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Abstract

Generalizing previous results of Deligne–Serre and Taylor, Galois representations are
attached to cuspidal automorphic representations of unitary groups whose Archimedean
component is a holomorphic limit of discrete series. The main ingredient is a construc-
tion of congruences, using the Hasse invariant, that is independent of q-expansions.
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1. Introduction

This paper is concerned with associating Galois representations to cuspidal automorphic
representations of unitary groups whose Archimedean component is a holomorphic limit of
discrete series. The main idea of this work is to treat congruences between automorphic forms
without q-expansions (see § 6). This allows us to construct Galois representations in a much
wider setting than that of Taylor’s previous result [Tay91]. For instance, our method applies to
compact Shimura varieties, where q-expansions do not exist.

An improvement by Shin (see Theorem A.1) of the base change result of Labesse [Lab11,
Corollary 5.3] that is used appears in an appendix. See Remark 1.4.2 for an explanation of why
Shin’s improvement is needed.

Section 1 is organized as follows: § 1.1 recounts the history of associating Galois
representations to automorphic representations. Section 1.2 states the main result of this paper,
see Theorem 1.2.1. Section 1.3 first describes our strategy for proving Theorem 1.2.1 and then
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proceeds to outline the contents of the paper. Some remarks about Theorem 1.2.1 and possible
improvements/generalizations can be found in § 1.4.

1.1 History
In the 1950s Eichler [Eic54] and Shimura [Shi58] showed that, to every classical modular form
of weight two which is cuspidal and an eigenform for the action of the Hecke operators, there
corresponds a two-dimensional Galois representation, in the sense that the Hecke eigenvalue at a
prime is equal to the trace of a Frobenius element at that prime. Following this work, a leading
theme in number theory since the 1960s has been the association of Galois representations to
automorphic representations. This theme evolved in several stages until reaching its current state.

1.1.1 Classical modular forms. The work of Deligne and Serre in the 1960s and 1970s
generalized the theorem of Eichler–Shimura to cuspidal modular eigenforms of arbitrary weight
k ∈ Z>1 [Del69, DS74]. Until that point, the only points of view concerning modular forms were
(a) the original one, that modular forms are certain holomorphic functions on the upper half-plane
H with an incredible amount of symmetry and (b) the Langlands philosophy that modular forms
should be understood in terms of automorphic representations of the Q-algebraic reductive group
GL(2) (cf. [Del73]). From within either of these two perspectives, the constructions of Deligne and
Deligne–Serre appear to be miraculous, because they associate objects from the heart of algebra
(algebraic numbers, Galois representations) to objects that seem deeply rooted in either complex
analysis (holomorphic functions on H) or harmonic analysis (the space L2(GL(2,Q)\GL(2,A)),
with A the rational adeles, which is the source of automorphic representations of GL(2)).

One of the conceptual breakthroughs of Deligne and Serre, was that they introduced purely
algebro-geometric descriptions of modular forms. To do this, they used two cohomology theories
of algebraic varieties that had only recently been discovered: Serre’s algebraic coherent sheaves
and their cohomology [Ser55] and Grothendieck and his school’s (`-adic) étale cohomology
[AGV73, Del77a]. With such descriptions in hand, the correspondence of Deligne and Serre
is still difficult to establish, but at least the mystery of how analytic objects can be so closely
tied to algebraic ones is solved.

1.1.2 The Langlands program. As the Langlands program developed, it was conjectured
that, in analogy with the construction for modular forms, for every automorphic representation
π of any Q-algebraic reductive group G, which has integral infinitesimal character,1 there is
an associated Galois representation (see [Tay04] for an expository account, [Clo88] for a precise
conjecture in the case of GL(n) and [BG10] for a general reductive group).

The realization of automorphic forms most directly related to Galois representations is in
étale cohomology, because the latter carries an action of the absolute Galois group as part of its
definition (one could therefore say that the étale realization is the ‘most algebraic’). The downside
of the étale realization is that it directly applies only to the automorphic representations π such
that the Archimedean component π∞ is discrete series. In the GL(2) case, only modular forms
of weight at least two can be realized in the étale cohomology of modular curves, which is why
Deligne’s construction [Del69] only works in that case.

The ‘next best thing’ to an étale realization seems to be one in the coherent sheaf cohomology
of a PEL Shimura variety. The strength of the latter is that it captures all π with π∞ a non-
degenerate limit of discrete series in the sense of Knapp–Zuckerman [KZ82, § 1]. The limitations

1 This is a subtle technical condition involving ‘ρ-shifts’, see [BG10].
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of coherent cohomology are twofold: first, coherent cohomology lacks a Galois action; second,
many π that are conjectured to correspond to a Galois representation do not appear in the
coherent cohomology of any Shimura variety; all π with π∞ a degenerate limit of discrete series
are of this type, but there are still even ‘wilder’ π (e.g. the π associated to classical Maass forms
with eigenvalue 1/4).

The pioneering step of Deligne–Serre was to show that, although coherent cohomology lacks
a Galois action, it may be used to construct congruences between modular forms of weight
one and modular forms of higher weight, which allowed to reduce the construction of Galois
representations in weight one to that in higher weight. As soon as Deligne–Serre introduced this
idea of ‘changing the weight’, it was natural to try to apply the same method to automorphic
representations π of groups G such that G(R) admits a simple subgroup of rank at least two.
However, it took almost 20 years for someone to do that, because the Deligne–Serre argument for
reducing to discrete series used that the corresponding Galois representations have finite image
and it is conjectured that the Galois representation associated to an automorphic representation
π of G, with G(R) containing a rank two simple subgroup and π∞ a non-degenerate limit of
discrete series, has infinite image.2

1.1.3 Pseudorepresentations. In 1991, Taylor [Tay91] discovered a new approach, stemming
in part from the work of Wiles on ‘λ-adic forms’ [Wil88], using congruences as well as
what he called pseudorepresentations, which allowed him to associate Galois representations
to automorphic forms on the split symplectic group GSp(4), whose weight is a holomorphic
limit of discrete series. In Taylor’s case, the Galois representations no longer have finite
image; it is thus no longer possible to reduce modulo more than one prime at a time. The
method of pseudorepresentations offers the necessary alternative to the Deligne–Serre method
of reduction modulo infinitely many primes. Instead the pseudorepresentations method involves
only reduction modulo arbitrarily high powers of a single prime.

While there has been much progress in generalizing Deligne’s construction for weight at
least two to larger groups and π with π∞ discrete series, as in the work of Kottwitz [Kot92],
Clozel [Clo91], Harris–Taylor [HT01], Taylor–Yoshida [TY07], Shin [Shi11], Morel [Mor10] and
Chenevier–Harris [CH10], no other limits of discrete series on any other group, whose real points
admit a simple subgroup of rank at least two, were treated prior to this work.

1.1.4 Non-holomorphic limits of discrete series. No Galois representation has ever been
attached to an automorphic representation π such that π∞ is a limit of discrete series that is not
holomorphic.3 Still, in a series of papers [Car88, Car00, Car05, CK07], Carayol has embarked on
a program to attach Galois representations to automorphic representations whose Archimedean
component is the degenerate limit of discrete series on the unitary group SU(2, 1). Although

2 In the case of GL(2) over a totally real field (classically known as the theory of Hilbert modular forms) the
Galois representations associated to π which is holomorphic limit of discrete series at every infinite place (i.e.
Hilbert modular forms of parallel weight one) do have finite image. Therefore, the Deligne–Serre method can be
applied, as was done by Rogawski–Tunnel [RT83]. On the other hand, in the remaining Hilbert modular case,
when π is holomorphic limit of discrete series at some but not all infinite places and holomorphic discrete series at
the other infinite places, the associated Galois representations have infinite image, so Taylor’s theory of pseudo-
representations is already necessary and the Galois representations were constructed by Jarvis [Jar97] following
Taylor’s work [Tay91].
3 If the analogue of Arthur’s work [Art13] were known for unitary similitude groups, then combining it with either
Taylor’s result for GSp(4) or Theorem 1.2.1 of this paper would give a limited amount of examples of Galois
representations associated to π such that π∞ is a non-holomorphic, non-degenerate limit of discrete series.
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such representations have no realization whatsoever in the cohomology of Shimura varieties,
Carayol has shown that they do appear in the coherent cohomology of certain generalizations
of Shimura varieties, termed by him Griffiths–Schmid manifolds. Since the pertinent Griffiths–
Schmid manifolds are believed not to be algebraic varieties, the algebraicity of the representations
studied by Carayol remains for the moment mysterious.

