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On the Geometry of p-Typical Covers in
Characteristic p

Kiran S. Kedlaya

Abstract. For p a prime, a p-typical cover of a connected scheme on which p = 0 is a finite étale cover

whose monodromy group (i.e., the Galois group of its normal closure) is a p-group. The geometry of

such covers exhibits some unexpectedly pleasant behaviors; building on work of Katz, we demonstrate

some of these. These include a criterion for when a morphism induces an isomorphism of the p-typi-

cal quotients of the étale fundamental groups, and a decomposition theorem for p-typical covers of

polynomial rings over an algebraically closed field.

1 Introduction

Let p be a prime number. A finite étale cover of a connected scheme on which p = 0

is p-typical if the monodromy group of the cover (which for a connected cover co-
incides with the Galois group of the normal closure) is a p-group. The geometry of
such covers exhibits some unexpectedly pleasant behaviors; the purpose of this paper
is to briefly expose a few of these. This is in part to dispel the notion that one can

only ever prove meaningful results about the tame (prime-to-p) quotient of the étale
fundamental group.

For instance, Katz has shown [5, Proposition 1.4.2] that if R is a connected ring
in which p = 0, then the categories of p-typical covers over R[t−1] and over R((t))

are equivalent, via the evident base change functor. In other words, if π
p
1 denotes

the maximal pro-p quotient of the étale fundamental group π1 (where basepoints are
suppressed throughout this introduction for notational simplicity), then the natural
homomorphism π

p
1 (R((t))) → π

p
1 (R[t−1]) is a bijection. We give a natural general-

ization of Katz’s theorem (Theorem 2.30), which characterizes more generally when
one connected affine scheme of characteristic p looks like a limit of a diagram of oth-
ers from the point of view of constructing π

p
1 . Here is a sample result (Example 2.34):

if k is an algebraically closed field of characteristic p > 0, then

π
p
1 (k[t, t−1]) ∼= π

p
1 (k[t]) × π

p
1 (k[t−1]).

(The analogous statement for π1 is false: the left side has nontrivial prime-to-p quo-

tients whereas the right side does not. Note also that in general, neither π1 nor π
p
1

commutes with products, so one cannot replace the right side with a single funda-
mental group of A2

k .)
We also look more closely at p-typical covers of affine toric varieties, including, of

course, ordinary affine spaces. Our main results in this direction (Theorem 4.15 and
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its corollaries, notably Theorem 4.17) assert that the π
p
1 of any affine toric variety

can be written as an inverse limit of π
p
1 ’s of one-dimensional varieties, or even of

affine lines. This requires the use of some auxiliary “height functions” to measure
the complexity of p-typical covers; we can describe some simple examples of such
functions, but only a posteriori (Theorem 5.11).

2 p-Typical Covers

In this section, we introduce the notion of a p-typical cover and prove a strong gener-

alization of Katz’s canonical extension property for such covers (Theorem 2.30). We
first fix some notational conventions for the whole paper.

Convention 2.1 Throughout this paper, fix a prime number p. By a p-group, we
will mean a finite group whose order is a power of p. Standard facts about p-groups,
which we will use without further comment, include the following.

• The center of any nontrivial p-group is nontrivial.
• Any maximal proper subgroup of a nontrivial p-group is normal of index p.

By a p-ring, we will mean a ring in which p = 0; likewise for p-field or p-domain.
Similarly, by a p-scheme, we will mean a scheme in whose ring of global sections one
has p = 0.

2.1 The Étale Fundamental Group

We first recall the notion of the étale fundamental group from [3, Exposé V] (with
some notation as in [5, §1.2]).

Convention 2.2 Throughout this section, let X be a connected scheme, and let x be
a geometric point of X, i.e., a morphism Spec kalg → X in which kalg is an algebraically
closed field.

Definition 2.3 Let CX denote the category of finite étale covers of X; note that
Cx may be identified with the category of finite sets. Then the pullback functor
Fx : CX → Cx is represented by a pro-object P of CX . Let π1(X, x) denote the au-

tomorphism group of Fx, i.e., the group of pro-automorphisms of P.

Remark 2.4 Replacing x by another geometric point y does not change the ab-
stract structure of the group π1(X). However, there is no canonical isomorphism

π1(X, x) → π1(X, y); the choice of such an isomorphism constitutes the choice of a
chemin or path.

Definition 2.5 Let X be a connected scheme, let E → X be a finite étale cover, and
let x be a geometric point of X. Then the profinite group π1(X, x) acts continuously
on Ex, and the image is well defined up to group isomorphism. We call it the mon-

odromy group of E.
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Definition 2.6 If E → X is a connected finite étale cover, there is a unique mini-
mal connected finite Galois (étale) cover E ′ → X which factors through E; it is the

maximal cover fixed by the kernel of the map π1(X, x) → Aut(Ex). Consequently, the
Galois group of this cover is precisely the monodromy group of E → X. This cover
is called the normal closure (or Galois closure) of E → X; it coincides with the usual
field-theoretic definition when X = Spec k.

2.2 p-Typical Covers

We now extract the p-typical part of the fundamental group. Throughout this sec-

tion, we retain Convention 2.2.

Definition 2.7 A p-typical cover of X is a finite étale cover E → X whose mon-

odromy group is a p-group; if S/R is a ring extension whose corresponding cover
Spec S → Spec R is p-typical, we say S is a p-typical extension of R. Note that the fibre
product and the disjoint union of p-typical covers are p-typical. If E is connected
and p-typical over X, then deg(E → X) is a power of p: namely, this degree is the

index in the monodromy group of the stabilizer of any geometric point of E.

Lemma 2.8 If E → X and E ′ → E are finite étale covers with E connected, then

E ′ → X is p-typical if and only if E ′ → E and E → X are both p-typical.

Proof Choose a geometric point x of X and a geometric point y of Ex. Let G be the

monodromy group of E ′ → X, identified with the image of π1(X, x) in Aut(E ′
x), and

let H be the monodromy group of E ′ → E, identified with the image of π1(E, y) in
Aut(E ′

y). Then H is the stabilizer of y within G.

On one hand, if E ′ → E and E → X are p-typical, then H is a p-group,
G acts transitively on the geometric points of Ex (since E is connected), and so
#G = #H · deg(E → X) is a p-power. Hence E ′ → X is p-typical.

On the other hand, if E ′ → X is p-typical, then G is a p-group, as then must be H,

so E ′ → E is p-typical. Meanwhile, the monodromy group of E → X is a quotient of
G, since any element of π1(X, x) fixing E ′

x must in particular fix Ex. Hence E → X is
also p-typical.

Definition 2.9 Let C
p
X denote the subcategory of CX consisting of p-typical covers.

Again, the fibre functor F
p
x : C

p
X → Cx is represented by a pro-object of C

p
X , whose

group of pro-automorphisms coincides with the automorphism group of F
p
x . We

call this group π
p
1 (X, x) and refer to it as the p-typical fundamental group of X; the

inclusion C
p
X →֒ CX induces a surjection π1(X, x) → π

p
1 (X, x), under which π

p
1 (X, x)

is identified with the maximal pro-p quotient of π1(X, x).

2.3 p-Typical Covers and Artin–Schreier Towers

We will mainly be interested in p-typical covers of p-schemes; these can be studied
using Artin–Schreier (AS) towers.
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Definition 2.10 For G a finite group (viewed as a constant group scheme over
Spec Z) and X a scheme, a G-torsor over X is a finite étale cover E → X equipped

with an action of G, which étale locally on X is isomorphic to X × G (the trivial G-

torsor). If X = Spec R is affine, we refer to a G-torsor over X also as a G-torsor over
R; it is also affine because a finite étale cover of an affine scheme is affine.

