RHomX(F⊗L
⊕∞

k=0M
′⊗k[k],G) RHomXM′ (RiM ′∗F,RiM ′∗G)

RHomY (Rf∗F⊗L
⊕∞

k=0M
⊗k[k],Rf∗G) RHomYM

(RiM∗Rf∗F,RiM∗Rf∗G).

tF,G

M′

Rf∗ RfM∗

tRf∗F,Rf∗G
M

(C.2)

Proof. To prove the diagram (C.2), we need to prove that for any F,G ∈Du(X),

RfM∗◦RHom(bFM ′,−)◦RiM ′∗ =RHom(bRf∗F
M ,−)◦RiM∗◦Rf∗. (C.3)

from RHomX(F⊗L
⊕∞

k=0M
′⊗k[k],G) to RHomYM

(RiM∗Rf∗F,RiM∗Rf∗G). We notice

that Cartesian diagram:

XM ′ X

YM Y.

fM

jM′

f

jM

Since jM is flat, we have a canonical isomorphism LjM∗◦Rf∗∼=RfM∗◦Lj∗M ′ by the flat
base change theorem, and, hence, RfM∗(b

F
M ′) = bRf∗F

M . By the Yoneda lemma, we have

RfM∗◦RHom(bFM ′,−) =RHom(bRf∗F
M ,−)◦Rf∗.

As fM◦iM ′ = iM◦f , we have RiM∗◦Rf∗∼=RfM∗◦RiM ′∗ and, hence, get (C.3).

Let f : N →M be a surjective morphism of locally free sheaves on X, and we denote

f⊗k : N⊗k →M⊗k. The morphism f induces a closed embedding XM →XN , which we

denote as iN,M (it is denoted as Xf in Appendix C.1).
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Lemma C.4. For any two elements F,G ∈Du(X), we have the following commutative

diagram:

RHomX(F⊗L
⊕∞

k=0M
⊗k[k],G) RHomXM

(RiM∗F,RiM∗G)

RHomX(F⊗L
⊕∞

k=0N
⊗k[k],G) RHomXN

(RiN∗F,RiN∗G).

tF,G
M

RHom(F⊗L(
⊕∞

k=0 f
⊗k),−) RiN,M∗

tF,G
N

(C.4)

Proof. The morphism f⊗k for all k canonically induces a morphism ιFM,N :Lj∗MF⊗KM
• →

RiN,M∗(Lj
∗
NF⊗KN

• ), which is a quasi-isomorphism. To prove (C.6), we need to prove
that for and F,G ∈Du(X),

RHom(ιFM,N,−)◦RiN,M∗◦RHom(bFM,−)◦RiM∗ = (C.5)

RHom(bFN,−)◦RiN∗◦RHom(F⊗L(

∞⊕
k=0

f⊗k),−),

as morphisms from RHomX(F⊗L
⊕∞

k=0M
⊗k[k],G) to RHomXN

(RiN∗F,RiN∗G). We

notice that iN,M◦iM = iN , and, hence

RHom(ιFM,N,−)◦RiN,M∗◦RHom(bFM,−)◦RiM∗ =

RHom(ιFM,N,−)◦RHom(RiN,M∗(b
F
M ),−)◦RiN,M∗◦RiM∗ =

RHom(RiN,M∗(b
F
M )◦ιFM,N,−)◦RiN∗

and

RHom(bFN,−)◦RiN∗◦RHom(F⊗L(

∞⊕
k=0

f⊗k),−) =

RHom(bFN,−)◦RHom(RiN∗(F⊗L(

∞⊕
k=0

f⊗k)),−)◦RiN∗ =

RHom(RiN∗(F⊗L(

∞⊕
k=0

f⊗k)◦bFN,−)◦RiN∗.

Hence, (C.5) follows from the identity that

RiN∗(F⊗L(

∞⊕
k=0

f⊗k)◦bFN =RiN,M∗(b
F
M )◦ιFM,N .

Combining Lemmas C.3 and C.4, we have

Corollary C.5. Let f : X → Y be a projective morphism of varieties. Let M and N be

locally free sheaves on X and Y, respectively, with a surjective morphism g : f∗N →M .

The morphism g induces a canonical morphism gN,M :XM → YN . Then for any elements
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F,G ∈Du(X), we have the following commutative diagram:

RHomX(F⊗L
⊕∞

k=0M
⊗k[k],G) RHomXM

(RiM∗F,RiM∗G)

RHomY (Rf∗F⊗L
⊕∞

k=0N
⊗k[k],Rf∗G) RHomYN

(RiN∗Rf∗F,RiN∗Rf∗G).

tF,G
M

Rf∗◦RHom(F⊗L(
⊕∞

k=0 g
⊗k),−) RgN,M∗

tRf∗F,Rf∗G
N

(C.6)

C.3. The Bass-Quillen classes and the HKR isomorphism

The Bass-Quillen class comes from the Bass-Quillen conjecture, which asks the following

question: let M be a locally free sheaf on X and V be a locally free sheaf on TotX(M∨).
When is V the pullback of a locally free sheaf on X ? While this question is always true

if X is affine, an obstruction class would appear when X is not an affine variety.
In this subsection, we consider a similar but easier question: given a locally free sheaf

V on X, classify all the locally free sheaves L on XM , such that iM∗L∼= V .