1.2 Main result
Throughout this paper, fix an isomorphism ι : Q`

∼−→C. Let U = (B, V, ∗, 〈 , 〉, h̃) be a Kottwitz
datum, with associated Shimura datum (G,X), Shimura variety Sh(G,X) and reflex field
E = E(G,X) (see § 3.1). Let F be the center of B and let F+ be the fixed field of the involution
∗ determined by 〈 , 〉. Suppose that G is a unitary group; equivalently F is a quadratic totally
imaginary extension of F+.

Suppose that π is a cuspidal automorphic representation of G(A) with p-adic component πp
for every (rational) prime p. Given a (rational) prime `, let P(`) be the set of (rational) primes
p different from ` such that πp is unramified and G is unramified at p. Let P(`) be the set of
primes of F that are split over F+ and lie over some p ∈ P(`).

Assume ℘ ∈P(`). One has a decomposition G(Qp)∼= GL(n, F℘)×Gp,rest, for some group
Gp,rest, where n is given by n2 = dimF EndBV . Write πp ∼= π℘ ⊗ πp,rest, with π℘ a representation
of GL(n, F℘) and πp,rest a representation of Gp,rest.

The main theorem of this paper is as follows.

Theorem 1.2.1. Suppose that π is a cuspidal automorphic representation of G(A) whose
Archimedean component π∞ is an X-holomorphic limit of discrete series representation of G(R)
(see § 2.3). Assume that ` is a prime (of Q) of good reduction for U such that there exists a prime
λ of E, above `, that is split4 in E. Then there exists a unique semisimple Galois representation

R`,ι(π) : Gal(F/F )−→GL(n,Q`) (1.1)

satisfying the following two conditions.

Gal1. If p ∈ P(`) and ℘ is a prime of F dividing ℘, then R`,ι(π) is unramified at ℘. In particular
R`,ι(π) is unramified at all but finitely many places.

Gal2. If ℘ ∈P(`) then there is an isomorphism of Weil–Deligne representations

(R`,ι(π)|WF℘
)ss ∼= ι−1rec(π℘ ⊗ | · |(1−n)/2

℘ ), (1.2)

where WF℘ is the Weil group of F℘, the superscript ss denotes semi-simplification and rec is the
local Langlands correspondence, normalized as in Harris–Taylor [HT01].

1.3 Strategy and outline
1.3.1 Strategy. Let π be as in Theorem 1.2.1 and let f be a corresponding Hecke eigenform.

The idea of the proof of Theorem 1.2.1 is to construct an automorphic form H lift, with the
following three properties.

Hasse1. The automorphic form H lift is non-zero modulo `.
Hasse2. The product (H lift)`

j

f is cohomological5 for all j ∈ Z>0.
Hasse3. If T is a Hecke operator that is trivial outside P(`), then for all j ∈ Z>0 one has

T ((H lift)`
j

f)≡ (H lift)`
j

T (f) (mod `j+1), (1.3)

4 That is, λ is a degree one prime.
5 In our situation ‘cohomological’ is equivalent to having regular Archimedean component.
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where congruence is defined in terms of an integral structure on the space of automorphic forms,
not in terms of q-expansions.
Property Hasse2 ensures that the eigenforms of the same weight as (H lift)`

j

f admit Galois
representations satisfying conditions Gal1 and Gal2 of Theorem 1.2.1. Using properties Hasse1
and Hasse3, one can apply Taylor’s theory of pseudorepresentations to produce the desired Galois
representation R`,ι(π). For H lift we take a lift of a power of the Hasse invariant.

The principal innovation in this work is that, in contrast to the previous works on
the subject [DS74, Tay91], q-expansions are not used. We observe that the congruence
Hasse3, whose formulation does not necessitate q-expansions, is sufficient for applying Taylor’s
pseudorepresentation method.

1.3.2 Outline. The paper is structured as follows. Sections 2–3 introduce notation and recall
the basic notions and results about them that we need. Section 2 is concerned with objects
over the complex numbers: Shimura varieties (§§ 2.1 and 2.4), holomorphic limits of discrete
series (§ 2.3), equivariant vector bundles (§ 2.5) and Lie algebra cohomology (§ 2.6). Section 3
describes integral models of some of the objects studied in § 2. Sections 3.1–3.5 recall the rational
and integral models of PEL Shimura varieties as constructed by Kottwitz [Kot92]. Sections 3.6–
3.8 explain the integral theory, via the Hodge bundle and Schur functors, of the vector bundles
previously constructed in § 2.5.

Section 4 centers on the Hasse invariant. The Hasse invariant of an abelian variety is
constructed in § 4.1. The rest of § 4 is concerned with the basic properties of the Hasse invariant
which give properties Hasse1–Hasse3. In § 4.2, it is shown that the Hasse invariant is compatible
with isogenies and base change. The compatibility with isogenies shows that the Hasse invariant
gives rise to a well-defined mod ` automorphic form. The compatibility with base change is the
crucial ingredient for property Hasse3, as is seen later in Theorem 6.2.1. Next, § 4.3 recalls a
theorem of Wedhorn on the ordinary locus of the special fiber of the Shimura variety in play
and uses it to deduce property Hasse1 under the assumptions of Theorem 1.2.1. Finally, § 4.4
describes the ampleness of the determinant of the Hodge bundle on the minimal compactification
and why this shows that some power of the Hasse invariant lifts to characteristic zero.

Section 5 is concerned with explicit formulas over the real and complex numbers regarding
the objects of §§ 2–3. Sections 5.1–5.3 give an explicit description of the real points of the unitary
groups appearing in Theorem 1.2.1 and of their roots and weights. This allows us to explicitly
parameterize the holomorphic limits of discrete series of these unitary groups in § 5.4, which is
one ingredient for establishing property Hasse2. Section 5.5 gives a dictionary over the complex
numbers between the vector bundles constructed in § 2.5 and in § 3.8. In particular, we calculate
the weight of the Hasse invariant and property Hasse2 follows.

Section 6 contains our construction of congruences and the proof of Theorem 1.2.1. Section 6.1
recalls the definitions of the relevant Hecke algebras and the action of Hecke operators on spaces
of automorphic forms. In § 6.2 we establish property Hasse3. The congruence Hasse3 is then
translated into the language of Hecke algebras in § 6.3. Finally Theorem 1.2.1 is deduced from
properties Hasse1–Hasse3 and Taylor’s method of pseudorepresentations in § 6.4.

The appendix by Sug Woo Shin extends previous work of Labesse [Lab11] to prove
(automorphic) base change for cohomological automorphic representations of the unitary group
G in Theorem 1.2.1. The importance of the appendix is discussed in Remark 1.4.2 below.

1.4 Remarks
Several remarks about Theorem 1.2.1 are in order.

Remark 1.4.1 (The hypothesis on ` in Theorem 1.2.1). The hypothesis that some prime λ
above ` is split in E is necessary to ensure that the special fiber at λ of the (integral model of the)
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Shimura variety Sh(G,X) admits an ordinary point, or equivalently, that the Hasse invariant is
not identically zero (see § 4.3). We hope to remove this hypothesis in a forthcoming paper.

Remark 1.4.2 (Base change). This remark explains why we need Shin’s strengthening
(Theorem A.1) of Labesse’s base change result [Lab11, Corollary 5.3].

Let H lift denote a lift to characteristic zero of some positive power of the Hasse invariant (see
§ 4.4). Let f be a Hecke eigenform whose Archimedean component is an X-holomorphic limit of
discrete series. Our method of associating a Galois representation to f requires knowing that, for
sufficiently large positive integers j, every Hecke eigenform g of the same weight as the product
(H lift)`

j

f admits a Galois representation satisfying the local-global compatibility described in
Theorem 1.2.1. In turn, to establish the latter for a general unitary group requires base-changing
to GL(n), so as to be able to apply the work of Shin [Shi11].