Definition 2.11 Let X be a p-scheme, and let E → X be a finite étale cover. An
AS-tower for E → X is a sequence of finite étale covers

E = Ed → Ed−1 → · · · → E1 → E0 = X

in which Ei → Ei−1 is equipped with a Z/pZ-torsor structure for i = 1, . . . , d. From
the transitivity of p-typicality (Lemma 2.8), we see that the existence of an AS-tower
for E → X implies that E → X is p-typical. If X = Spec R and E = Spec S, we

typically write the tower ring-theoretically, as S0 = R ⊂ S1 ⊂ · · · ⊂ Sd = S, in which
Ei = Spec Si and Si/Si−1 is a Z/pZ-torsor for i = 1, . . . , d.

Proposition 2.12 Let X be a connected p-scheme, and let E → X be a connected finite

étale cover. Then E → X is p-typical if and only if there exists an AS-tower for E → X.

Proof We have noted already that if there exists an AS-tower for E → X, then E →
X is p-typical (with no connectedness hypotheses). Conversely, suppose that E → X

is p-typical with monodromy group G, which we may assume is nontrivial. Pick a

geometric point x of X, identify G with the image of π1(X, x) in Aut(Ex), and pick
a geometric point y of Ex. Then the stabilizer of y is a proper subgroup of G; thus
it is contained in a maximal proper subgroup H of G, which is necessarily normal
of index p. In particular, because H is normal, it contains the stabilizers of all of

the points of Ex. Thus G/H is the monodromy group of a connected Z/pZ-torsor
E ′ → X through which E factors. By induction, the desired result follows.

When E → X is Galois, one gets a bit more.

Proposition 2.13 Let E → X be a connected Galois p-typical cover. Then there exists

an AS-tower E = Ed → Ed−1 → · · · → E1 → E0 = X in which Ei → X is Galois for

i = 1, . . . , d.

Proof Put G = Aut(E → X), which coincides with the monodromy group of E →
X because the cover is Galois, and assume G is nontrivial. Since the center of G is
nontrivial, it contains a subgroup H of order p, which is normal in G. Let Ed−1 be
the maximal subcover fixed by H, and repeat.

For Z/pZ-torsors over p-rings, one has the following standard result.

Definition 2.14 For R a p-ring, a Z/pZ-torsor of the form S = R[z]/(zp − z − a),
in which 1 ∈ Z/pZ acts via z 7→ z + 1, is called an Artin–Schreier extension, or an
AS-extension, of R.
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Proposition 2.15 For any p-ring R, every Z/pZ-torsor of R is an AS-extension. More-

over, two such torsors R[z1]/(z
p
1 − z1 − a1) and R[z2]/(z

p
2 − z2 − a2) are isomorphic if

and only if a1 − a2 = y p − y for some y ∈ R.

Proof The argument amounts to calculating étale cohomology of the sequence of
sheaves:

0 → Z/pZ → Ga
F−1
−−→ Ga → 0

See [4, X.3.5] [5, 1.4.5], or [7, Proposition III.4.12] and subsequent discussion.

2.4 Connected Components in Positive Characteristic

We will need to keep careful track of the connected components of certain AS-towers.
Before explaining how we do so, we first make some observations for arbitrary rings

of positive (prime) characteristic.

Lemma 2.16 Let R be a p-ring. Then the set S = {x ∈ R : xp
= x} is the Fp-sub-

algebra of R generated by the idempotents of R.

Proof A straightforward exercise in algebra; alternatively, one may proceed as in
Proposition 2.15.

Counting connected components of rings is closely related to testing for isomor-
phisms between finite flat ring extensions, as follows.

Remark 2.17 Let R be a connected p-ring, let S1, S2 be two connected finite flat
extensions of R, and let f : S1 → S2 be an R-algebra homomorphism. Then the

graph Γ of f is a closed subscheme of Spec S1 ×R Spec S2 which maps isomorphically
onto Spec S2 via the second projection. In particular, Γ is a connected component of
Spec S1 ×R Spec S2. Conversely, each connected component Γ of Spec S1 ×R Spec S2

which maps isomorphically onto Spec S2 via the second projection corresponds to
an R-algebra homomorphism S1 → S2. As a consequence, if g : R → R ′ is a ring

homomorphism and the induced map S1⊗RS2
g
→ (S1⊗RS2)⊗RR ′ induces a bijection

of idempotents, then the induced map

HomR−alg(S1, S2)
g
→ HomR ′−alg(S1 ⊗R R ′, S2 ⊗R R ′)

is a bijection.

2.5 p-Injections and p-Surjections

We now consider some homomorphisms which behave nicely with respect to
p-typical covers.
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Definition 2.18 Let f : R → R ′ be a homomorphism of p-rings, and let F and F ′

denote the p-power Frobenius maps on R and R ′, respectively. We say f is p-injective

(resp. p-surjective) if the induced functor from Z/pZ-torsors over R to Z/pZ-torsors
over R ′ is fully faithful (resp. essentially surjective). These definitions can be refor-
mulated as follows.

• The map f is p-injective if and only if ker(F − 1)
f
→ ker(F ′ − 1) is bijective

and coker(F − 1)
f
→ coker(F ′ − 1) is injective.

• The map f is p-surjective if and only if coker(F−1)
f
→ coker(F ′−1) is surjective.

(See the proof of Proposition 2.22 for the explanation of how this reformulation fol-
lows from Artin–Schreier theory; alternatively, one may take the reformulation itself
as the definition until Proposition 2.22 has been proved.) Using the snake lemma, we
may give a second reformulation.

• The map f is p-injective if and only if ker( f )
F−1
−−→ ker( f ) is bijective and

coker( f )
F ′−1
−−−→ coker( f ) is injective.

• The map f is p-surjective if and only if coker( f )
F ′−1
−−−→ coker( f ) is surjective.

Remark 2.19 Note that the property of a morphism being p-surjective is not stable
under flat base change. For instance, if f : R → R ′ is p-surjective but not surjective,
then the induced homomorphism R[t] → R ′[t] is not p-surjective. However, base
changing by a p-typical extension causes no problems: see Corollary 2.21 below.

Lemma 2.20 Let f : R → R ′ be a homomorphism of p-rings, let S = R[z]/(zp−z−a)
be an AS-extension of R, put S ′

= S ⊗R R ′, and let fS : S → S ′ be the homomorphism

induced by f .

(i) If f induces an injection on idempotents, then so does fS.

(ii)If f is p-injective, then so is fS.

(iii)If f is p-surjective, then so is fS.

Proof For l = −1, . . . , p − 1, let Sl and S ′
l be the subsets of S and S ′, respectively,

consisting of polynomials in z of degree at most l (so that S−1 = S ′
−1 = {0}); note

that each Sl (resp. S ′
l ) is preserved by F (resp. by F ′). Let fl : Sl → S ′

l denote the map

induced by f . We then have a commutative diagram

0 // Sl−1
//

fl−1

��

Sl
//

fl

��

R //

f

��

0

0 // S ′
l−1

// S ′
l

// R ′ // 0

which by the snake lemma gives rise to a long exact sequence

0 → ker( fl−1) → ker( fl) → ker( f ) → coker( fl−1) → coker( fl) → coker( f ) → 0.
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We now consider the cases separately. (i) By Lemma 2.16 and diagram chasing, f

induces an injection on idempotents if and only if F − 1 induces an injection on

ker( f ). In this case, by induction on l and the five lemma, F − 1 induces an injection
on ker( fl) for l = 0, . . . , p − 1. Taking l = p − 1, we deduce that fS induces an
injection on idempotents.

(ii) If f is p-injective, then F − 1 is surjective on ker( f ) and F ′ − 1 is injective on
coker( f ). By induction on l and the five lemma, F − 1 is surjective on ker( fl) and

F ′ − 1 is injective on coker( fl) for l = 0, . . . , p − 1. Taking l = p − 1, we deduce that
fS is p-injective.

(iii) If f is p-surjective, then F ′ − 1 is surjective on coker( f ). By induction on l

and the five lemma, F ′ − 1 is surjective on coker( fl) for l = 0, . . . , p − 1. Taking
l = p − 1, we deduce that fS is p-surjective.

