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ON A CANONICAL LIE ALGEBRA sl(2r - 2)-BUNDLE
OVER GRASS (n, r)

HISASI MORIKAWA

In the present note we shall construct a Lie algebra sl (2r + 2)-bundle
over Grass(n,r), canonically, which may be useful for theory of holomor-
phic vector bundles probably.

1. We use the following notations:

U(m): unitary group of degree m,

uw(m): unitary Lie algebra of degree m,

Ur+1,n+ 1) ={w|(+ 1) X (n+ 1)-matrices such that w'w = I},

ulr + 1,m + 1) = {(4,B)|(r + 1) X (n + 1)-matrices such that
A+ A =0},

T*M: the cotangent bundle of M,

T*M: the complex conjugate bundle of T*M,

E(M): the exterior algebra bundle over M generated by
T*M @ T*M for a complex manifold M.

We mean by the upper (r + 1)-part of an (n 4+ 1) X (n + 1)-matrix

Hs

the (r + 1) X (n + 1)-matrix Y, then U(r + 1,n + 1) and u(» + 1,7 + 1)
are regarded as the upper (» + 1)-parts of U(n + 1) and u(n + 1), respec-
tively. There exist the natural bundle structures

Un + 1)

lﬁ

Ur+1,n+1)=Un-—nr\Un+1)
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Grass(n,7) = U(r + D\U(r + 1,n + 1)
=Ur+1DxUn—-r\Un+1).

The space U(r + 1,n + 1) is the canonical U(r + 1)-bundle over complex
Grassmann manifold Grass (n, 7).
An exponential map
exp:ulr+1,n+1)— Ulr+1,n+1)

is defined by

_ A B
(1) exp (4, B) = the upper (r + 1)-part of exp B o)
We choose a positive number x such that the projection = induces a
homeomorphism of the submanifold

{exp (0, B)|||B|| < &}

in U(r + 1,7 + 1) onto an open neighbourhood W of n(I,0) on Grass(n, 7).
Then we get a system of system of real analytic local cross sections o,
(e U + 1)) of Grass (n,r) into U(r + 1,n + 1) given by

(2) o (n(exp(0,B)-a)) = exp (0, B)x (1Bl < g, Un + 1)) .

The local cross section ¢, is defined on the image W, of W by the action «:
0.t Wa —> o, (Wa) .

There exist real anal&tic maps

Tpat WaNWE— U(r + 1) (@,peUn + 1))

such that
(3) Tp6Tha = Troa s (@, Bs7eUm + 1) .
(4) 0 = 5,04

2. Denoting by w = (w,,) the system of coordinates on U(r + 1,n + 1),
then

(5) 0 = wd'w

is a U(n + 1)-invariant connection form on U(r + 1,n + 1), because
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0+ 0 =wdw=dww) =d =0
and
(wa)d(Wwa) = watad'w = wd'w (e U + 1)) .
We mean by o the curvature form of 4, i.e.

(6) o=df +0N6.

r+1l n-7

LEMMA 1. Putting w = (m, W), we have
(7) 0(1’0) _— _dw(l) — dtw(l) ,
(8) O = dw® A dw? .

Proof. From the definitions it follows;

dw(l)dtw(l) — d(w(l)tw(l) + w(Z)t-w(Z))(I,o) — 0 ,

a7 (1)

dt
0(1,0) = (I, O)<d w

) — AWV = —dw®
i) ’
0 = (A0 + 01,0 /\ Oz
= dw® A dWP + dw® A dw? — dw® A diw®

= dw® A d'w® .
LEMMA 2.
(9) tha0) = 75 0155 (@, pe U + 1)) .
Proof. Since ¥ (w) = z, ,w, it follows:
tha(0) = tf (W) (5 (W) = 75 wd(We;))
= 75, WAWr;}, — 7, WWTF T, 75
= 7, 075 — At .75k

and

5 (@) = t§.(df) + 7§ .(0) N\ 7k .(0)
= drp N\ Ot;) + ©5,d075%
+ 75 0N\ t5hdr, thh — Aty N T5 kAT, Tk
+ 75,0 N\ Ot — 75075 N\ dzg 5
— drg A\ Oc3l + doy 75k N\ drg 75k
=1, ,(d0 + O N\ Oz .
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PROPOSITION 1. Let o be the restriction of the curvature form on
the local cross section o (Wa) of Grass(n,r) in U(r + 1,n + 1). Then it
follows:

(10) 75 (0P) = 7,07}, (@,peUn + 1)) .
Proof. From Lemma 2 it follows

T;{,a(w(ﬁ)) = ‘l';sk,a(a) laﬂ(Wﬁ)) = T;ak,a(w) [va(Wa)
= (T‘B,awt;,];z) laa(Wa) = Tﬁ,aw lna(Wa)Tﬂ-,{z = Tﬂ,aw(n)Tﬂ_,la .
3. Let E be the exterior algebra generated by dw,,, dw;, (0 <7< 7;
r+1<p<n). We mean by e(§)y and i(§)y respectively the order and
inner product & A » and the inner product of & with 5 with respect to

the metric

r

257 3 (dwip, dB,,) -

1=0 p=7r+1

Since w;, 0<i<r;r + 1< p<n) are independent complex variables,
the inner and outer products satisfy

e(dw,,Yi(dw,,) + i(dw,,)e(dw,,) = id ,
e(dT,,)i(dT,,) + i(dT,,)e(dm,,) = id .

Except these two cases e(dw;,),(dw;,), e(d®W;,),«(dw;,) O<j<r;r+1
< p < n) are auti-commutative each other.

LEMMA 3.
[i} e(dw ;,)e(d,,), i i(dwkp)i(dwlp)]
(11) p=r+l i p=r+1 )
= =3 3] dW,)eds) + 3 3] eldw,)ildwny)
[i e(dw,,)ildw,y), 3. e(dwl,,)e(dm,,)]
(12) p=7+1 ) p=r+1
= 5&' p=Zr:+1 e(wjp)e(dwkp) ’
[i (AW ,)edByy), 3. e(dwip)e(dwkp)]
(13) p=r+1 p=7r+1

= —0; i . e(dw,,)e(dw;,) ,

=7+
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[ 3 eldw,idw,), p > z‘(dwk,,n'(wi,,)]

(14) P i
= —0j 2. eldw;y)i(dw,,) ,
p=r+1
[ ST idw,y)e(dw,,), 3 i(dwkp)z'(dmp)]
(15) p=r+1 p=r+1

=0u > i(dw,,)idw,y) -

p=r+

Proof. From the above remark it follows

q}j QW ,)e(d,,)i(dwy iAW) — i(dwy)i(dT)e(dw ;) e(d,,)

= 3 {—e(dw,,)i(dws,)e(d,,)i(dB,,) + i(dwyy)e(dw,,)i(dm,,)e(dm,,)}

p=r+1

= = 31 eldw;,)ildwe,{e(dW,)idy) + i(d,,)e(d,y)}

+ Ok P . i(dwep)e(dwip)
¥4 +

=8,y 3, UdW,)e(dmy,) — 3

p=r+

3 e(dw,,)ildws,) ,

p=r+

3 {e(dw,;p)ildw p)e(dw,,)eldy,) — edw)e(die(dw p)idw:,)

pyq=r

- Zn:u e(dw;{i(dwyp)e(dw,,) + e(dw,,)idw,,)}e(dwy,)

p=r

= 5” i s e(dw“))e(dwkp) ’

p=r+
> i 1,)e(d ) eld0,)e(dTr) — () e(dr A 1,)e(dD )}
= — 31 edw,){idw,)e(dsy) + e(die)idD;,)}e(d;y)

= —6, 3] e(dw,e(dmyy) ,
4

=7+

> {e(dw)i(dw ,Yid s i(dTq) — A A )e(duw )il )}

= - il l{e(dwjp)i(dwkp) + i(dwy,p)e(dw;,)}i(dw.,)i(dw,,)

p=r+

= —6p 3. idw,,)idD,) ,
p=T+

https://doi.org/10.1017/5S0027763000024661 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000024661

184 HISASI MORIKAWA

3 {idT,,)e(dT; )il dwy Ji(dTB) — Ud10i YA, )idT ) e(dT,))

p,g=r+

= i}ﬂi(dwkp)i(dwip){e(dwip)i(dw,p) + i(d7W,,)e(dW,,)}

n

= 0y Z . i(dwkp)i(dwjp) .

p=r+

THEOREM 1. Let L and A be the (r + 1) X (r + 1)-matrices whose
@, ))-th entries are given by

L,=+v=1 3] e(dwi)e(dm,)
=T+
and

Ay = —o/—1 flz‘(dwip)i(dwm) .

