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STRONG COMMUTATIVITY PRESERVING MAPS 
OF SEMIPRIME RINGS 

MATEJ BRESAR AND C. ROBERT MIERS 

ABSTRACT. In this paper we characterize maps/: R —> R where R is semiprime,/ 
is additive, and \f(x),f(y)] = [x,y] for all x,y E R. It is shown that/(jc) = Xx + £(x) 
where À e C, À2 = 1, and £: R —• C is additive where C is the extended centroid ofR. 

1. Introduction and preliminaries. If R is a ring a map/: R —+ R is strong com-
mutativity preserving (SCP) on a set S Ç /? if |/(x),/(y)] = [x, j ] for all x, y E S. It 
appears that this notion was first introduced by Bell and Mason in [3]. In [2] Bell and 
Daif studied non-trivial endomorphisms and derivations which are SCP on right ideals 
in prime or semiprime rings. In general they showed that the existence of such a map 
forces commutativity on a large part of the ring in question. In this note we study maps 
f:R —• R which are merely additive, but SCP on the entire semiprime ring R. Our main 
result states that such a map has the form/(x) = Xx + £(x) where À E C, A2 = 1, and 
£: R —• C is an additive map from R to its extended centroid C. 

In all that follows R will denote a semiprime ring, Q its Martindale ring of quotients, 
and C its extended centroid. If / is an ideal in R then IL will denote its annihilator. 

We will need the following three results: 

(A) [4, COROLLARY 3.2]. Suppose that a,b e R satisfy axb = bxa for all x E R. 
Then there exist idempotents 61,62,63 E C such that e/e7 = 0, / ^ y, 61+62 + 63 = 1, 
e\a = 0, 62& = 0, and 63b = Xe^a for some invertible X € C. 

(B) [4, THEOREM 4.1]. If B: R x R —• R is a biderivation, then there exist an idem-
potent e G C and an element \i E C such that (1 — e)/? C C and eB(x;,)0 = M f̂c}7] f° r 

allx,j E/?. 

(C) [1 (ORIGINALLY), OR 4, COROLLARY 4.2]. Iff: R—+R is an additive commuting 
map, then there exist X € C and an additive map £: /? —• C such that/(x) = Ax + £(x) for 
all x E R. 
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2. The main result. We begin with a technical lemma. 

LEMMA. Let K be the ideal of R generated by all commutators in R. Suppose that 
(AoMo — l)K = Ofor some /io, Ao G C. Then there exists an invertible element A G C 
such that (A — XQ)R Ç C and (A-1 — p,o)R Ç C. Moreover, ifXo = JIQ, then A = A-1. 

PROOF. There exists an idempotent e G C such that KL = eQHR (cf. [4]). Define 
A,/x G Cby A = Ao(l — e)+e, /z = /xo(l — e) + e. Whence (X/i — 1) = (Ao/io — 1)0 —t) 
which yields (A/x - \){K ® KL) = 0 for (AoMo - l)K = 0 and (1 - e)KL = 0. Since 
K 0 KL is an essential ideal of R it follows that A/i — 1 = 0 , that is, /z = A-1. Clearly, 
Ao = /io implies A = \x = A-1. 

We claim that eR Ç C. Indeed, there exists an essential ideal E such that eE Ç R 
and hence e£ Ç R fl eg = AT1, that is, ^e£ = 0 which gives eK = 0; thus, [eR, R] = 
e[R,R] = 0 which shows that eR Ç C Therefore, as A — Ao = (1 — Ao)e, we see that 
(A - X0)R Ç C. Similarly, (A-1 - /x0)# = (1 - /z0)efl Ç C. 

We are now in a position to prove 

THEOREM 1. Let R be a semiprime ring with extended centroid C. Suppose that an 
additive mapf: R —• R satisfies \f(x),f(y)] = [x,y]for all x,y G R. Thenf is of the form 
f(x) = Xx + £(JC) where X G C, A2 = 1, a/id £ w an additive map ofR into C. 

PROOF. Our first goal is to prove that/ is commuting. For x, y G R we have 

[/r(y2),[y^]] = ^(y2),[/rM,/W]] 

= [fto, [f(y),/(y2)l] + ]f(y), \f(y2),fm] 
= \f(x),\y,f]] + ]f(y),ti1,x]] 

= ^(y),tv2^]]-

Thus, 

(1) [ f ( A [ ^ * ] ] = [AjX [/,*]] for all*, y e / ? . 

In particular, [/"(y2), £y,y.x]] = [/"(y), [y2,y*]]. But on the other hand, 

]f(y2),\y,yx\] = [/XAM**]] = \f(y2),y]\y,x]+y]f(y2),[y,x]], 

[f(j),[j2W] = ^(ylyly2^]} = \f(yly}ly2,x]^y^(yMy\x]\ 

Comparing both results and using (1) we arrive at 

\f(y2ly][y,x] = \f(yly][y\x] for alUy e R. 

Replacing x by xz and using [y,xz] = [j,x]z+x[jy,z], [y2,xz] = [y2,x]z+x[y2,z], we then 
get 

[/XAyMy.z] = \f(y)>y]x[y2,z] foraii*,y,z G/?. 