Corollary 2.21 Let f : R → R ′ be a homomorphism of p-rings, let R = S0 ⊂ S1 ⊂
· · · ⊂ Sd be an AS-tower over R, put S ′

i = Si ⊗R R ′ for i = 1, . . . , d, and let fi : Si → S ′
i

be the homomorphism induced by f .

(i) If f induces an injection on idempotents, then so does each fi .

(ii) If f is p-injective, then so is each fi .

(iii) If f is p-surjective, then so is each fi .

Proposition 2.22 Let f : R → R ′ be a homomorphism of p-rings. Let SR and SR ′ be

the categories of AS-towers over R and R ′, respectively, in which the only morphisms are

isomorphisms of towers.

(i) If the map f is p-injective, then the base change functor f ∗ : SR → SR ′ is fully

faithful.

(ii) The map f is p-surjective if and only if the base change functor f ∗ : SR → SR ′ is

essentially surjective.

Proof (i) Supose that f is p-injective. Given two AS-towers R = S0 ⊂ S1 ⊂ · · · ⊂
Sd = S and R = T0 ⊂ T1 ⊂ · · · ⊂ Td = T which become isomorphic over R ′, write

S1 = R[y]/(y p − y − a) and T1 = R[z]/(zp − z − b). By Proposition 2.15, f (a)
and f (b) represent the same element of coker(F ′ − 1); hence they also represent the
same element of coker(F − 1). Thus S1

∼= T1; moreover, by Lemma 2.20, the map
S1 → S1 ⊗R R ′ is p-injective. Repeating the argument, we see that the two towers are

isomorphic, and so f ∗ is fully faithful.

(ii) Suppose that f ∗ is essentially surjective. Let S ′
= R ′[z]/(zp − z − a) be an

AS-extension of R ′; by hypothesis, there exists an AS-extension S = R[z]/(zp −z−b)
such that S⊗RR ′ ∼= S ′ as a Z/pZ-torsor. By Proposition 2.15, we must have f (b)−a =

y p − y for some y ∈ R ′. We deduce that the map coker(F − 1) → coker(F ′ − 1)

induced by f is surjective, and so f is p-surjective.

Conversely, suppose that f is p-surjective. Given an AS-tower R ′
= S ′

0 ⊂ S ′
1 ⊂

· · · ⊂ S ′
d = S ′, we construct a corresponding AS-tower R = S0 ⊂ S1 ⊂ · · · ⊂ Sd

inductively as follows. Start with S0 = R. Given S0, . . . , Si and an isomorphism
Si ⊗R R ′ ∼= S ′

i , note that f : Si → S ′
i is p-surjective by Lemma 2.20. By Proposi-

tion 2.15, we can write S ′
i+1 = S ′

i [z]/(zp − z − a) for some a ∈ f (Si); we may then
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set Si+1 = Si[z]/(zp − z − b) for any b ∈ Si with f (b) = a. Thus the inductive
construction continues, and so f ∗ is essentially surjective.

Remark 2.23 Beware that proving results about the category of AS-towers does not
immediately yield results about p-typical covers; for that, stronger connected hy-
potheses are needed, as in the next section.

2.6 p-Limits and Canonical Extensions

Convention 2.24 Given a partially ordered set S, we view S as a category in which

Mor(s, t) is a singleton set if s ≥ t and is empty otherwise.

Definition 2.25 A diagram in a category C is a functor D from a partially ordered set
S to C; we call S the support of D. Given a subset T of S, let DT denote the restriction

of D to T.

Definition 2.26 Given a diagram D with support S, put S1 = S2 = S ∪ {s ′} for
some s ′ /∈ S, and extend the partial order from S to S1 and S2 by declaring that in S1,

s ′ ≥ s and s 6≥ s ′ for all s ∈ S, while in S2, s ≥ s ′ and s ′ 6≥ s for all s ∈ S. For an
object X ∈ C, a morphism from X to D (resp. a morphism from D to X) is a diagram
D ′ supported on S1 (resp. on S2) with D ′(s ′) = X and D ′

S = D; let Mor(X,D) (resp.
Mor(D,X)) denote the set of these morphisms. A limit (resp. colimit) of a diagram

D is an object X ∈ C representing the functor Y 7→ Mor(Y,D) (resp. the functor
Y 7→ Mor(D,Y )); by construction, a (co)limit is unique up to unique isomorphism
if it exists.

Remark 2.27 Note that every diagram in the category of affine p-schemes has a
limit, which can be constructed by repeatedly constructing products and equalizers.
(Arbitrary products are given by “infinite tensor products”, which are generated by
terms which have the factor 1 in all but finitely many places.) However, a diagram in

the category of connected affine p-schemes need not have a limit.

Definition 2.28 Let D be a nonempty diagram in the category of connected affine
p-schemes. A p-limit of D is a connected affine p-scheme Y equipped with a mor-

phism Y → D, which becomes a colimit of D in the category of abelian groups upon
applying the contravariant functor X 7→ coker(F − 1,Γ(X,OX)).

Remark 2.29 Note that D admits a limit X in the category of affine p-schemes, and

that if Y is a p-limit of D, then the induced homomorphism Γ(X,OX) → Γ(Y,OY )
is p-surjective: the direct sum of the coker(F − 1,Γ(Z,OZ)) for all Z in the di-
agram surjects onto coker (F − 1,Γ(Y,OY )), but this surjection factors through
coker(F − 1,Γ(X,OX)).

Theorem 2.30 Let D be a nonempty finite diagram in the category of connected affine

p-schemes, let S be the support of D, and let Y → D be a morphism. For s ∈ S, let fs

be the induced morphism from Y to D(s). Choose a geometric point y of Y . Then Y is
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a p-limit of D if and only if π
p
1 (Y, y) is a limit, in the category of pro-p-groups, of the

diagram induced by D on the π
p
1 (D(s), fs(y)).

Proof First suppose that Y is a p-limit of D. Then the homomorphism

(2.1) π
p
1 (Y, y) → limπ

p
1 (D(s), fs(y))

is seen to be injective as follows. Given a non-identity element τ of π
p
1 (Y, y), choose

a connected p-typical cover E of Y such that τ acts nontrivially on Ey . By Proposi-
tion 2.12, E admits an AS-tower; by Remark 2.29 and Proposition 2.22, that AS-tower
can be obtained by pullback from some AS-tower over a limit of D in the category
of affine p-schemes. Hence the image of τ in limπ

p
1 (D(s), fs(y)) is not the identity

element, so (2.1) is injective.
Suppose now that (2.1) fails to be surjective. We can then construct a nontriv-

ial continuous homomorphism g : limπ
p
1 (D(s), fs(y)) → Z/pZ (for the discrete

topology on Z/pZ) whose restriction to π
p
1 (Y, y) is trivial. For s ∈ S, put Cs =

coker(F − 1,Γ(D(S),O)). We then obtain from g and Proposition 2.15 an element
cs ∈ Cs for each s ∈ S, such that if s → t is a morphism in S, then the corresponding
morphism Ct → Cs carries ct to cs. Since Y is a p-limit, the cs correspond to a nonzero
element of coker(F−1,Γ(Y,OY )), which gives rise to a nontrivial Z/pZ-torsor on Y .

This contradicts the fact that g restricts trivially to π
p
1 (Y, y); the contradiction yields

the surjectivity of (2.1) as desired.
We have now shown that if Y is a p-limit of D, then (2.1) is an isomorphism.

Suppose now conversely that (2.1) is an isomorphism. Then the maximal elemen-

tary abelian quotient of π
p
1 (Y, y) is the limit, in the category of elementary abelian

p-groups, of the maximal elementary abelian quotients of the π
p
1 (D(s), fs(y)). But by

Proposition 2.15, these quotients are dual to the cokernels of F − 1 on these schemes.
Hence Y is a p-limit of D, as desired.

Theorem 2.30 may be a bit obscure as written; some of its corollaries may be more
edifying.