Suppose that ψ is an automorphic representation of G which we need to base change to
GL(n). Let χψ be the infinitesimal character of ψ, identified with a dominant weight by the
Harish-Chandra isomorphism. The base change result of Labesse requires a certain hypothesis
(see condition (∗) following [Lab11, Remark 5.2]) which in general is only satisfied if χψ − ρ
is regular, where ρ is the half-sum of the positive roots. Now the infinitesimal character χg
of the Archimedean component of g is regular, but it is possible that χg − ρ is singular.
Hence, Corollary 5.3 of loc. cit.does not necessarily apply. However, since χg is regular, Shin’s
improvement (Theorem A.1) of Labesse’s result does apply.

Remark 1.4.3 (Compatibility at unramified primes outside P(`)). The simplest strengthening
of the local–global compatibility condition Gal2 in Theorem 1.2.1 would be an analogous
statement for any prime ℘ of F lying above p ∈ P(`) with ℘ not split over F+. It is possible
that in fact the proof of Theorem 1.2.1 gives such a statement, but we have not checked this.

Remark 1.4.4 (Compatibility at `= p). The general conjectures of the Langlands program
(cf. [Tay04]) predict that the Galois representation R`,ι(π) and the automorphic representation
π are also compatible at the places L of F dividing `. For example, it is expected that, for every
place L dividing `, the local Galois representation R`,ι(π)|Gal(FL/FL) is de Rham. Moreover, it is
conjectured to be crystalline if and only if π` is unramified. We believe that it is an interesting
question to determine whether these conjectured improvements of Theorem 1.2.1 can be attained
by the techniques of this paper.

Remark 1.4.5 (Motivic origin). Given Remark 1.4.4 and condition Gal1 of Theorem 1.2.1, the
Fontaine–Mazur conjecture [FM95] (see also [Tay04]) asserts that R`,ι(π) is pure6 and in fact
motivic (i.e. arises as a sub-quotient of the étale cohomology of a variety). However, even the
purity of R`,ι(π) seems to require significant new ideas.

2. Archimedean theory I: generalities

2.1 Deligne’s axioms
We recall Deligne’s axioms for a Shimura variety following his original papers (see, in particular,
[Del77b, § 2.1.1], but also [Del71, § 1.5]).

Let Gm denote the multiplicative group scheme. Let S = ResC/RGm be the Deligne torus,
restriction of scalars from C to R of Gm. Recall that, among the basic properties of S we have
the isomorphisms of real and complex points S(R)∼= C× and S(C)∼= C× ×C×.

6 See [Tay04, pp. 79–80] for a definition of purity.
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Let G be a Zariski-connected, reductive Q-algebraic group with adjoint group (respectively
Lie algebra, complexified Lie algebra) Gad (respectively g, gC). As usual, denote the adjoint
action of G on g by Ad : G−→GL(g). Let X be a G(R)-conjugacy class of homomorphisms
h : S(R)−→G(R).

A Shimura datum is a pair (G,X) which satisfies the following three conditions.

Del1. For all h ∈X, the composite Ad ◦ h is a Hodge structure on g of weight 0 and type

{(0, 0), (−1, 1), (1,−1)}. (2.1)

Del2. For all h ∈X, Ad(h(i)) is a Cartan involution of G(R)ad.
Del3. If H is a Q-factor of the adjoint group Gad, then H(R) is not compact.

Given h ∈X, write Hdg(h) = Ad ◦ h. Let

gC =H0,0(h)⊕H−1,1(h)⊕H1,−1(h), (2.2)

be the Hodge decomposition of Hdg(h). Then the Hodge filtration F •(h) of Hdg(h) is

F0(h)⊃ F1(h)⊃ F2(h), (2.3)

with F0(h) =H0,0 +H1,−1, F1 =H1,−1 and F2 = {0}.

Remark 2.1.1 (Sign choice). Throughout the paper, concerning Hodge structures, we adopt the
sign choice made by Deligne in [Del77b, § 1.1.1] that Hp′,q′ correspond to the character z 7→
z−p

′
z̄−q

′
. Note that this choice is the opposite of that in [Del70, § 1]. See [Del77b, Remark 1.1.6]

for justifications of this choice. In particular, a complex structure amounts to a Hodge structure
of type {(−1, 0), (0,−1)}.

2.2 Some structure theory
Put G= G(R) and fix h ∈X. The group G acts on X by conjugation; let K∞ be the stabilizer
of h. Since K∞ is the centralizer of a torus it is Zariski connected. By conditions Del1 and Del2,
K∞/Z(G) is a maximal compact subgroup of G(R)ad. Thus, K∞ is a maximal Zariski connected,
compact modulo center subgroup of G.

Let H∞ be a maximal torus in K∞ containing h(S(R)). Then H∞ is also a maximal torus in
G and H∞/Z(G) is compact. Let ∆ = ∆(H∞, G) (respectively ∆c = ∆(H∞,K∞), ∆n = ∆−∆c)
be the roots (respectively compact roots, non-compact roots) of H∞ in G. Given a root α ∈∆
let gαC denote the α-root space in gC.

The root space decomposition respects the Hodge decomposition Hdg(h) in the sense that,
for all α ∈∆, we have gαC ∈H0,0(h), gαC ∈H−1,1(h) or gαC ∈H1,−1(h). Moreover, H0,0 is the
direct sum of its center (as Lie algebra) and the compact root spaces, while H−1,1 ⊕H1,−1 is
the direct sum of the non-compact root spaces. We define, once and for all, that a non-compact
root α ∈∆n is positive if gαC ⊂H−1,1 and denote the set of non-compact positive roots by ∆+

n .
Since H−2,2 = {0}, the sum of two non-compact positive roots is not a root. Furthermore, since
[H0,0, H−1,1]⊂H−1,1, if the sum of a positive non-compact root and an arbitrary compact root
is a root, it is necessarily positive. It follows that any choice of positive compact roots ∆+

c is
compatible with ∆+

n , meaning that forming ∆+ = ∆+
c ∪∆+

n yields a system of positive roots
for G.

Put q = F0(h). Let Q be the stabilizer of F•(h) in G(C). Then Q is a parabolic subgroup of
G(C) whose Lie algebra is q. Thus, the quotient G(C)/Q has a natural complex structure (it is
a flag variety) with complex Lie algebra H−1,1. Furthermore, the map Hdg(h) 7−→ F•(h) gives a
smooth embedding X ↪→G(C)/Q. Henceforth, we consider X as a complex manifold with the
complex structure induced from that of G(C)/Q.

197

https://doi.org/10.1112/S0010437X13007355 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X13007355


W. Goldring

2.3 Holomorphic limits of discrete series I
Fix a choice ∆+

c and the corresponding system of positive roots ∆+. Let X∗(H∞) be the group of
algebraic characters of H∞ and let Λ⊂ h∞,C denote the differentials of the elements of X∗(H∞).
The exponential mapping gives an isomorphism exp : Λ ∼−→X∗(H∞). Let Dom = Dom(H∞, G)
be the dominant Weyl chamber corresponding to ∆+ i.e. given η ∈ ih∗∞, one has η ∈Dom if and
only if 〈η, α〉> 0 for all α ∈∆+, where 〈 , 〉 is deduced from the Killing form. Put ρ= 1

2

∑
α∈∆+ α,

ρn = 1
2

∑
α∈∆+

n
α and ρc = 1

2

∑
α∈∆+

c
α.

Given a subset of roots Γ⊂∆ and an element λ ∈ ih∗∞, we say λ is Γ-regular if 〈λ, α〉 6= 0 for
all α ∈ Γ. If λ is not Γ regular, we say it is Γ-singular.

An X-holomorphic limit of discrete series7 is a representation π(λ,Dom) whose Harish-
Chandra parameter in the sense of [KZ82, § 1] is (λ,Dom) with

λ ∈Dom ∩ (Λ + ρ) (2.4)

an element that is ∆n-singular and ∆c-regular.8 A more explicit description of X-holomorphic
limits of discrete series of unitary groups will be given in § 5.4.