p=r+

Then there exists a representation o of Lie algebra sl (2r + 2) such that

0 O u
16) o O)=trian = 3 auly,
an p(o B):tr CBA) = 37 byd,, .
0 O i17=0

Proof. Let ¢; be the (r + 1) X (r + 1)-matrix whose only non-zero
entry is the (7, 7)-th entry 1. We denote by p the linear mapping given by

0 0)
. = Ly,
p<5u‘ 0 !
0 Gij) — A
e (o 0 v
p<0 0) = — 3 idm)e(dB,,)
O 6” p=r+1
p<5z'j 0) = — f_‘_l e(dw;,)i(dw,,) .
0 0 p=r+1

Then by virtue of (11), (12), (18), (14), (15) it follows
O 0 0 616)] - . . (0 0 ) 5. <Skj O)
[" (au 0)’(0 0 )] = W ded = duse g bty o

27
= (0 0 )_
‘0 0 €1;j€kg

o o=l oG %)l
"(0 o/ =\, o\ o/l”

In the previous paper [ ] we have proved the essentially same result.
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&; j 0

(5 o ol =75 o) =l D ol
o o)ele, ol =A% 0)=ello L) ol
A5 ohelo D =els “5)=elG 0 )
o o) $=Ao 75 =AG 26 F

This means that p gives a Lie algebra homomorphism of (2r + 2). For
any (r +1) X (» + 1) matrices A and B

0 0 T 0 0 .
p(A O> = 2 a”p( > =z a;;L;; = tr (AL) ,

e

Il
>
S

Il

i,7=0 €1 0 ,i=0

0 B) r (0 5) r
= bis i by = tr (BA) .
p(o 0 i,7=0 0 0 o jig tr( /1)

4. We mean by E(¢,(Wa)) the exterior algebra bundle generated by
T*¢ (Wa) ® T*¢ (a). We mean by o the restriction of the curvature
form o on the local cross section ¢ (Wa) of Grass(n,r), and we define
linear operators acting on E(¢,(Wa)) as follows:

18) Ly = ¥ —1eo)
19) AP = —V/=1if),

where o{? = (0ff) and 7,( ) means the inner product with respect to the
metric corresponding to tr o = 37, 0.

LEMMA 5. We denote

(20) tf (L) = V=T ez} (o)) ,

(20) tf (A8) = V=1 (e} (o)) .

Then we have

(22) o LP) = 74 L7,

23) tf (AP) = 25 A9, , (@, e Un + 1)) .

Proof. Since e(dw;,) and i(dw,,) depend on dw; (0 < i< r;0,<'¢ < n)
respectively covariantly and contravariantly, hence we have
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e(t5,.0755) = €(r, 07, ) = 7, 6(0)'7, ; = 7, (W77,
Uz, 075 %) = Uzy,,0'75 ) = ‘o500t -
Therefore by virtue of the definitions of L and 4, we have (26) and (27).

PROPOSITION 2. There exists a representation p of sl(@2r + 2) as
linear operators on E(ec (Wa)) such thot

0 0

24 m( ):t AL@) ,

(24 N4 o r( )
0 B

25 w( ): tr ((BA@)

(25) Lo o r ( )

26) r,’a",,,(p"”(X)S,s)Zp(“)«T‘s“ )" x (a0 ),

Th,a 0 Tp,a

(@,pcUmn + 1; Xesl@r + 2) .

Proof. Since oz, = (X pors1 AWy A\ dW;,) and dw,,, dw;, 0<Li< r;
r4+1<p<n) form a linear base of the fibre T;‘},o)ae(W)@T;’},o)ae(W),
the representation p of sl(2r 4 2) in Theorem 1 is the representation of
sl (2r 4+ 2) acting on the fibre of E (¢, (W)) at (I,0) which satisfies (22) and
(23). Since Grass(n,r) is homogeneous for U(n 4+ 1) and o is Un + 1)-
invariant, translating the fibre by « in U(n + 1), we get a representation
o' of sl(2r 4+ 2) acting on the fibre E(s,(Wa)) at #a satisfying (22) and
and (23), where 7#a means the upper (» + 1)-part of «. For each point
Z, on g,(Wp) there exists an element « in (U(n + 1) such that ¢, (Fa) =
Z,. Hence it is sufficient to prove that, if there exists a representation
@ of sl(2r + 2) acting on the fibre of E(¢(W)) at Z, satisfying (22) and
(23), then for a point Z, = ¢, ,Z, on o,(Wp) there exists a representation
o® of sl(2r + 2) acting on the fibre E(e,(Wp)) at Z, satisfying (22), (23),
(24). By virtue of (20) and (21) we have

o3 LP) = 75, L3}
and
tF(AP) = o5 A,
hence it follows:
S )
0 7, A O0\NO0 1,

= tr (cj1 A7, L) = tr (A7, L92;1) = of, tr (AL®) ,
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A 6 W )
0 7,5, 0 0/\0

Th,a

= tr (510, )A@) = tr (B tr;iA@ ¢, ) = of, tr (AL®) .