Definition 2.31 Let f : R → R ′ be a homomorphism of connected p-rings, and

let F and F ′ be the p-power Frobenius maps on R and R ′, respectively. We say f is
p-faithful if the induced map coker(F − 1)

f
→ coker(F ′ − 1) is a bijection.

Corollary 2.32 Let f : R → R ′ be a homomorphism of connected p-rings, choose a

geometric point x ′ of Spec R ′, and put x = f (x ′). Then f is p-faithful if and only if

π
p
1 (Spec R ′, x ′)

f
→ π

p
1 (Spec R, x) is a bijection.

Example 2.33 For any p-ring R, the canonical inclusion f : R[t−1] → R((t)) is
p-faithful: the kernel of f is trivial, and the cokernel of f is isomorphic as a Frobenius
module to tR[[t]], on which F−1 is bijective. The conclusion of Corollary 2.32 in this

case is a result of Katz [5, Proposition 1.4.2]. Although Katz’s proof looks different
(it involves manipulating the cohomology of pro-p-groups), our proof is basically a
transcription of Katz’s argument into the language of AS-towers.
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Example 2.34 Let R be a p-ring. Consider the diagram consisting of the two nat-
ural maps Spec R[t] → Spec R and Spec R[t−1] → Spec R. Then Spec R[t, t−1] is a

p-limit of this diagram; we thus have an isomorphism

π
p
1 (Spec R[t, t−1]) → π

p
1 (Spec R[t]) ×π

p
1 (Spec R) π

p
1 (Spec R[t−1]),

after choosing basepoints. (Namely, choose a geometric point of Spec R[t, t−1] and
obtain the other basepoints by applying the maps in the diagram.)

Here is a slight variation of the previous example.

Corollary 2.35 Let R be an Fp-algebra. Then every p-typical extension of R[t] is con-

tained in the tensor product of a p-typical extension of R[t] in which R is integrally

closed, and a p-typical extension of R[t] obtained by base change from R.

Proof Put R ′
= Fp + tR[t] ⊆ R[t]. Then Spec R[t] is a p-limit of the diagram

consisting of Spec R and Spec R ′ with no arrows, so by Theorem 2.30, we have

π
p
1 (Spec R[t]) ∼= π

p
1 (Spec R) × π

p
1 (Spec R ′)

(for appropriate basepoints). Thus every p-typical extension of R[t] is contained in
the tensor product of a p-typical extension obtained by base change from R, and a p-

typical extension obtained by base change from Fp +tR[t]; in the latter, the restriction
to the t = 0 locus must split completely, so R must be integrally closed. This yields
the desired result.

Remark 2.36 This corollary should be a bit surprising: for a general finite étale ex-
tension of R[t], or even of R((t−1)), one cannot split off the residual extension in this

fashion. For instance, if the extension is obtained by adjoining z with zp − z = at for
a in some finite étale extension of R, it is typically impossible to present the extension
as in the corollary unless a generates a p-typical extension of R (in which case the
corollary applies).

3 Complexity Measures for p-Typical Extensions

We next propose a mechanism for handling the complexity of a p-typical extension,

via what we call height functions; the mechanism is modeled on basic ramification
theory for complete discretely valued fields. As in other instances where complexity-
bounding functions arise (e.g., Diophantine approximation, from which the term
“height function” was borrowed), it is a bit tedious to introduce and deal with such

functions, but things are made a bit easier by the fact that the intended use of these
functions permits one to be somewhat sloppy in dealing with them. The reader im-
patient to get to some meaningful results may wish to skip ahead to the next section
before continuing here.
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3.1 Ramification Filtrations for Local Fields

The model for our height functions is the highest break function coming from the
ramification filtration on the Galois group of k((t)), so we start by reviewing that
construction. For all unproved assertions in this section, see [8].

Definition 3.1 Let F be a complete discretely valued field whose residue field k is
perfect (e.g., the power series field k((t))). Let E/F be a finite Galois field extension
with group G, let oE and oF be the valuation subrings of E and F, and let vE be the

valuation on E, normalized so that vE maps E∗ onto Z. For i ≥ −1, let Gi be the
subgroup of g ∈ G for which vE(ag − a) ≥ i + 1 for all a ∈ oE; the decreasing
filtration {Gi} is called the lower numbering filtration of G [8, §IV.1].

Definition 3.2 With notation as in Definition 3.1, define the function

φE/F(u) =

∫ u

0

dt

[G0 :Gt ]
.

Then φE/F is a homeomorphism of [−1,∞) with itself; let ψE/F denote the inverse
function. Define the upper numbering filtration of G by Gi

= GψE/F(i) [8, §IV.3]. It has

the property that if E ′/F is a Galois subextension of E/F with Galois group H, then
the image of each Gi under the natural surjection G ։ H is precisely Hi ; this follows
from Herbrand’s theorem [8, Proposition IV.14].

Definition 3.3 For F as in Definition 3.1 and E/F a finite Galois field extension,
define the highest break of E, denoted b(E/F), to be the largest i such that Gi 6= G j for
any j > i, or zero if no such i exists. If E/F is a field extension which is finite separable

but not Galois, we define b(E/F) = b(E ′/F), for E ′/F the Galois closure of E/F. If E is
not a field, but only an étale F-algebra, we define b(E/F) to be the maximum highest
break of any component of E. With these rules, one has the following properties.

(i) b(F/F) = 0 (evident).
(ii) If E ′ is an F-subalgebra of E, then b(E ′/F) ≤ b(E/F) (evident).
(iii) b((E1 ⊕ E2)/F) = max{b(E1/F), b(E2/F)} (formal).

(iv) b((E1 ⊗ E2)/F) = max{b(E1/F), b(E2/F)} (not formal, but follows from Her-
brand’s theorem).

(v) If E/F is a Galois field extension and E ′ is an étale E-algebra, then b(E ′/F) =

max{b(E/F), φE/F(b(E ′/E))} (because the lower numbering is stable under

taking subgroups).

Remark 3.4 In case k is imperfect, there are several competing analogues of the

upper numbering filtration; these include the “residual perfection” construction of
Borger [2], and the “nonlogarithmic” and “logarithmic” rigid geometric construc-
tions of Abbes and Saito [1]. We will not use any of these in this paper.
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3.2 Artin–Schreier Extensions and Highest Breaks

We next recall some standard facts about Artin–Schreier extensions of a power series
field.

Lemma 3.5 For k a perfect p-field, and for a ∈ F = k((t)), put

m = inf
x∈F

{−vF(a − xp + x)}

and put E = F[z]/(zp − z − a). Then the following hold.

(i) Either m = −∞ (that is, E is not a field) or m ≥ 0.

(ii) If m ≥ 0, then the extension E/F is unramified if and only if m = 0.

(iii) If m > 0, then m is not divisible by p, and E/F has highest break m.

Proof (i) Suppose m < 0, which means that there exists y ∈ F such that b =

y p − y − a satisfies vF(b) > 0. Then the series b + bp + bp2

+ · · · converges in F, and
its limit c satisfies c − cp

= b. This yields a = (c + y)p − (c + y), and so m = −∞.

(ii) Note that m = 0 implies, as in (i), that y p − y − a ∈ k for some y ∈ F, and so

E is unramified. Conversely, if E is unramified, then the residue field E of E must be
an Artin–Schreier extension of k, say k[y]/(y p − y − b) with b ∈ k. If we choose b so
that the Z/pZ-torsor structures on E/F and E/k are compatible, by Proposition 2.15
we must then have a − b = xp − x for some x ∈ F, yielding m = 0.

(iii) If a = c−pnt−pn +· · · , then a−c−pnt−pn +c
1/p
−pnt−n has strictly larger valuation

than does a. Hence if m is positive, it cannot be divisible by p. To compute the highest
break, assume that vF(a) = −m, pick integers r, s with r > 0 and −rm + sp = 1, and
put u = zrt s; then vE(u) = 1, i.e., u is a uniformizer of E. By [8, Proposition IV.5],
the highest break of E/F equals vE(u ′/u − 1), where u ′ is the image of u under the

automorphism z 7→ z + 1 of E. Since r is not divisible by p, we have

u ′

u
= (z + 1)rz−r

= 1 + rz−1 + · · ·

and so vE(u ′/u − 1) = vE(z−1) = m, as desired.