Suppose η ∈Λ is a ∆+
c -dominant weight for K∞. Let Vη denote the irreducible K∞-module of

highest weight η and denote by V ∨η its dual. Applying9 [Har88, Theorem 3.4] to an X-holomorphic
limit of discrete series π(λ,Dom), one has10

dimH0(q,K∞; π(λ,Dom)⊗ V ∨λ+ρn−ρc) = 1. (2.5)

2.4 Shimura varieties over C
Suppose that (G,X) is a Shimura datum. Let G(Q) act on X by conjugation and on G(Af )
by left multiplication via the diagonal embedding G(Q) ↪→G(Af ). Given these two actions, for
every open compact subgroup K ⊂G(Af ), one has the Shimura variety Sh(G,X)K of level K,
whose complex points are given as the quotient

Sh(G,X)K(C) = G(Q)\(X×G(Af )/K). (2.6)

As the level K ⊂G(Af ) varies the Shimura varieties Sh(G,X)K form a projective system of
quasi-projective varieties, equipped with an action of G(Af ) given by right multiplication.

2.5 Equivariant vector bundles via the flag variety
This section is based on [CF90, ch. 6, § 4, especially p. 222]. There is a pair (VB, FI) of mutually
inverse functors

Repalg(Q)

VBQ

%%

EVect(GC/Q)

FIQ

ff
(2.7)

7 Vogan has pointed out to us that some authors use the terminology ‘relative discrete series’ (respectively ‘relative
limit of discrete series’) for representations that are not square integrable but only square integrable modulo center
(respectively limits thereof).
8 If C is a general Weyl chamber, then the condition on a Harish-Chandra parameter (λ, C), that λ is ∆n-singular
and ∆c-regular entails that the associated representation π(λ, C) is a non-degenerate limit of discrete series.
However, when C = Dom all limits of discrete series are holomorphic.
9 Part (i) of [Har88, Theorem 3.4] is not correct since it does not take into account the possible disconnectedness of
G in the classical topology. When G is disconnected in the classical topology a given non-degenerate (in particular
holomorphic) limit of discrete series will have (q,K∞)-cohomology in more than one degree. However, part (ii) of
[Har88, Theorem 3.4] is true and we only use part(ii).
10 Note the placement of the dual.
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which give an equivalence of categories between the category Repalg(Q) of finite-dimensional
algebraic representations of Q and the category EVect(GC/Q) of GC-equivariant vector bundles
on GC/Q. Let (σ, Eσ) ∈ Repalg(Q) be a finite-dimensional algebraic representation of Q. The
vector bundle functor VBQ is defined by

VBQ((σ, Eσ)) =G×Q,σ Eσ =
{

(G× Eσ)
/

(gx, σ−1(x)v)∼ (g, v)
for all g ∈G, x ∈Q, v ∈ Eσ

}
. (2.8)

In the other direction the ‘fiber at the identity’ functor FIQ associates to a GC-equivariant vector
bundle VQ on GC/Q its fiber VQ,e at the identity coset eQ ∈GC/Q. Since VQ is GC-equivariant,
GC acts on VQ by bundle maps; the restriction of this action to Q preserves the fiber VQ,e, so it
induces a Q-module structure on VQ,e.

Since K∞,C is the Levi factor of Q, one may extend and lift Vη to a representation Ṽη of Q by
first complexifying and then setting Ṽη to be trivial on the unipotent radical of Q. Restricting
VBQ(Ṽη) to X gives a G-equivariant vector bundle on X which will be denoted by Vη. The fiber
at the identity of Vη is Vη. Since Vη is G(Q)-equivariant, it descends to a G(Af )-equivariant
vector bundle on the Shimura variety Sh(G,X)(C).

2.6 Lie algebra cohomology
Define the cohomology H̄0(Sh(G,X), Vη) as in [Har88, § 2] and [Tay91, § 3.2], where the bar
indicates that one is considering the image of the cohomology of the subcanonical extension of
Vη in the cohomology of the canonical extension. Combining (2.5) with [Har88, Propositions 2.7.2
and 3.2.2] gives the following result.

Theorem 2.6.1. Suppose that π is an automorphic representation of G. Write π = π∞ ⊗ πf .
Assume that π∞ is an X-holomorphic limit of discrete series with Harish-Chandra parameter
(λ,Dom). Then there is a G(Af ) equivariant embedding

πf ↪→ H̄0(Sh(G,X), V∨λ+ρn−ρc). (2.9)

3. Rational and integral theory

3.1 Kottwitz data
By a Kottwitz datum, we mean a quintuple

U = (B, V, ∗, 〈 , 〉, h̃) (3.1)

satisfying the following six conditions:

KD1. B is a finite dimensional simple Q-algebra;

KD2. V is a finitely generated left B-module;

KD3. ∗ is a positive involution on B, in the sense that tr B(R)/R(xx∗)> 0 for all x ∈B(R)− {0};
KD4. 〈·, ·〉 : V × V −→Q is a non-degenerate symplectic form such that 〈bu, v〉= 〈u, b∗v〉 for all

b ∈B and u, v ∈ V ;

KD5. we have that

h̃ : C−→ EndBV ⊗R

is a homomorphism of R-algebras with involution, where C is viewed as an R-algebra
with involution given by complex conjugation;
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KD6. the symmetric bilinear form

V (R)× V (R) −→ R
(u, v) 7−→ 〈u, h̃(i)v〉

is positive definite.
Let U be a Kottwitz datum. Associated to U , one has the Q-algebraic group G = G(U),

whose points in a Q-algebra R are given by

G(R) = {T ∈ EndB(V )⊗Q R | TT ∗ ∈R×}. (3.2)

Let h be the inverse of the restriction of h̃ to S(R). Then the image of h is contained in G(R).
Let X be the set of homomorphisms S(R)−→G(R) that are G(R)-conjugate to h. Then (G,X)
is a Shimura datum. We call the Shimura varieties associated to Kottwitz data Shimura varieties
of Kottwitz type.

There is a direct sum decomposition of B(C) modules V (C) = V+ ⊕ V−, where h̃ acts on
V + (respectively V−) by z (respectively z̄). The reflex field E = E(G,X) of the Shimura datum
(G,X) is the field of definition of the B(C) module V+. It is a number field.

Let F be the center of B and let F+ be the maximal totally real subfield of F . Put
d= [F+ : Q], r = (dimF B)1/2 and n= (dimF EndBV )1/2. We say that U (respectively Sh(G,X))
is a unitary Kottwitz datum (respectively a unitary Shimura variety of Kottwitz type) if F 6= F+

(in which case F is a quadratic totally imaginary extension of F+).

3.2 Moduli interpretation I: characteristic zero
Let U be a Kottwitz datum, (G,X) (respectively Sh(G,X)) the corresponding Shimura datum
(respectively Shimura variety) and K a neat [Har88, pp. 51–52] open compact subgroup of G(Af ).
In this section, we give a moduli interpretation of Sh(G,X)K over the reflex field E = E(G,X)
of (G,X) following Kottwitz [Kot92, § 5]. In fact, Kottwitz gave a moduli problem that is slightly
different from the one presented in this section, which has the advantage of providing an integral
model of Sh(G,X). Kottwitz’s integral moduli problem will be described in § 3.4.

Let Sch/E be the category of locally Noetherian schemes over Spec E. Suppose T ∈ Sch/E is
connected. By a U-enriched abelian scheme we mean a quadruple (A, λ, i, η̄) where:
Ab1. A is an abelian scheme over T ;
Ab2. λ :A−→A∨ is a polarization;
Ab3. i :B −→ End(A)⊗Q is a homomorphism of algebras with involution, the involution on

End(A)⊗Q being the Rosati involution associated to the polarization λ;
Ab4. (A, λ, i) satisfies the Kottwitz determinant condition (see [Kot92, p. 390]);
Ab5. η̄ is a level structure of type K on A in the sense of loc. cit.