Since s1(2r 4+ 2) is generated by the elements

{C)l g),(g ﬁ)lA,B are r + D X (» + 1) matrices}

we get a representation o of sl(2r 4 2) acting on the fibre E(a,(Wp))
at Z, such that

« « 0 - a 0 *
O (I £}

This representation " satisfies, (22),(23) and (24). Morever the repre-
sentation depends only on Z,, which does not depend on the choise of «
and Z, because by virtue of (8) and (03)

ToTra = Tpa (e, B, 7€ Un + 1))
and

a @ 0 -t « 0
m{p( >((f+3 . > X(Tﬂb Tﬁ)ﬁ))tia“,a&}

8,

= ¥ ¥ @ (Toa 0>_1<fﬂ,a 0)~1X<Tﬂ,r 0>>* s }
st (% G VO g, 0 )P

Byr
~1
Sl )G M)

Bt 8,7

1.5. We can now construct a canonical sl (27 4 2)-Lie algebra bundle
L(n,r) which acts naturally on E (Grass (n,r)).
We define an equivalence relation ~ in

g, Wa) X sl @r + 2)

a€U(n+1)

such that (Z,,X,) ~ (Z;, X,) if and only if

and

X, = (rp,a 0 )“‘X<fw 0 ) (@, 8 Um + 1)) .
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Since 7, ,7;.,=1,, (@ B,y€ U + 1)), the equivalence classes form a real
analytic vector bundle

Ln,n= \J o(Wa) Xsl@r+2)/~

acU(n+1)
over Grass(m,r). Let us show L(n,r) acts naturally on E (Grass(n,7)).
The bundle F (Grass (n,7)) may be expressed

E (Grass(n,7) = U E@,(Wa)/~ .

€U (n+1)

where ¢, ~ &, if and only if &, = 7,,&. Lie algebra sl(2r + 2) acts on
E(w Wa)) as follows:

(X,¢,) — p(X)8, .

By virtue of (80) in Proposition 2 it follows

S0 @) = p((he O )T x (e O )

T8,a 0 T8,a

(@ pe Um + 1),&, ¢ E@,(Wp) .

This means that L(n,r) acts on E (Grass(n,r)).
We now concluded that:

THEOREM 2. Let Un — r)\Un + 1) %, Grass (n, ) be the canonical
U(r + 1)-bundle over Grass(n,r), and let w be the curvature form of the
Un + D-invariant connections

0 = wd'w ,

where U — r)\Un + 1) is regarded the space of (r + 1) X (n + 1)-
matrices w sotisfying w'w = 1. Let E (Grass (n, 7)) be the exterior algebra
bundle over Grass(n,r) generated by

T* Grass (n, ) @ T* Grass (n, ) .

Then there exists a sl(2r + 2)-Lie algebra bundle L(n,7) over
Grass (n,r) with the following properties:
i) The action of U(n + 1) on Grass(n,r) is lifted on L(n,r).
ii) The U(r + 1)-bundle U(n — n)\U(n + 1) acts on L(n,r) as follows

o —o((; ' 7)
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for local sections ¢ and p into U(r — »\U(n + 1) and L(n,r), respectively.
iii) L(n,r) acts on E (Grass(n,7r)) as follows:

Let E be the exterior algebra generated over the dual space of the

horizontal space at a point Z on U(n — v)\U(n 4 1) with respect to the

connection wd'w, and let L;; and 4;; (0 <%,7 <7) be the linear operators

actings on E given by

L,y =+v—1ela,), Ay = — —=1Ua@;;) ,

where @ = (@;;) is the restriction of the curvature form o on the hori-
zontal space and the inner product #( ) corresponds to tr@. Then, identi-
fied & with the fibre of E (Grass(n,r)) at the base point, of Z, the action
of L(n,r) on K is given by

0 0 :
p(A 0) = tr(AD) = 35 ayly,

p(o B) —tr(BA) = 3] by, .
0 O 1,7=0
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