One can also obtain a bound on the highest break in an AS-tower. The following

bound is not optimal, but it suffices for our purposes.

Corollary 3.6 Let k be a perfect p-field, let k((t)) = E0 ⊂ E1 ⊂ · · · ⊂ Ed = E be an

AS-tower, and choose ℓ ≥ 1 such that for i = 1, . . . ,m, Ei
∼= Ei−1[z]/(zp − z − ci) for

some ci with vE0
(ci) ≥ −ℓ. Then b(E/E0) ≤ dℓ.

Proof We proceed by induction on d, the case d = 1 following from Lemma 3.5. For
d > 1, if E1/E0 is disconnected, then we can correspondingly split E as a direct sum
E ′

1 ⊕ · · · ⊕ E ′
p, in which for j = 1, . . . , p, E ′

j admits an AS-tower of length d − 1 over
E0. By the induction hypothesis, we have b(E/E0) = max j{b(E ′

j/E0)} ≤ (d − 1)ℓ.
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If E1/E0 is connected, by Lemma 3.5 we have b(E1/E0) = m for some nonnegative
integer m ≤ ℓ, and by the induction hypothesis we have b(E/E1) ≤ (d − 1)(pℓ). For

x ≥ m, φE1/E0
(x) = m + (x − m)/p, so

b(E/E0) ≤ φE1/E0
((d − 1)pℓ) = m +

(d − 1)pℓ− m

p

= (d − 1)ℓ +
m(p − 1)

p

≤ dℓ,

as desired.

We also need to know that the highest break drops under specialization.

Proposition 3.7 Let R → R ′ be a surjective morphism of perfect p-domains, let S be

a p-typical extension of R((t)), and put S ′
= S ⊗R((t)) R ′((t)). Let K and K ′ be the

fraction fields of R and R ′, respectively. Then

b
(

S ⊗R((t)) K((t))/K((t))
)
≥ b

(
S ′ ⊗R ′((t)) K ′((t))/K ′((t))

)
.

Proof This follows from the Deligne–Laumon semicontinuity theorem [6].

3.3 Presentations of AS-Towers

To talk about height functions on p-typical extensions of more general rings, we need
to fix a bit of terminology concerning presentations of AS-towers.

Definition 3.8 Given an AS-tower R = S0 ⊂ S1 ⊂ · · · ⊂ Sd = S over a p-ring R, a
presentation of S is a sequence of isomorphisms

Si
∼= Si−1[zi]/(z

p
i − zi − Pi(z1, . . . , zi−1)) (i = 1, . . . , d),

where Pi(z1, . . . , zi−1) is a polynomial over R of degree at most p−1 in each variable;

by Proposition 2.15, such a presentation always exists. Given a presentation of S,
each element x ∈ S can be written uniquely as a polynomial in z1, . . . , zd over R

with degree at most p − 1 in each variable; we call this polynomial the minimal

representation of x.

In terms of presentations, one has the following evident but useful lemma.

Lemma 3.9 Given an AS-tower R = S0 ⊂ S1 ⊂ · · · ⊂ Sd = S over a p-ring R, and

a presentation

Si
∼= Si−1[zi]/(z

p
i − zi − Pi(z1, . . . , zi−1)) (i = 1, . . . , d)

of S, choose integers j1, . . . , jd ∈ {0, . . . , p − 1}, and put x = z
j1

1 · · · z
jd

d . Then the

minimal representation of xp, written as a polynomial in zd over Sd−1, is monic of de-

gree jd.
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Proof Note that for each i, z
p
i can be rewritten as zi plus a polynomial in the pre-

ceding variables; this implies the claim.

Definition 3.10 If V is an additive subgroup of R, we say a presentation of S is
defined over V if each Pi has its coefficients in V .

3.4 Height Functions

Definition 3.11 Let R0 be a connected p-ring, and let R be a connected R0-algebra.
A height function (over R0) on C

p
R (the category of p-typical extensions of R) is a

function h from the set of isomorphism classes of elements of C
p
R to the nonnegative

real numbers, having the following properties.

(i) h(S1 ⊕ S2) is bounded above by some function of h(S1), h(S2), deg(S1/R),
deg(S2/R).

(ii) h(S1 ⊗ S2) is bounded above by some function of h(S1), h(S2), deg(S1/R),
deg(S2/R).

(iii) If S1 ⊆ S2, then h(S1) is bounded above by some function of h(S2), deg(S2/R).
(iv) For any positive integer d and any finite R0-submodule V of R, there exists a

nonnegative real number ℓ such that for any connected AS-tower R = S0 ⊂
S1 ⊂ · · · ⊂ Sd = S admitting a presentation defined over V , we have h(S) ≤ ℓ.

(v) For any positive integer d and any nonnegative real number ℓ, there exists a
finite R0-submodule V of R such that for any connected AS-tower R = S0 ⊂
S1 ⊂ · · · ⊂ Sd = S with h(S) ≤ ℓ, there exists a presentation of S defined

over V .

We say h is a strong height function if the following additional conditions hold.

(i ′) h(S1 ⊕ S2) ≤ max{h(S1), h(S2)}.
(ii ′) h(S1 ⊗ S2) ≤ max{h(S1), h(S2)}.
(iii ′) If S1 ⊆ S2, then h(S1) ≤ h(S2).

We extend a height function to continuous homomorphisms ρ : π
p
1 (Spec R, x) → G,

for x a geometric point of Spec R and G a finite discrete group, by declaring that

h(ρ) = h(S), where S ∈ C
p
R is chosen so that π

p
1 (Spec S, y) is the kernel of ρ (for an

appropriate geometric point y of Spec S).

Lemma 3.12 With notation as in Definition 3.11, let R ′ be a connected p-typical ex-

tension of R. Then any height function h over R0 on C
p
R induces a height function h ′ over

R0 on C
p
R ′ (given by h ′(S) = h(S)).

Proof Straightforward.

The condition (v) is not so easy to check directly, but fortunately one need only

verify it for Artin–Schreier extensions, as confirmed by the following proposition.

Proposition 3.13 Given conditions (i)–(iv) of Definition 3.11, if condition (v) holds

for d = 1, then it holds for all d.
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Proof We proceed by induction on d (simultaneously for all ℓ), the case d = 1 being
the input hypothesis. Given the claim for d − 1 and given a connected AS-tower

R = S0 ⊂ S1 ⊂ · · · ⊂ Sd = S with h(S) ≤ ℓ, we may choose a presentation for Sd−1

over some finite R0-module depending only on d and ℓ.
Write Sd = Sd−1[zd]/(z

p
d −zd−ad−1) and write ad−1 =

∑p−1
i=0 ciz

i
d−1 for ci ∈ Sd−2.

Let j be the degree of ad−1 as a polynomial in zd−1, so that c j 6= 0 but c j+1 = · · · =

cp−1 = 0. We prove that for some w ∈ Sd−1 of degree at most j as a polynomial
in zd−1, the coefficients in the minimal representation of ad−1 − wp + w lie in some
finite R0-module depending only on d, ℓ, j. The proof of this claim constitutes an
inner induction on j.

For j = 0, we may apply the outer induction hypothesis to Sd−2[z]/(zp − z − c0)
to deduce the claim. Otherwise, let g be the automorphism of Sd−1 over Sd−2 given
by zd−1 7→ zd−1 + 1, and define the map ∆ : Sd−1 → Sd−1 by ∆(x) = xg − x. Then
the j-th tensor power of Sd over Sd−2, which has height bounded by a function of

d, ℓ, j by (ii), contains

Sd−1[z]/(zp − z − ∆
( j)(ad−1)).