Next one defines an equivalence on the set of U-enriched abelian schemes over T . Suppose
that (A1, λ1, i1, η̄1) and (A2, λ2, i2, η̄2) are two U-enriched abelian schemes over T . Say that
(A1, λ1, i1, η̄1) is equivalent to (A2, λ2, i2, η̄2), written (A1, λ1, i1, η̄1)∼ (A2, λ2, i2, η̄2), if there
exists an isogeny ϕ :A1 −→A2 such that:
EquivAb1. ϕ∗λ1 = cλ2 for some c ∈Q×;
EquivAb2. ϕ ◦ i1(b) = i2(b) ◦ ϕ for all b ∈B;
EquivAb3. ϕ∗η̄1 = η̄2.
Let SETS be the category of sets. Consider the functor

FU : Sch/E −→ SETS (3.3)
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defined, for connected T ∈ Sch/E , by

FU (T ) =
{

(A, λ, i, η̄)
∣∣∣∣ (A, λ, i, η̄) is a U-enriched

abelian scheme over T

}/
∼ (3.4)

and extended to all T ∈ Sch/E by FU (T1 ∪ T2) = FU (T1)×FU (T2) for disjoint, connected T1, T2 ∈
Sch/E . Since K is neat, FU is representable by a smooth, quasi-projective scheme SK,E ∈ Sch/E
(see [Kot92, p. 391]). Moreover, SK,E ⊗C∼= Sh(G,X)K(C) as C-schemes (see [Kot92, § 8]).

3.3 Integral Kottwitz data
Assume that ` is a (rational) prime and let Z(`) denote the localization of Z at `.

By an (`-)integral Kottwitz datum (IKD), we mean a triple

U (`) = (U ,OB,`, L), (3.5)

where U = (B, V, ∗, 〈 , 〉, h̃) is a Kottwitz datum and in addition the following four conditions
hold:

IKD1. B(Q`) is a product of matrix algebras over unramified extensions of Q`;

IKD2. OB,` is a Z(`)-order in B;

IKD3. the `-adic completion ÔB,` of OB,` is a maximal order in B(Q`);

IKD4. there exists a lattice L in V (Q`) that is self-dual with respect to 〈 , 〉 and is preserved by
OB,`.

If U is a Kottwitz datum and ` is a prime, we say that ` is a prime of good reduction for U
if there exists OB,` and L such that the triple (U ,OB,`, L) is an `-IKD.

An `-IKD furnishes a reductive Z`-model of G, which we continue to denote by G, whose
points in a Z`-algebra R are give by

G(R) = {T ∈ EndOB,`(L)⊗R | TT ∗ ∈R×}. (3.6)

In particular, if ` is a prime of good reduction for U , then G is unramified at `.

3.4 Moduli interpretation II: integrality
Let OE be the ring of integers of E and put OE ⊗Z Z(`) =OE,`. In this section, the moduli
problem of § 3.2 is modified so as to be defined over OE,` and thus give a model of the Shimura
variety over OE,`.

Suppose thatK` is a neat, open compact subgroup of G(A`
f ). Let Sch/OE,` denote the category

of locally Noetherian schemes over Spec OE,`.
Given a connected C` ∈ Sch/OE,` , an `-integral U (`)-enriched abelian scheme is a quadruple

(A, λ`, i`, η̄`) satisfying:

IAb1. A is an abelian scheme over C`;

IAb2. λ` :A−→A∨ is a prime-to-` polarization;

IAb3. i` :OB,` −→ End(A)⊗ Z(`) is a homomorphism of algebras with involution;

IAb4. (A, λ`, i`) satisfies the Kottwitz determinant condition (see [Kot92, p. 390]);

IAb5. η̄` is a level structure of type K` in the sense of loc. cit.

Note that, in particular, the base change of an `-integral U (`)-enriched abelian scheme to
Spec E is a U-enriched abelian scheme.
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Two `-integral U (`)-enriched abelian schemes (A1, λ`,1, i`,1, η̄`,1) and (A2, λ`,2, i`,2, η̄`,2) are
defined to be `-equivalent, denoted by ∼`, if there exists a prime-to-` isogeny ϕ` :A1 −→A2

such that:

IEquivAb1. (ϕ`)∗λ`,1 = uλ`,2 for some u ∈ Z×(`);

IEquivAb2. ϕ` ◦ i`,1(b) = i`,2(b) ◦ ϕ` for all b ∈ OB;
IEquivAb3. (ϕ`)∗η̄`,1 = η̄`,2.

Consider the functor
FU(`) : Sch/OE,` −→ SETS (3.7)

defined, for connected C` ∈ Sch/OE,` , by

FU(`)(C`) =
{

(A, λ`, i`, η̄`)
∣∣∣∣ (A, λ`, i`, η̄`) is an `-integral
U (`)-enriched abelian scheme over C`

}/
∼` (3.8)

and extended to all C` ∈ Sch/OE,` in the same way as for FU . Again, the neatness of K` implies
that FU(`) is representable by a smooth, quasi-projective scheme SK(`),OE,` ∈ Sch/OE,` (see [Kot92,

p. 391]). Furthermore SK(`),OE,` ⊗ E ∼= SK(`)
+ ,E , where K(`)

+ = G(Z`)K(`).

Given a level subgroup K =K(`)K(`) withK(`) ⊂G(Z`), define SK,OE,` to be the normalization
of SK(`),OE,` in SK,E . By definition SK,OE,` is normal and SK,OE,` ⊗ E ∼= SK,E .

3.5 Action of G(A`
f)

We now define, as in [Kot92, § 6, p. 392], an action of G(A`
f ) on the system {SK(`),OE,`}, as K(`)

ranges over open compact subgroups of G(A`
f ).

Given g ∈G(A`
f ), one has an isomorphism, still denoted by g, between the integral models

of the Shimura varieties of levels K(`) and its conjugate g−1K(`)g,

g : SK(`),OE,` −→ Sg−1K(`)g,OE,` , (3.9)

defined by

(A, λ`, i`, η̄`) 7−→ (A, λ`, i`, η`g) (3.10)

for all `-integral U (`)-enriched abelian schemes (A, λ`, i`, η̄`).
Extending scalars to C one recovers the action defined in § 2.4.

3.6 The Hodge bundle
Let U (`) be an `-IKD as in § 3.4. Let [A, λ`, i`, η̄`] be the universal `-equivalence class of
`-integral U (`)-enriched abelian schemes over SK(`),OE,` . Suppose that (A1, λ`,1, i`,1, η̄`,1) and
(A2, λ`,2, i`,2, η̄`,2) are two representatives of the class [A, λ`, i`, η̄`]. Since the levelK(`) is assumed
neat, there exists a unique prime-to-` isogeny ϕ :A1 −→A2 satisfying conditions IEquivAb1–
IEquivAb3 of § 3.4 (i.e. compatible with the `-integral U (`) structure). For j ∈ {1, 2}, let
ej : SK(`),OE,` −→Aj be the identity section of the SK(`),OE,`-abelian scheme Aj . Let ΩAj/SK(`),OE,`

denote the sheaf of relative differentials on Aj over SK(`),OE,` . Since ϕ is a separable isogeny,
ϕ∗ΩA2/SK(`),OE,`

∼= ΩA1/SK(`),OE,`
and also e2 = ϕ ◦ e1. Hence there is a canonical isomorphism of

sheaves

e∗2ΩA2/SK(`),OE,`
= (ϕ ◦ e1)∗ΩA2/SK(`),OE,`

= e∗1(ϕ∗ΩA2/SK(`),OE,`
)∼= e∗1ΩA1/SOE,`

(3.11)

on SK(`),OE,` .
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Let ΩK(`) be the isomorphism class of the locally free sheaf e∗1ΩA1/SK(`),OE,`
on SK(`),OE,` . In

view of (3.11), ΩK(`) depends only on the equivalence class [A, λ`, i`, η̄`]. Put ωK(`) = det ΩK(`) .
Suppose K =K(`)K(`) is a level subgroup with K(`) ⊂G(Z`). Then define ΩK (respectively

ωK) as the inverse image of ΩK(`) (respectively ωK(`)) along Id : SK,OE,` −→ SK(`),OE,` .
We write Ω⊗C (respectively ω ⊗C) for the corresponding G(Af ) equivariant vector bundle

on Sh(G,X)(C).