Theorem C.6. The locally free sheaves L on XM , such that i∗ML∼= V are in one-to-one

correspondence with elements in Ext1X(V ,V⊗M).

Proof. An extension class h ∈ Ext1X(V ,V⊗M) induces a short exact sequence:

0→ V⊗M
αh−−→ L0

βh−→ V → 0. (C.7)

We define dL : L0⊗M → L0 as αh◦(βh⊗M). Then dL◦(dL⊗M) = 0 and, hence,
L := (L0,dL) is also locally free on XM .

On the other hand, given L onXM , such that iM∗L∼= V , we have a short exact sequence:

0→ iM∗(V⊗M)
α′

h−−→ L
β′
h−→ iM∗V → 0 (C.8)

and, hence, a short exact sequence

0→ V ⊗M → jM∗L→ V → 0

which induces the extension class h ∈ Ext1X(V ,V⊗M).

We say that the extension class h ∈ Ext1X(V ,V⊗M) is the Bass-Quillen class of L,

following the notation of [13]. LetM be a locally free sheaf on X. The short exact sequence

(C.8) induces an extension class h′ ∈ Ext1XM
(iM∗V ,iM∗(V⊗M)).

Lemma C.7. The image of h′ under the isomorphism

tV⊗M,V
M : Ext1XM

(iM∗V ,iM∗(V⊗M))∼=HomX(V ,V )⊕Ext1X(V ,V⊗M)

is (id,h).

Proof. We recall the description of Coh(XM ) in the term of (C.1). We denote L =

(L0,dL) as the locally free sheaf on XM generated by the extension class h. The morphism
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(tV⊗M,V
M )−1(id,h) is induced by the composition of following morphisms of complexes (up

to the inverse of quasi-isomorphisms)

0 (V⊗M,0) (L0,0)

(V ,0) (V⊕V⊗M,dV ) (V ,0)

(0,id)

0

αh

βh

id⊕0

id⊕0

(C.9)

and the quasi-isomorphism

(L0,0) (V⊗M,0)

(V ,0) 0.

βh

αh

We consider the morphism d : (V⊕L0)⊗M → V⊕L0 by the matrix(
0 αh

0 0

)
,

which makes (V⊕L0,d) a coherent sheaf on XM . We consider the following morphism of

complexes (up to the inverse of quasi-isomorphisms):

0 (V⊕L0,d) (L0,d)

(V ,0) (V ,0)⊕(V ,0) (V ,0)

(id⊕0,0⊕βh)

(0,id)

βh

(id,0)

(0,id)

(C.10)

We recall the definition of morphism spaces in Du(XM ) by [34, Tag 04VB] and [34, Tag

05RN] and see that the diagrams in (C.9) and (C.10) represent the same morphism, as

their compositions are in the same homotopy class. On the other hand, the morphism h′

is induced by the following morphism of complexes (up to inverse of quasi-isomorphisms)

0 (L0,dL) (V⊗M,0)

(V ,0) (V ,0) 0.

β′
h

α′
h

id

(C.11)

Hence, the equality of h′ and (tV⊗M,V
M )−1(id,h) follows from the following quasi-

isomorphism

(L0,dL) (V⊕L0,d)

(V ,0) (V ,0)⊕(V ,0)

β′
h

(βh,id)

(id⊕0,0⊕βh)

(0,id)
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C.4. The splitting of the first order neighborhood

Let f :X → Y be a closed embedding of smooth varieties, and let NY/X be the normal

bundle of X in Y. On X, we have the short exact sequence:

0→N∨
Y/X

ιY/X−−−→ ΩY |X → ΩX → 0.

By Lemma C.2, the space

{g ∈Hom(XN∨
Y/X

,Y )|g◦iN∨
Y/X

= f}=HomX(ΩY |X,N∨
Y/X). (C.12)

Let IX be the ideal sheaf of X in Y and XY
(1) := SpecY (OY /I2

X) be the first order

infinitesimal neighborhood of X in Y.

Lemma C.8. Every g ∈ HomX(ΩY |X,N∨
Y/X), regarding as a homomorphism from

XN∨
Y/X

to Y, factors through a homomorphism in Hom(XN∨
Y/X

,XY
(1)). Moreover, g induces

an isomorphism between XN∨
Y/X

and XY
(1) if and only if g◦ιY/X is an isomorphism of

N∨
Y/X .

