
J. Functional Programming 6 (2): 375-377, March 1996 © 1996 Cambridge University Press 375

Book review

An Introduction to Formal Specification and Z by Ben Potter, Jane Sinclair
and David Till, Prentice-Hall, 1991.

Z: An Introduction to Formal Methods (second edition) by Antoni Diller,
John Wiley & Sons, 1994.

Z is a specification language invented by Abrial and developed at the Oxford Programming
Research Group (PRG). The intention is that Z specifications are written as part of the
requirements analysis and system specification stages of the software lifecycle. Bugs arising
from imprecision at these early stages can be very costly to fix if only discovered late on.
Hence, the argument goes, although the formality of Z may make the initial stages lengthier
than if natural language specifications were used, Z is more likely to catch design bugs early
on. Overall, software development costs are reduced. Indeed, joint work between the PRG
and IBM's Hursley Lab and INMOS shows that Z can reduce development costs in industrial
settings. Z, like functional programming, is an attempt to use an abstract, formal notation to
produce better software than otherwise would be possible. Diller's book makes the connection
explicit by animating a Z specification using Miranda.*

Z is already documented by Spivey's The Z Notation: A Reference Manual and Hayes'
Specification Case Studies. Spivey's book is regarded by both the reviewed books as the
effective Z standard. Hayes' book describes many examples of how Z has been effectively
used in practice. Both Spivey and Hayes have recently produced second editions. Potter et al.
was written before these new editions were available. Diller has produced a second edition,
to reflect the changes made in the second edition of Spivey. As far as I know there have been
no fundamental changes in Spivey, so Potter et al. is still suitable for teaching Z. You should
be aware, though, that some details may be out of date.

Both of the books reviewed include an introduction to Z specifications that complements
the more advanced material in Spivey and Hayes. They both cover the basics of specification
in Z: first-order logic, typed set theory, relations and functions, sequences and schemas. They
both recommend a structure for presenting complete Z specifications. In addition to this core
material, Diller includes several case-studies, an animation of a Z specification using Miranda,
and material on Floyd-Hoare logic and refinement. In contrast, Potter et al. point the reader to
Spivey and Hayes for supplementary examples and reference material. They devote a chapter
to locating Z specification in the software lifecycle, and another to discussing the pros and
cons of real-world Z projects and their relation to other software development methodologies.
They include notes for new users and discussion of two of the major Z applications, the CICS
product at IBM Husley and the floating point unit of the INMOS transputer. Potter et al.
include some material on reasoning and refinement, but make clear their primary aim is to
teach software specification.

Both books include many bibliographic citations for further study. Some of Diller's, such
as the citation regarding 'deviant' logic on the opening page, are perhaps out of place in
an introductory textbook. Potter et al. have exercises covering all the technical material they
introduce. Diller has fewer exercises, mainly on the core material, but includes answers.

* Miranda is a trademark of Research Software Ltd.

https://doi.org/10.1017/S0956796800001738 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001738


376 Book review

Diller treats more examples than Potter et al. He includes versions of well-known specifi-
cation examples such as Sufrin's text editor and Wing's library database. In both books, all
the examples have the familiar form of a global state, together with operations to transform
it and perhaps input or output some data. One of the most plausible ideas of object-oriented
programming is that use of local states leads to clearer programs than a single global state.
Apart from a passing reference in Potter et al to using CSP to model a system as a collection
of communicating processes, neither book discusses the advantages of using local state to
structure a specification. The use of global state seems to be standard practice in the Z
community, but even so, I would like to have seen a discussion of the issue in both books.

The strength of Diller's book is that the one volume contains introductory material, many
case-studies and a reference manual. Although the core material is a good introduction to
Z, the book as a whole is not such a good introduction to formal methods. Although Diller
devotes more space to discussing how to reason about and refine specifications than do Potter
et al, he includes no guidance on when and how to apply Z. This is a pity because, as Potter
et al point out, formal methods projects can fail, and new users should be aware of the
pitfalls. Diller includes a summary of the key features of Z, but it is misleading to call it
a 'reference manual' as so many details, including syntax, are left undefined. To be fair to
Diller, Z has historically only been loosely defined. Nonetheless, his reference manual falls
short of the standard set by Spivey.

There are new chapters in Diller on Floyd-Hoare logic and its use in verifying an imperative
implementation of a Z specification. In the absence of mechanised tools, it would be forbidding
to teach from these chapters, which have no accompanying exercises. But they do pose an
interesting research question: what tools could support this process?

Both books run the risk that none of the specified systems is any more complex than
examples found in introductory programming textbooks. Students will wonder what is the
point of specifying them in Z. After all, a Z specification is not far from being a functional
program. Proofs of functional programs, like proofs about Z specifications, are typically
carried out informally, but rigorously, on paper. But there are at least two advantages of
specifications that are not executable functional programs. Sometimes it is useful to specify
a program as a relation, to avoid 'over-specification'. Sometimes a program may usefully be
specified as the inverse of a function (parsing, say, can be specified as the inverse of printing).
In my view, these possibilities are surprisingly rare. Executable functional programs are good
for many specifications, though a few specifications are much clearer if they are not functional
programs. It is a pity that neither of these books explains where in their examples they exploit
non-executable specification.

Diller's section on 'Specification Animation' shows how a Miranda script can be derived
from the specification of the telephone directory. The code in the script corresponds closely
to a collection of Z schemas. It uses combinators from Bird and Wadler's Introduction to
Functional Programming, perhaps already familiar to students. It is not optimised - it re-
runs an invariant checker after each operation. This connection between Z and functional
programming is a good start, but I would like to have seen the study taken further. As
there are no exercises, it would be hard to use the chapter for teaching. Diller does not
discuss the formal relationship between Miranda and Z. We have no guarantee that the
Miranda program accurately animates the Z specification. What the chapter does show is
how a Miranda interpreter could exercise and debug a Z specification. But what was the
point of beginning the process in Z at all? With probably less work we could have specified
the telephone directory directly as an executable Miranda script.

In summary, both books cover the basics of Z and include many case studies and hence
would usefully accompany a course on formal specification. My preference is for Potter et al
Their book covers the basics well - without excess of detail and with exercises throughout -
and places Z in the context of software engineering. Diller covers the basic material reasonably
well, and includes many case studies, but he fails to discuss the role of Z in practice. His
more advanced chapters are let down by lack of exercises, perhaps because they are still

https://doi.org/10.1017/S0956796800001738 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001738


Book review 311

research topics. Diller's chapter on animating Z specifications using Miranda is of interest to
functional programmers, but the connection and its implications are not pushed far enough
to be very useful.

ANDREW D. GORDON
Computer Laboratory
University of Cambridge

https://doi.org/10.1017/S0956796800001738 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001738