3.7 Decomposition of the Hodge bundle
Suppose henceforth that U (respectively U (`)) is a unitary Kottwitz datum (respectively an
`-integral unitary Kottwitz datum).

The endomorphism action in the moduli problems of our Shimura varieties, described in
§§ 3.2, 3.4, entails that, over a finite extension of the reflex field E, one has a decomposition of
the Hodge bundle ΩK(`) . Replacing E with a finite extension if necessary, we may assume that
(i) E contains all embeddings of F into C and (ii) B splits over E.

Let τ1, . . . , τd denote the real places of F+. For every i, 1 6 i6 d, let τ+
i and τ−i denote the

two complex places of F lying above τi. On the one hand, in view of (§ 3.4, condition IAb3), OB,`
acts on ΩK(`) . On the other hand, OE,` also acts on ΩK(`) , since the Shimura variety SK(`),OE,` is
defined over OE,`. Thus, ΩK(`) admits an action of OB,` ⊗OE,`. By our assumptions on E, one
has

OB,` ⊗OE,` =
d⊕
i=1

Mr(OE,`)τi+ ⊕Mr(OE,`)τi− with (OE,`)τ±i
∼=OE,`. (3.12)

Using the Morita equivalence N 7→N⊕r between the category of OE,`-modules and that of
Mr(OE,`)-modules, let ΩK(`),τ+

i
(respectively ΩK(`),τ−i

) be the sub-bundle of ΩK(`) such thatOB,` ⊗
OE,` acts on Ω⊕rK(`),τ+

i

(respectively Ω⊕rK(`),τ−i
) via the direct summand (OE,`)τ+

i
, (respectively

(OE,`)τ−i ). Then we have the decomposition

ΩK(`) =
d⊕
i=1

(Ω⊕rK(`),τ+
i

⊕ Ω⊕rK(`),τ−i
). (3.13)

Put pi = rank ΩK(`),τ+
i

and qi = rank ΩK(`),τ−i
for all i, 16 i6 d.

Let ωK(`),τ+
i

(respectively ωK(`),τ−i
) be the determinant of ΩK(`),τ+

i
(respectively ΩK(`),τ−i

).
Taking determinants in (3.13) yields

ωK(`) =
d⊗
i=1

(ω⊗rK(`),τ+
i

⊗ ω⊗rK(`),τ−i
). (3.14)

As was done for ΩK(`) in § 3.6, we define the level K =K(`)K(`) versions ΩK,τ+
i

etc. as the
pull-backs of ΩK(`),τ+

i
etc., and denote by Ωτ+

i
⊗C etc. the corresponding G(Af ) equivariant

bundles on Sh(G,X)(C).

3.8 Schur functors
In characteristic zero, Schur functors of degree r may be defined as images of r-fold tensor
products under the action of primitive idempotents in the group ring of the symmetric group
on r letters [FH91, pp. 75–77, 231–232]. However, this approach fails in characteristic ` > 0.

There are at least three ways to construct Schur functors integrally. The one we will use is
the construction of Carter and Lusztig [CL74, § 3.2], which is based on Kostant’s Z-form of the
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universal enveloping algebra. An alternative11 would be to use the limited analogue of the Borel–
Weil–Bott theorem in positive characteristic given by Kempf’s vanishing theorem (see [Jan87,
ch. II.4, p. 227]). A third more elementary and combinatorial approach12 is given in Fulton’s
book on Young tableaux (see [Ful97, ch. 8, pp. 108–112])

Let M be a free module of rank s over a commutative ring R (with unit). For every positive
integer s, put

ZsDom = {(a1, . . . , as) ∈ Zs | a1 > · · ·> as},
and define Z0

Dom = {0}. Given ν ∈ ZsDom, Carter and Lusztig define a certain free submodule Mν

of M⊗s (see [CL74, § 3.2, p. 211, Equations 28–29])13. The definition of Mν is functorial (p. 213
of loc. cit.), so we may define a Schur functor Sν,R, from the category Mods−free

R of rank s, free
R-modules to the category Modfree

R of all free R-modules, by setting Sν,R(M) = Mν .
Since Sν,R is a functor, if M admits an R-linear action of a group G, then there is an induced

action of G on the module Sν,R(M). The prototypical example of such a group action, which is
the only one we shall use, is the standard action of G = GL(M) on M.

We will need two properties of the Carter–Lusztig construction.

Theorem 3.8.1 (Carter–Lusztig [CL74, p. 220, Corollary]). (1) For all ν, the Schur functor
Sν,R is compatible with base change: suppose that R and R′ are two commutative rings and
φ : R−→R′ is a ring homomorphism. Then for every M ∈Mods−free

R , there is a canonical
isomorphism of (GL(M)⊗R,φ R′)-modules:

Sν,R(M)⊗R,φ R′
∼−→ Sν,R′(M⊗R,φ R′). (3.15)

(2) Suppose that R is a field of characteristic zero. Then Sν,R(M) is the irreducible
representation of GL(M) of highest weight ν.

The compatibility of the Schur functors with base change implies the following corollary.

Corollary 3.8.2. Given a scheme T, the Schur functor construction sheafifies to give a functor
Sν,T, from the category VBs

T of rank s vector bundles on T to the category VBT of all finite-rank
vector bundles on T.

For all i, 16 i6 d, let η+
i ∈ ZpiDom (respectively η−i ∈ ZqiDom) and put

η = (η+
1 , η

−
1 , . . . , η

+
d , η

−
d ). (3.16)

Define

Sfund
η (ΩK) =

d⊕
i=1

(Sη+
i ,SK,OE,`

(Ω∨K,τ+
i

)⊕ Sη−i ,SK,OE,` (ΩK,τ−i )). (3.17)

For every η, Sfund
η (ΩK) is a vector bundle on SK,OE,` .

Let R be an OE,`-algebra. Define

Mη(K, R) = H̄0(SK,OE,` ⊗R, Sfund
η (ΩK)⊗R). (3.18)

11 This was suggested to us by Deligne.
12 Thanks are due to Fulton for pointing out to us this approach.
13 What we call ν (respectively Mν) is denoted µ (respectively V µ) in loc. cit.
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4. The Hasse invariant

4.1 The Hasse invariant of an abelian variety
Let T be a scheme over F`. Let A be an abelian scheme over T admitting a prime-to-`
polarization, with structure map πA and identity section eA. Let g be the relative dimension
of A over T . Let ΩA/T be the sheaf of relative differentials on A. Put ωA =

∧g e∗AΩA/T . Then ωA
is a line bundle on T . The Hasse invariant H(A) =H(A/T ) of A (over T ) will be an element of
H0(T, ω⊗(`−1)

A ).
The key to constructing the Hasse invariantH(A) is the (relative) Frobenius isogeny FrobA/T :

A→A(`). Let FT : T −→ T denote the absolute Frobenius morphism. As a map of schemes, FT

is the identity on the underlying topological space and FT acts on the sheaf of regular functions
OT on T by f 7→ f ` for every local section f of OT . Thus if ψ : T ′→ T is a map of F`-schemes,
the following diagram commutes.

T ′
FT ′ //

ψ

��

T ′

ψ

��

T
FT

// T

(4.1)

The abelian scheme A(`) is defined as the fiber product of A and T over T along the maps
πA and FT . Denote the projection from A(`) to A (respectively T ) by WA/T (respectively πA(`)).
Thus, we have a fiber square.

A(`)
WA/T

//

π
A(`)

��

A

πA

��

T
FT

// T

(4.2)

Now A maps to A by FA and to T by πA. Moreover, the commutativity of (4.1) with T ′ =A
and ψ = πA entails that πA ◦ FA = FT ◦ πA. By the universal property of fiber products, there
is an isogeny FrobA/T :A−→A(`) of abelian schemes over T rendering the following diagram
commutative.

A

πA

''

FrobA/T

!!