Proof. The morphism g induces a homomorphism of OY -algebras g
# = (f#,h#) :OY →

OX⊕N∨
Y/X , where f# is the quotient morphism and h# is the derivative induced by g. As

IX is the kernel of f#, the image of I2
X in g# is 0 and, hence, induces a homomorphism

in Hom(XN∨
Y/X

,XY
(1)). Moreover, we have the short exact sequence of OY modules:

0 N∨
Y/X OY /I2

X OX 0

0 N∨
Y/X OX⊕N∨

Y/X OX 0.

g◦ιY/X g# id

Hence, g# induces an isomorphism between OY /I2
X and OX⊕N∨

Y/X if and only if g◦ιY/X

is an isomorphism.

Lemma C.8 could be generalised to a relative version. We consider a Cartesian diagram
of smooth varieties: Let f ′ : X → Y be a regular embedding of smooth varieties. Let

π : Y ′ → Y be a proper morphism of smooth varieties. Let X ′ = Y ′×Y X and f :X ′ → Y ′

and πX :X ′ →X be the respective fibre morphisms. Moreover, we assume that X ′ is also
smooth.

Lemma C.9. There exists a canonical morphism of short exact sequences:

0 π∗
XN∨

Y/X π∗
XΩY |X π∗

XΩX 0

0 N∨
Y ′/X′ ΩY ′ |X′ ΩX′ 0,

ιY/X

sf,π

ιY ′/X′

(C.13)

where the middle and right rows are the canonical morphisms of differentials. Moreover,

a splitting of ιY ′/X′ and ιY/X , which is compatible with (C.13), which we denote as g′
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and g, respectively, would induce a commutative diagram

X ′
N∨

Y ′/X′
X ′Y ′

(1)

XN∨
Y/X

XY
(1)

g′

sf,π

g

(C.14)

where g′ and g are isomorphisms.

Finally, we explain the relation between the isomorphism tF,G
M and the HKR isomor-

phism. Given a locally free sheaf M on a scheme X and a positive integer k, there is a

canonical shuffle morphism

shk :M⊗k →∧k(M)

v1⊗·· ·⊗vk → v1∧·· ·∧vk.

Given a regular embedding of smooth varieties f : X → Y , we denote M = N∨
Y/X . We

fix a splitting g ∈HomX(ΩY |X,N∨
Y/X), such that g◦ιY/X = id and abuse the notation to

denote g as the closed embedding from XM to Y.

Theorem C.10 (HKR isomorphism, Theorem 1.4 and Section 1.11 of [1]). Let τF,G
M be

the composition of the following morphisms:

RHomX(F⊗L
∞⊕
k=0

∧kM [k],G)
RHomX(F⊗Lshk,−)−−−−−−−−−−−−−−→RHomX(F⊗L

∞⊕
k=0

M⊗k[k],G)

tF,G
M−−−→RHomXM

(RiM∗F,RiM∗G)

Rg∗−−−→RHomY (Rf∗F,Rf∗G).

Then τF,G
M is an isomorphism.

Now we combine Lemmas C.7 and C.9 and Theorem C.10 to induce an extension

formula. We recall the schemes of X,Y ,X ′,Y ′ and morphisms in the setting of Lemma C.9

and assume that sf,π in (C.13) is surjective. We fix splittings g′ and g in Lemma C.9.

Let L be a locally free sheaf on X ′Y ′

(1) and V := L|X′ . Then L induces extension classes

h′
L ∈ Ext1X′(V ,V⊗M) and hL ∈ Ext1Y ′(f ′

∗V ,f ′
∗V⊗M), such that hL induces the short

exact sequence:

0→ f ′
∗V⊗M → L→ f ′

∗V → 0, (C.15)

where we abuse the notation to denote L as a coherent sheaf on Y ′ through the

pushforward of the closed embeddingX ′Y ′

(1) →Y ′. By applying then functorRπ∗ to (C.15),
we induce a triangle:

· · · →Rπ∗(f
′
∗V⊗M)→Rπ∗L→Rπ∗(f

′
∗V )→Rπ∗(f

′
∗V⊗M)[1]→ ·· ·
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and thus induce an extension class

eL =Rπ∗hL ∈RHomY (Rπ∗(f
′
∗V ),Rπ∗(f

′
∗V⊗M)[1]).

Theorem C.11. The image of eL under the HKR isomorphism in Theorem C.10 is

(RπX∗hL,RπX∗(V⊗sf,π),0,· · ·,0).

Proof. It follows directly from Lemmas C.7 and C.9, Theorem C.10 and (C.6).

Remark C.12. One should notice that while the Bass-Quillen class hL depends on L,

RπX∗(V⊗sf,π) only depends on V but not the line bundle L.
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