Since ∆
( j)(

∑ j
i=0 ciz

i
d−1) = j!c j , we deduce that Sd−2[z]/(zp − z − j!c j) has height

bounded by a function of d, ℓ, j.
Applying the outer induction hypothesis yields w ′ ∈ Sd−2 such that the minimal

representation of b ′
= c j − (w ′)p + w ′ has coefficients in some finite R0-module

depending only on d, ℓ, j. Put a ′
d−1 = ad−1 − (w ′z

j
d−1)p + w ′z

j
d−1, so that Sd =

Sd−1[z]/(zp −z−a ′
d−1). Then a ′

d−1−b ′z
j
d−1 has degree at most j−1 as a polynomial

in zd−1. If we put

S ′
= Sd−1[x]/(xp − x − b ′z

j
d−1), S ′ ′

= Sd−1[y]/(y p − y − a ′
d−1 − b ′z

j
d−1),

then the height of S ′ is bounded by some function of d, ℓ, j by condition (iv) of
Definition 3.11. On the other hand, S ′ ′ is contained in S ′⊗Sd−1

Sd, and the heights of
Sd and S ′ are bounded by some function of d, ℓ, j, so the same is true of S ′ ′. Applying

the inner induction hypothesis to S ′ ′, we obtain w ′′ ∈ Sd−1 of degree at most j−1 as

a polynomial in zd−1, such that a ′
d−1 − b ′z

j
d−1 − (w ′′)p + w ′ ′ has coefficients in some

finite R0-module depending only on d, ℓ, j. We may then take w = w ′z j
d−1 + w ′ ′, as

ad−1 − wp + w = b ′z
j
d−1 + (a ′

d−1 − b ′z
j
d−1 − (w ′ ′)p + w ′ ′)

has coefficients in some finite R0-module depending on d, ℓ, j. This completes the

proof of the inner induction.
The inner induction for j = p − 1 implies the outer induction, so the proof is

complete.

Example 3.14 For R = k((t)) with k a perfect p-field, the highest break function
h(S) = b(S/k((t))) is a strong height function on C

p
k((t)) over k: properties (i ′), (ii ′),

(iii ′) follow from Definition 3.3, property (iv) from Corollary 3.6, and property (v)
for d = 1 from Lemma 3.5.
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Remark 3.15 Already for R = k((t)) with k an imperfect p-field, it is less than
evident how to construct a height function on C

p
k((t)) over k, since the naı̈ve highest

break function b
(

S ⊗ kperf((t))/kperf((t))
)

will not do. To see this, choose c ∈ k \ kp,

then note that the heights of k((t))[z]/(zp−z−ct−pn

) would all be equal to 1, whereas
these extensions do not simultaneously admit presentations defined over some finite
dimensional k-vector space. It should be possible to extract a height function from

any of the constructions of a ramification filtration mentioned in Remark 3.4, but we
have not attempted to do so.

4 p-Typical Covers of Affine Toric Varieties

In this section, we study the p-typical fundamental groups of affine toric varieties;

while the case of ordinary affine space is doubtless the most important, it is not any
harder to work in this generality. Our main results in this direction are some decom-
position theorems for these fundamental groups (Theorem 4.15 and its consequence
Theorem 4.17).

Convention 4.1 Throughout this section, let R denote a connected p-ring.

4.1 Some Toric Rings

Definition 4.2 Define a convex cone in Rn as a nonempty subset σ ⊆ Rn such that

(i) if v ∈ σ, then cv ∈ σ for any c ∈ R≥0;

(ii) if v,w ∈ σ, then cv + (1 − c)w ∈ σ for any c ∈ [0, 1].

Note that the intersection of convex cones is again a convex cone. We say the convex

cone σ is finitely generated if it can be written as a finite intersection of open and
closed halfspaces.

Definition 4.3 Given a convex cone σ, let Rσ denote the monoid algebra R[σ∩Zn].
For convex cones σ, τ with σ ⊆ τ , there is a natural inclusion Rσ ⊆ Rτ . Given an
element x ∈ Rσ , write

x =

∑

v∈σ∩Zn

cv[v],

and define the support of x to be the set of v ∈ σ ∩ Zn such that cv 6= 0.

Remark 4.4 If σ is a convex cone equal to the intersection of finitely many closed
halfspaces defined by linear functionals over Q , then Spec Rσ is an affine toric variety,

and conversely. (Note that in our terminology, toric varieties are necessarily normal.)

Convention 4.5 For the rest of the section, fix a geometric point x of Spec RRn ; we

may also view x as a geometric point of Spec Rσ for any convex cone σ ⊆ Rn. We will
thus drop this basepoint from the notation when considering the fundamental group
of Spec Rσ .
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Proposition 4.6 Suppose that σ, σ1, . . . , σn are convex cones with

σ = σ1 ∪ · · · ∪ σn.

Then Spec Rσ is a p-limit of the diagram consisting of the arrows Spec Rσi
→

Spec Rσi∩σ j
for 1 ≤ i, j ≤ n. Consequently, the group π

p
1 (Spec Rσ) is a limit of the

diagram consisting of the arrows π
p
1 (Spec Rσi

) → π
p
1 (Spec Rσi∩σ j

) for 1 ≤ i, j ≤ n.

Proof It suffices to note that the cokernel of F − 1 on Rσ is generated freely by
the images of σ ∩ (Zn \ pZn). This yields the first assertion; the second follows by
Theorem 2.30.

4.2 Projections and Sections

Definition 4.7 A convex cone σ is strictly convex if for v,w ∈ σ, v + w = 0 if and

only if v = w = 0. For σ a strictly convex cone, let R ′
σ be the subring of Rσ consisting

of elements
∑

v cv[v] with c0 ∈ Fp. (Note that strict convexity is needed for this
subset to be closed under multiplication.)

Proposition 4.8 Suppose that σ and σ0 are convex cones, and {σi}i∈I is a (not neces-

sarily finite) collection of strictly convex cones, such that σ \ {0} is the disjoint union of

σ0 \ {0} and the σi \ {0}. Then the natural map

π
p
1 (Spec Rσ) → π

p
1 (Spec Rσ0

) ×
∏

i∈I

π
p
1 (Spec R ′

σi
)

is an isomorphism.

Proof The argument is as in Proposition 4.6.

Definition 4.9 Let σ, τ be convex cones with τ ⊆ σ. Put σ0 = τ , and choose
a collection {σi}i∈I of strictly convex cones such that σ \ {0} is the disjoint union

of σ0 \ {0} and the σi \ {0}. Then the product decomposition given by Proposi-
tion 4.8 yields a morphism πσ,τ : π

p
1 (Spec Rτ ) → π

p
1 (Spec Rσ) sectioning the pro-

jection π
p
1 (Spec Rσ) → π

p
1 (Spec Rτ ). Note that replacing one of the σi by a disjoint

union does not affect πσ,τ . In particular, by passing to a common refinement, we see

that this map does not depend at all on the choice of the σi .

Proposition 4.10 Let σ, τ be convex cones with τ ⊆ σ. Let ρ : π
p
1 (Spec Rσ) → Z/pZ

be the homomorphism corresponding to the Z/pZ-torsor S = Rσ[z]/(zp−z−x) over Rσ .

Write x =
∑

v∈σ∩Zn cv[v]. Then ρ ◦πσ,τ : π
p
1 (Spec Rτ ) → Z/pZ is the homomorphism

corresponding to the Z/pZ-torsor

Rτ [z]/(zp − z − x ′), x ′
=

∑

v∈τ∩Zn

cv[v].
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Proof This is an immediate consequence of how the map in Theorem 2.30 is con-
structed.

We can make the maps πσ,τ more explicit in certain cases as follows.

Definition 4.11 Let λ : Rn → R be a linear function. For σ a convex cone, let vλ be
the valuation on Rσ defined by

vλ

( ∑

v∈σ∩Zn

cv[v]
)

= min{λ(v) : v ∈ σ ∩ Z
n, cv 6= 0}.