FA

��

A(`)
WA/T

//

π
A(`)

��

A

πA

��

T
FT

// T

(4.3)

The multiplication by ` map [`] :A−→A induces the zero map on differentials. Therefore
there exists a unique factorization

A

FrobA/T !!CC
CC

CC
CC

[`]
// A

A(`)

==||||||||
(4.4)

(cf. [Ein80, Lemma 1.4]). The resulting isogeny A(`) −→A in (4.4) is called Verschiebung and
denoted VerA/T :A(`) −→A. Like the (relative) Frobenius, the Verschiebung is also a map of
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T -schemes. By definition VerA/T ◦ FrobA/T = [`], from which it follows that also FrobA/T ◦
VerA/T = [`].

Pull-back of differentials from A to A(`) via Verschiebung gives a map of sheaves on A(`):

Ver∗A/T : Ver∗A/TΩA/T −→ ΩA(`)/T . (4.5)

Now pull back the map Ver∗A/T by means of e∗A(`) . This in turn yields a map of sheaves on T :

e∗A(`)(Ver∗A/T ) : e∗AΩA/T −→ e∗A(`)ΩA(`)/T , (4.6)

since eA = VerA/T ◦ eA(`) , which implies e∗A(`)Ver∗A/TΩA/T = (VerA/T ◦ eA(`))∗ΩA/T = e∗AΩA/T .
Taking top exterior powers in (4.6) gives a map of line bundles on T :

ωA −→ ωA(`) . (4.7)

One has ωA(`) = ω
(`)
A and since ωA is a line bundle, ω(`)

A = ω⊗`A . Hence, (4.7) becomes

h(A) : ωA −→ ω⊗`A . (4.8)

We call the map h(A) the Hasse invariant map of A/T . It induces a map on global sections, to
which we give the same name:

h(A) :H0(T, ωA)−→H0(T, ω⊗`A ). (4.9)

Since

Hom(ωA, ω⊗`A ) = ω⊗`A ⊗ ω
∨
A = ω⊗`A ⊗ ω

−1
A = ω

⊗(`−1)
A , (4.10)

the Hasse invariant map h(A) corresponds to an element H(A) ∈H0(T, ω⊗(`−1)
A ), which is the

Hasse invariant of A/T .

4.2 Compatibility with isogenies and base change
Suppose ϕ :A−→B is a separable isogeny of T -abelian schemes. There is an induced map of
sheaves of relative differentials

ϕ∗ : ϕ∗ΩB/T −→ ΩA/T , (4.11)

which is in fact an isomorphism of sheaves on A, since ϕ is separable. Pulling back the map ϕ∗

of (4.11) by eA gives a map of sheaves on T ,

e∗A(ϕ∗) : e∗BΩB/T −→ e∗AΩA/T , (4.12)

since ϕ ◦ eA = eB. Denote the top exterior power of the map in (4.12) by ϕ∗:

ϕ∗ : ωB −→ ωA. (4.13)

Theorem 4.2.1. One has

ϕ∗H(B) =H(A). (4.14)

Proof. The proof is in three steps: we first show (Lemma 4.2.2) that Frobenius is compatible
with isogenies, then deduce (Lemma 4.2.3) that Verschiebung is also compatible with isogenies
and lastly we show how compatibility of Verschiebung with isogenies implies the theorem.

Given ϕ :A−→B one has an induced isogeny ϕ(`) :A(`) −→B(`), the base change of ϕ along
FT . That is, ϕ(`) is the map obtained from the universal property of fiber products applied to
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the fiber square defining B(`) and the pair of maps (πA(`) , ϕ ◦WA/T ) in the diagram

A(`)

π
A(`)

((

ϕ(`)
""

WA/T
// A

ϕ

!!BB
BB

BB
BB πA

��

B(`)
WB/T

//

π
B(`)

��

B

πB

��

T
FT

// T

(4.15)

because πB ◦ ϕ= πA and πA ◦WA/T = FT ◦ πA(`) , which gives FT ◦ πA(`) = πB ◦ (ϕ ◦WA/T ).

Lemma 4.2.2 (Relative). Frobenius is compatible with isogenies. More precisely, the following
diagram commutes.

A

ϕ

��

FrobA/T
// A(`)

ϕ(`)

��

B
FrobB/T

// B(`)

(4.16)

Proof. The square (4.16) whose commutativity we need to prove is the top left-hand piece of the
following larger diagram.

A
FrobA/T

//

ϕ

��

A(`)
WA/T

//

ϕ(`)

��

A

ϕ

��

B

πB
''PPPPPPPPPPPPPPP

FrobB/T
// B(`)

π
B(`)

��

WB/T

// B

πB

��

T
FT

// T

(4.17)

Since πB ◦ ϕ= πA and WA/T ◦ FrobA/T = FA, the commutativity (4.1) with T ′ =A and ψ = πA
entails

FT ◦ πB ◦ ϕ= πB ◦ ϕ ◦WA/T ◦ FrobA/T . (4.18)

In other words, starting at the top left corner of (4.17) and proceeding along the boundary in
either direction to the bottom right corner gives the same result. Since the bottom right square
is the fiber square defining B(`), the universal property of fiber products implies that there is a
unique map χ :A→B(`) such that

πB ◦ ϕ= πB(`) ◦ χ (4.19)

and

ϕ ◦WA/T ◦ FrobA/T =WB/T ◦ χ. (4.20)

We claim that both FrobB/T ◦ ϕ and ϕ(`) ◦ FrobA/T satisfy (4.19) and (4.20). Indeed, FrobB/T ◦ ϕ
satisfies (4.19) because FrobB/T is a map of T -schemes and it satisfies (4.20) by the commutativity
of (4.1) with ψ = ϕ. Since FrobA/T , ϕ and ϕ(`) are all maps of T -schemes, (4.19) holds with
χ= ϕ(`) ◦ FrobA/T . By definition of ϕ(`), the top right-hand square in (4.17) commutes, which
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says that (4.20) holds with χ= ϕ(`) ◦ FrobA/T . By uniqueness, FrobB/T ◦ ϕ= ϕ(`) ◦ FrobA/T ,
i.e. (4.16) commutes. 2

Lemma 4.2.3. Verschiebung is compatible with isogenies. More precisely, the following diagram
commutes.

A(`)

ϕ(`)

��

VerA/T
// A

ϕ

��

B(`)
VerB/T

// B

(4.21)

Proof. The proof amounts to placing the Frobenius and Verschiebung squares (4.16) and (4.21)
together. Thus, consider the following rectangle.

A

[`]

&&

ϕ

��

FrobA/T
// A(`)

ϕ(`)

��

VerA/T
// A

ϕ

��

B

[`]

88
FrobB/T

// B(`)
VerB/T

// B

(4.22)

Since an isogeny is a homomorphism, it commutes with multiplication by `, so [`] ◦ ϕ= ϕ ◦ [`],
which means that the outer (curved) rectangle in (4.22) commutes. The left-hand Frobenius
square commutes by Lemma 4.2.2. Therefore,

ϕ ◦VerA/T ◦ FrobA/T = VerB/T ◦ ϕ(`) ◦ FrobA/T . (4.23)

Since FrobA/T is an isogeny, it is faithfully flat, so we may cancel it from both sides of (4.23)
(cf. [MvdG12, Lemma 5.4]). The result is ϕ ◦VerA/T = VerB/T ◦ ϕ(`) i.e. the right-hand side
Verschiebung square also commutes. 2

Next we claim that the following diagram commutes.

e∗BΩB/T
e∗A(ϕ∗)

//

e∗
B(`) (Ver∗B/T )

��

e∗AΩA/T

e∗
A(`) (Ver∗A/T )

��

e∗B(`)ΩB(`)/T
e∗
A(`) (ϕ(`))∗)

// e∗A(`)ΩA(`)/T

(4.24)

By Lemma 4.2.3, VerB/T ◦ ϕ(`) = ϕ ◦VerA/T . But also (VerB/T ◦ ϕ(`))∗ = (ϕ(`))∗ ◦Ver∗B/T and
(ϕ ◦VerA/T )∗ = Ver∗A/T ◦ ϕ∗. Hence,

e∗A(`)((ϕ(`))∗ ◦Ver∗B/T ) = e∗A(`)(Ver∗A/T ◦ ϕ
∗). (4.25)

The pull-back of a composite of maps of sheaves is the composite of the pull-backs, so

e∗A(`)((ϕ(`))∗ ◦Ver∗B/T ) = e∗A(`)((ϕ(`))∗) ◦ (e∗B(`)(Ver∗B/T )) (4.26)
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and

e∗A(`)(Ver∗A/T ◦ ϕ
∗) = (e∗A(`)(Ver∗A/T )) ◦ (e∗A(ϕ∗)). (4.27)

Therefore,

e∗A(`)((ϕ(`))∗) ◦ (e∗B(`)(Ver∗B/T )) = (e∗A(`)(VerA/T )) ◦ (e∗A(ϕ∗)), (4.28)

which says exactly that (4.24) commutes. This proves the claim.
Since the top exterior power of a product is the product of the top exterior powers, applying

top exterior powers throughout in (4.24) preserves commutativity, whence the following diagram
also commutes.