Replacing y by/(a) we thus obtain 

]f(f(a)2)j(a)]x\f(a),z] = \f(f(a))j(a)]x[f(a)2
9z], 

https://doi.org/10.4153/CMB-1994-066-4 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1994-066-4


STRONG COMMUTATIVITY PRESERVING MAPS 459 

which can be according to the initial assumption, written in the form 

(2) \f(a)\ a]x\f(a\ z] = \f{a), a\x\f (a)\ z] for all x,z,aE R. 

Now fix a E R and let us show that \f(a), a] — 0. As a special case of (2) we have 

\f(a)2, a]x\f(a\ a] = \f(a\ a]x\f(a)2, a] for all x E R. 

Applying (A) we see that there are mutually orthogonal idempotents e\,€2,e3 E C 
with sum 1 such that e\\f(a),a] = 0, €2\f(a)2,a] = 0, e3\f(a)2,a] = i/e3\f(a),a] for 
some invertible v E C. By (2) we thus obtain 

[f(a),a];t[f(a)2,z] = (€1 +62+e3)\f(ala]x\f(a)2,z] 

= (e2+e3)\f(ala]x\f(a)2,z] 

= (e2+e3)\f(a)2,a]x\f(alz] 

= e3\f(a)\a]x\f(a),z] 

= i/e3\f(a\a]x\f(a),z]. 

Setting \x = ve3 we thus have \f(a), a]x\f(a)2 — /i/(a), z] = 0 for all x, z E R. That is, 
\f(a)2 - \if{a\ R]CI where I={qEQ\ \f(a), a]Rq = 0}. Of course, / is a right ideal 
of Q. Now, for any z E R we have 

/i[fl,z] -f(a)[a,z] - [a,z]f(a) = n\f(à),f(z)] -f(a)\f{a),f{z)} - \f(a),f(z)lf(a) 

= W(a\f(z)] - \f(a)\f(z)] 

= WW -f{a)2J(z)l 
which shows that 

MIA Z] —f(a)[a, z] — [a, z\f(a) E / for all z E R. 

Replacing z by za it follows that 

ji[a,z]a —f(a)[a,z]a — [a,z]af(a) E /. 

On the other hand, since / is a right ideal, we have 

(M[tf,z] -f(a)[a,z] - [a,z]f(aj)a E /. 

Comparing the last two relations we get [a, z]\f(a), a] E / for all z E R. That is, 
\f(a\ a]R[a, z]\f(a), a] — 0 for every z E R. Replacing z by f(a)z and using [a,f(a)z] = 
[a,f(a)]z +f(a)[a,z] it follows at once that \f(a), a]R[a,f(a)]R\f(a), a] = 0. Since R is 
semiprime it follows that \f(a), a] = 0. Thus we proved that/ is commuting. 

According to (C) we have/(x) = Ao* + £o(*)> x E R, where Ào E C and £0 is an 
additive map of R into C. Therefore, the relation \f(x),f(y)] = [x, v] can be rewritten as 
(AQ — 1 )[•*,)>] = 0, which shows that (AQ — \)K = 0.By the Lemma, there is A E C such 
that A2 = 1 and (A— Xo)R Q C. For any x E R we thus have 

f(x) = X0x + Co(x) = Xx + (A0 - X)x + £oto = Ax + £(x), 

where £(x) = (Ao — X)x + £o(*) £ C- This proves the theorem. 
Assuming that/ is onto, even a stronger result can be easily obtained: 
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THEOREM 2. Let R be a semiprime ring with extended centroid C. Suppose that 
additive maps f,g:R —• R satisfy \f(x), g(y)] = [x, y] for ail x, y G R. Iff is onto, 
then there exists an invertible element A G C and additive maps £, r\ :R —+ C such that 
g(x) = \x + ^(JC), f(x) — X~xx + t](x)for all x G R. 

PROOF. Define a biadditive map B: R x R—+ R by B(x,y) = [x, g(y)]. Clearly, B is 
a derivation in the first argument. Pick xo G /?; a s / is onto, we have XQ — f{x{) for some 
x\ G R. Thus B(x§,y) = \f(x\),g(y)] = [xi,y]. This shows that B is a derivation in the 
second argument, i.e., B is a biderivation. By (B) there are e, \x G C, e an idempotent, such 
that(l— e)/? Ç Cande[x,g(}0] = e/i[x,y] forallx,^ G #.Thus, [R,eg(y) — ep,y] = Oand 
so eg(y) — e/x;y G C for all y E R. Whence g(y)— ep,y = (eg(y) — e\iy) + (1 — e)g(y) G C, 
and so g(y) = X0y + £000 where A0 = e\i G C, £0(v) = g(y) - tpy G C. By the 
initial assumption it now follows that [xyf(x)] = [/"(*),g(/(*))] = 0, x G /?; that i s , / 
is commuting. Therefore,/ is of the form/(x) = ^LQX + r/oW, Mo £ C rçoM £ C- By 
l/W» gOOl = [•*>)>] it now follows at once that (Ao/io — 1)Â  = 0. By the Lemma there is 
an invertible A G C such that (A - X0)R Ç C, (A-1 - /x0)# Q C. Whence 

f(x) = /xo* + »/oW = A-1x + (po - A-1 )x + f/oW = X~lx + ri(x), 

g(x) = X0x + £0(*) = Ax + (A0 - A)x + £0M = Ax + £(*), 

where rj(x) = (/io — AT"1)* + r/oO) G C, £(x) = (Ao — X)x + £0(*) £ C- The proof is 
completed. 
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