Let Rσ,λ be the completion of Rσ with respect to vλ, and put

τσ,λ = {v ∈ σ : λ(v) ≤ 0}.

Proposition 4.12 Set notation as in Definition 4.11, and write τ for τσ,λ. Then the

natural map π
p
1 (Spec Rσ,λ) → π

p
1 (Spec Rτ ) is an isomorphism.

Proof If z ∈ Rσ,λ and vλ(z) > 0, then z + zp + · · · converges in Rσ,λ to some y

satisfying y p − y = −z. Thus the cokernels of F − 1 on Rτ and Rσ,λ are isomorphic,
so Theorem 2.30 applies.

Example 4.13 Simple examples of Proposition 4.12 are the facts that

π
p
1 (Spec R[[t]]) → π

p
1 (Spec R) and π

p
1 (Spec R((t))) → π

p
1 (Spec R(t−1))

are isomorphisms. For a more nontrivial example, take σ to be the nonnegative quad-

rant in R2, and define λ(a, b) = a − b. Then Proposition 4.12 asserts that

π
p
1 (Spec(R[xy][[x]])[y])) → π

p
1 (Spec R[xy, y])

is an isomorphism.

4.3 Heights and Representations

Definition 4.14 A linear cone in Rn is a convex cone consisting of the nonnegative
scalar multiples of a single nonzero element of Rn. For S a set of linear cones and σ a

convex cone, define Sσ = {τ ∈ S : τ ⊆ σ}.

Theorem 4.15 Let σ be a convex cone in Rn, let h be a height function on CRσ over R,

let ℓ be a nonzero real number, and let G be a finite discrete group. Then there exists a

finite set S of linear cones in Rn, depending on σ, h, ℓ,G, such that for any continuous

representation ρ : π
p
1 (Spec Rσ) → G with h(ρ) ≤ ℓ and any convex cone τ ⊆ σ, the

image (ρ ◦ πσ,τ )(π
p
1 (Spec Rτ )) is determined by ρ and Sτ .
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Proof We first check the case G = Z/pZ. If ρ is trivial, there is nothing to check;
otherwise, ρ becomes trivial upon restriction to π

p
1 (Spec S) for some Z/pZ-torsor S

over Rσ . By Proposition 2.15, we may write S = Rσ[z]/(zp − z − x), and we may
choose x ∈ Rσ with support in {0} ∪ (σ ∩ (Zn \ pZn)). Since h(ρ) ≤ ℓ, by (v) the
support of x is contained in a finite set T depending on σ, h, ℓ. By Proposition 4.10,
the claim holds if we take S to be the set of linear cones generated by the elements of

T. Note that this set depends only on σ, h, ℓ, and not on ρ.

We next pass to the general case. We may assume that G is the image of ρ, so

that G is a p-group and ρ is surjective; we may also assume that G is nontrivial. Let
K be the Frattini subgroup of G (the intersection of its maximal proper subgroups),
so that G/K is an elementary abelian p-group. By repeatedly applying the previous
paragraph, we obtain a finite set S1 of linear cones, determined by σ, h, ℓ, such that

the image of π
p
1 (Spec Rτ ) in G/K is determined by ρ and (S1)τ .

We now induct on the size of (the smallest possible choice of) S1. If S1 is empty,
then the image of π

p
1 (Spec Rτ ) in G/K is equal to the image of π

p
1 (Spec Rσ) in G/K,

namely G/K itself. Thus the image of π
p
1 (Spec Rτ ) in G cannot be contained in any

proper subgroup of G, and so must equal G. Thus we are done in this case.

If S1 is nonempty, choose a linear cone T in S1. We can then choose strictly con-
vex cones σ1, . . . , σm not meeting T such that σ \ T is the union of σ1 \ {0}, . . . ,
σm \ {0}. (Namely, draw n − 1 hyperplanes meeting transversely along T, take the
open halfspaces on both sides of each plus one halfspace containing the negation of

T, and intersect all of these with σ.) We may now apply the induction hypothe-
sis to each of the σi (since the analogue of the set S1 has been reduced by one ele-
ment) to produce a finite set ST (determined by σi, h, ℓ,G) such that if T 6⊆ τ , then
ρ(π

p
1 (Spec Rτ )) is determined by ρ and (ST)τ . Let S be the union of the ST . This has

the desired property because if every T lies in τ , then the image of π
p
1 (Spec Rτ ) in

G/K must equal G/K, so as in the base case, ρ(π
p
1 (Spec Rτ )) = G.

Corollary 4.16 Let σ be a convex cone in Rn, let h be a height function on CRσ over R,

let ℓ be a nonzero real number, and let G be a finite discrete group. Then there exists a

finite set S of linear cones in Rn, depending on σ, h, ℓ,G, such that for any continuous

representations ρ1, ρ2 : π
p
1 (Spec Rσ) → G with h(ρ1), h(ρ2) ≤ ℓ and any convex cone

τ ⊆ σ, whether or not the restrictions of ρ1 and ρ2 to π
p
1 (Spec Rτ ) are isomorphic is

determined by ρ1, ρ2, Sτ .

Proof Embed G into a linear group over a field of characteristic zero, and apply
Theorem 4.15 to the representation ρ∨1 × ρ2 : π

p
1 (Spec Rσ) → GT × G. (Here ρ∨1 de-

notes the contragredient representation and GT denotes G with its linear embedding
transposed.)

The next corollary is sufficiently useful in its own right that we have promoted it
to a theorem.

Theorem 4.17 Fix a convex cone σ. For T = {τ1, . . . , τm} a collection of distinct

linear cones contained in σ, let GT be the limit of the diagram consisting of the arrows

https://doi.org/10.4153/CJM-2008-006-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2008-006-8


On the Geometry of p-Typical Covers in Characteristic p 159

π
p
1 (Spec Rτi

) → π
p
1 (Spec R) for i = 1, . . . ,m. View the GT as an inverse system via the

natural maps GT ′ → GT for T ⊆ T ′. Then π
p
1 (Spec Rσ) is the inverse limit of the GT .

A weaker but coordinate-free variant of Theorem 4.17 is the following.

Corollary 4.18 Fix a convex cone σ. For S = {R1, . . . ,Rm} a set whose elements are

subalgebras of Rσ of transcendence degree 1 over R, let GS be the limit of the diagram

consisting of the arrowsπ
p
1 (Spec Ri) → π

p
1 (Spec(Ri∩R j)) for i, j = 1, . . . ,m. View the

GS as an inverse system via the natural maps GS ′ → GS for S ⊆ S ′. Then π
p
1 (Spec Rσ)

is the inverse limit of the GS.

Finally, it is worth saying in simple terms what Theorem 4.17 says about affine
spaces.

Corollary 4.19 For n a positive integer n, take x1, . . . , xn to be coordinates on An
R.

Then the group π
p
1 (An

R) is the limit of the diagram consisting of

π
p
1 (Spec R[xa1

1 · · · xan
n ]) → πp(Spec R)

for all coprime n-tuples (a1, . . . , an) of nonnegative integers.

5 Complements on Height Functions

To conclude, we point out that the somewhat mysterious height functions that we

have been using can be made quite explicit on affine toric varieties. The main result
here is Theorem 5.11, which gives a relatively simple formula for a function which
can be verified (Corollary 5.18) to be a height function.

Note that we use Theorem 4.17 in the course of the proof. We do not know
whether it is possible to prove Theorem 5.11 directly, then short-circuit the proof

of Theorem 4.15 and its consequences around the discussion of general height func-
tions. Doing so might necessitate establishing a relationship between ramification
theory for local fields with imperfect residue field (see Remark 3.4); such a relation-
ship might have the effect of clarifying the ramification theory in some cases.

5.1 Some Explicit Height Functions

In the situation we have been considering, we can write down some height functions
explicitly.

Convention 5.1 Throughout this section, let R = k be an algebraically closed
p-field.

Definition 5.2 For λ : Rn → R a nonzero linear function defined over Q (i.e., it
carries Qn to Q), let mλ be the unique rational number such that mλλ(Zn) = Z, let
Hλ denote the hyperplane {v ∈ Rn : λ(v) = 0}, and let Kλ denote the perfection of
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the fraction field of RHλ
. Let R̂λ denote the completion of RRn with respect to v−λ,

and put

Qλ = R̂λ ⊗RHλ
Kλ;

we may then view Qλ as a power series field in one variable over the perfect field Kλ,
with valuation mλv−λ. Given a p-typical extension S of RRn , define

cλ(S) =
1

mλ
b((S ⊗RRn Qλ)/Qλ),

where b denotes the highest break function (of Definition 3.3).

As in Remark 3.15, bλ is not a height function for p-typical extensions of RHλ
.

However, we can use the functions bλ to construct height functions on smaller cones.

Definition 5.3 Given a convex cone σ, define the dual cone σ∨ ⊆ (Rn)∨ as the set

of linear functions λ : Rn → R such that λ(v) ≥ 0 for all v ∈ σ. We say σ is very

convex if σ∨ has nonempty topological interior relative to (Rn)∨; if σ is very convex,
then it is strictly convex.

Definition 5.4 Let σ be a nontrivial very convex cone, and let U ⊆ σ∨ \ {0} be a
subset open in (Rn)∨. Define the function hU on CRσ by

hU (S) = sup
λ∈U∩(Qn)∨

{cλ(S ⊗ RRn )}.

For λ in the interior of σ∨ \ {0}, define

hλ(S) = lim sup
U

hU (S),

the limit being taken over the direct system of open neighborhoods of λ in σ∨ \ {0}.

For ρ : π
p
1 (Rσ) → G a continuous representation to a discrete group, put hU (ρ) =

hU (S) and hλ(ρ) = hλ(S), for S ∈ CRσ connected and chosen so that ker(ρ) = π
p
1 (S).

We first work out how hU works on linear cones. First, we bundle together some
hypotheses.

Hypothesis 5.5 Let σ ⊆ Rn be a linear cone with Zn∩σ 6= {0}, and put τ = −σ∪σ.
Let R̂σ be the completion of Rτ with respect to v−λ, for some nonzero linear func-
tional λ : Rn → R defined over Q which is positive on σ\{0}. Let ρ : π

p
1 (Spec Rσ) →

G be a continuous representation to a discrete group. Note that R̂σ is a power series

field over k, and that it depends only on σ, not on λ; we may thus sensibly speak of
the highest break b(ρ).

Lemma 5.6 Under Hypothesis 5.5, let λ : Rn → R be a nonzero linear function de-

fined over Q , such that λ is positive on σ \ {0}. Put d = [Zn : (Zn ∩ Hλ) × (Zn ∩ τ )],

and let d ′ be the prime-to-p part of d. Then

cλ(ρ) =
d ′

mλ
b(ρ).
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Proof We first note that the desired equality holds when d = 1: it is the comparison
between the highest break of a representation of π

p
1 of a power series ring over a field,

and the same representation after pulling back by extending the constant field.
We next note that if we repeat the construction of cλ(ρ) with Zn replaced by the

larger lattice (Zn ∩Hλ)× 1
d

(Zn ∩ τ ), then mλ and cλ(ρ) remain unchanged. However,
by Definition 3.3, b(ρ) gets multiplied by d ′. Now appealing to the d = 1 case yields

the desired result.

Corollary 5.7 With notation as in Definition 5.4 and Hypothesis 5.5, let v be the

smallest nonzero element of Zn ∩ σ. Then

hU (ρ) = b(ρ) sup
λ∈U

{λ(v)}, hλ(ρ) = b(ρ)λ(v).

In particular,

hU (ρ) = sup
λ∈U

{hλ(ρ)}.

Proof With notation as in Lemma 5.6, note that

d = [λ(Z
n) : λ(Z

n ∩ σ)] = mλλ(v).

By Lemma 5.6, we then have cλ(ρ) ≤ b(ρ)λ(v), with equality for any λ for which d is
not divisible by p. Such λ are dense in any U , so the desired results follow.

We now treat general cones.

Definition 5.8 For σ a very convex cone, τ a convex cone contained in σ, and
ρ : π

p
1 (Spec Rσ) → G a continuous representation to a discrete group, let ρτ be the

pullback of ρ along the maps π
p
1 (Spec Rσ) → π

p
1 (Spec Rτ ) → π

p
1 (Spec Rσ), where

the second map is as in Definition 4.9.

Lemma 5.9 With notation as in Definition 5.4, let T be a linear cone contained in σ
such that d = [Zn : (Zn∩Hλ)×(Zn∩(T∪−T))] is coprime to p. Then cλ(ρ) ≥ cλ(ρT).

Proof As in the proof of Lemma 5.6, we may reduce to the case d = 1; then Propo-
sition 3.7 yields the claim.

Corollary 5.10 With notation as in Lemma 5.9, we have

hU (ρ) ≥ hU (ρT), hλ(ρ) ≥ hλ(ρT).

Proof By Lemma 5.6, we may compute hU (ρT) by taking the supremum defining
it only over λ as in Lemma 5.9 (i.e., the λ for which d = d ′ in Lemma 5.6). Then

Lemma 5.9 yields the first desired inequality; the second follows by taking limits.

We now have the following fairly explicit description of the functions hU and hλ,
in terms of linear cones.
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Theorem 5.11 With notation as in Definition 5.4, we have

(5.1) hU (ρ) = sup
T

{hU (ρT)}, hλ(ρ) = sup
T

{hλ(ρT)},

the suprema taken over all linear cones T ⊆ σ.

Proof In each case, the left side is greater than or equal to the right by Lemma 5.9.
Conversely, by Theorem 4.17, we can present ρ inside the tensor product of the ρT

over finitely many T, and so the right side is greater than or equal to the left.

5.2 More on the Explicit Height Functions

Theorem 5.11 makes it easy to verify many natural properties of the hλ, including the
fact that they are actually height functions. We present these as a series of corollaries.

Convention 5.12 Throughout this section, retain notation as in Definition 5.4.

Corollary 5.13 We have hU (ρ) = supλ∈U{hλ(ρ)}.

Proof Applying Theorem 5.11 and Corollary 5.7, we have

hU (ρ) = sup
T⊆σ

{hU (ρT)} = sup
T⊆σ,λ∈U

{hλ(ρT)} = sup
λ∈U

{hλ(ρ)}.

Corollary 5.14 If λ ∈ σ∨ \ {0} is defined over Q , then hλ(ρ) ∈ Q .

Proof Apply Theorem 5.11 and note that only finitely many terms in the supremum

in (5.1) are nonzero thanks to Theorem 4.17. Then apply Corollary 5.7 to deduce that
each nonzero term in the supremum is rational.

Corollary 5.15 Suppose that τ is a convex cone with τ ⊆ σ. Then hλ(ρ) ≥ hλ(ρτ ).

Proof Apply Theorem 5.11, and note that the supremum defining hλ(ρτ ) is simply
the same supremum as in (5.1), but restricted to T ⊆ τ .

Corollary 5.16 Suppose that λ and κ both lie in the interior of σ∨ \ {0}, and that

λ(v) ≥ κ(v) for all v ∈ σ. Then hλ(ρ) ≥ hκ(v).

Proof By Theorem 5.11, it suffices to check this for σ a linear cone, in which case it

follows from Corollary 5.7.

Corollary 5.17 Suppose that S = Rσ[z]/(zp − z − x), where the support V of x is

contained in σ ∩ (Zn \ pZn). Then hλ(S) = supw∈V {vλ(w)}.

Proof Apply Theorem 5.11 to reduce to the case where σ is linear. Then apply
Corollary 5.7 and Lemma 3.5.
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Corollary 5.18 Each of the functions hλ and hU is a strong height function on CRσ

over R = k.

Proof Conditions (i)–(iv) are straightforward, while condition (v) for d = 1 follows
from Corollary 5.17; the claim then follows by Proposition 3.13.
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