ωB
ϕ∗

//

h(B)
��

ωA

h(A)
��

ω⊗`B (ϕ(`))∗
// ω⊗`A

(4.29)

The commutativity of (4.29) shows that Hasse invariant maps are compatible with isogenies.
Since the Hasse invariant is directly defined in terms of the Hasse invariant map, compatibility
of Hasse invariant maps implies compatibility of Hasse invariants. 2

Next we note that the Hasse invariant is compatible with base change.

Theorem 4.2.4. Suppose ξ : T1 −→ T2 is a finite map of Spec F`-schemes and B/T2 is an
abelian T2-scheme. Consider the T1-abelian scheme A that is the base change of B along ξ,
i.e. A= T1 ×T2,(ξ,πB) B. Then

ξ∗H(B/T2) =H(A/T1). (4.30)

Proof. The theorem is proved analogously to the compatibility of the Hasse invariant with
isogenies (Theorem 4.2.1): it is well known that the relative Frobenius isogeny is compatible
with base change, from which it follows that Verschiebung, and hence also the Hasse invariant,
are compatible with base change. 2

Finally we have the following important remarks.

Remark 4.2.5. Suppose that C is a prime-to-` isogeny class of T -abelian schemes. In view of the
compatibility given in Theorem 4.2.1, we shall henceforth refer simply to the Hasse invariant
H(C) ∈H0(T, ω⊗(`−1)) and omit reference to representatives of C.

Remark 4.2.6. Let λ be a prime of E above ` and let SK(`),λ denote the special fiber of SK(`),OE,`
at λ. Let Aλ be the universal prime-to-` isogeny class of U (`)-enriched abelian schemes. Then we
denote the Hasse invariant H(Aλ) by HK(`),λ.

4.3 Non-vanishing
Keep the notation of Remark 4.2.6.

Suppose that A/T is as in § 4.1. We say that A/T is ordinary if, for every geometric point t
of T with residue field k(t), the fiber At of A at t satisfies

|At[`e](k(t))|= `e(dimAt) for all e ∈ Z+, (4.31)

where At[`e] denotes the subgroup scheme of `e torsion.
The property of being ordinary is preserved under isogenies. Therefore, the notion of an

ordinary point in SK(`),λ is meaningful. Let Sord
K(`),λ denote the ordinary locus in SK(`),λ.
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Theorem 4.3.1 (Wedhorn [Wed99, p. 584, (1.6.3)]). Suppose, as in Theorem 1.2.1, that G is
unramified at `. Then the ordinary locus Sord

K(`),λ is open and dense in SK(`),λ if and only if Eλ = Q`

(i.e. λ is split in E).

The relationship between the Hasse invariant and the ordinary locus is given by the following
lemma.

Lemma 4.3.2. Let D(K(`), λ) be the divisor cut out by the Hasse invariant HK(`),λ and let

Dred(K(`), λ) be the associated reduced scheme. Then Dred(K(`), λ) is the complement of the
ordinary locus Sord

K(`),λ in SK(`),λ.

Proof. It suffices to show that if A is an abelian variety over an algebraically closed field k of
characteristic `, then H(A) 6= 0 if and only if A is ordinary.

We show that A is ordinary if and only if the Verschiebung isogeny VerA/k :A(`) −→A is
separable. Our argument is taken from [Sil86, ch. 5, § 3, p. 138, proof of 3.1, part (a)], which treats
the case of elliptic curves, but the argument is valid in general. Let degs denote the separable
degree of an isogeny. (An isogeny is a finite map, so it induces a finite extension of function fields
and degs may be defined to be the separable degree of this field extension.) Since FrobA/k ◦
VerA/k = [`], for every integer e> 1 one has FrobeA/k ◦VereA/k = [`e]. The separable degree
is additive with respect to composition of isogenies. Hence, degs(FrobeA/k) + degs(VereA/k) =
degs([`e]). However, FrobA/k, hence also FrobeA/k, is purely inseparable, so degs(FrobeA/k) = 0
and we conclude that degs(VereA/k) = degs([`e]).

Over an algebraically closed field, the separable degree of an isogeny equals the cardinality of
its kernel. Therefore, degs Vere` = |A[`e]|. By our definition of ordinary, A is ordinary if and only
if |A[`e]|= `e dimA, hence if and only if degs VereA/k = `e dimA = deg VereA/k. This completes the
argument, since an isogeny is separable if and only if its degree and separable degree coincide.

On the other hand, an isogeny is separable if and only if the induced map on top degree
differential forms is non-zero. This proves that H(A) 6= 0 if and only if A is ordinary, since, by
definition, the Hasse invariant map h(A) is the pull-back by eA(`) of the map on top degree
differentials induced from VerA/k :A(`) −→A. 2

Combining Theorem 4.3.1 with Lemma 4.3.2, one has the following corollary.

Corollary 4.3.3. The Hasse invariant HK(`),λ is a non-zero mod ` automorphic form if and
only if λ is split in E.

4.4 Lifting to characteristic zero
The following lemma shows that some power of the Hasse invariant lifts to characteristic zero.

Lemma 4.4.1. There is a positive integer a and an automorphic form

H̃a
K(`),λ ∈H

0(SK(`),OE,` , ω
⊗a(`−1)
K(`) ) (4.32)

whose image in H0(SK(`),OE,` , ω
⊗a(`−1)
K(`) )⊗OE,`/λ is Ha

K(`),λ.

Proof. Since the corollary is well known when dimOE,` SK(`),OE,` = 1, we may assume
dimOE,` SK(`),OE,` > 1.

Let Smin
K(`),OE,` (respectively Smin

K(`),λ) denote the Baily–Borel minimal compactification of
SK(`),OE,` (respectively its fiber at λ) constructed by Lan in [Lan08, § 7.2, see especially
Theorem 7.2.4.1]. By Theorem7.2.4.1, no. 2 of loc. cit.the line bundle ωK(`) (introduced in § 3.6)
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extends to an ample line bundle ωK(`),min on Smin
K(`),OE,` . Given this fact, the lemma is a consequence

of a standard cohomological argument coupled with the Koecher principle, as we now recall.
Consider the short exact sequence of sheaves on Smin

K(`),OE,` arising from the multiplication by
λ map [λ] on Smin

K(`),OE,` :

0−→ ω⊗kK(`),min

[λ]−→ ω⊗kK(`),min
−→ ω⊗kK(`),min

⊗OE,`/λ−→ 0. (4.33)

It induces a long exact sequence of cohomology groups, which begins as follows:

0−→H0(Smin
K(`),OE,` , ω

⊗k
K(`),min

)−→H0(Smin
K(`),OE,` , ω

⊗k
K(`),min

) (4.34)

−→H0(Smin
K(`),OE,` , ω

⊗k
K(`),min

⊗OE,`/λ)−→H1(Smin
K(`),OE,` , ω

⊗k
K(`),min

)−→ · · · .

Since ωK(`),min is an ample line bundle and Smin
K(`),OE,` is a projective scheme over OE,`, which is

Noetherian, Serre vanishing (cf. [Har77, ch. 3, Theorem 5.2]) implies that there exists a positive
integer k0 such that, for all integers k > k0 one has

H1(Smin
K(`),OE,` , ω

⊗k
K(`),min

) = 0. (4.35)

Therefore,

H0(Smin
K(`),OE,` , ω

⊗k
K(`),min

)⊗OE,`/λ=H0(Smin
K(`),OE,` , ω

⊗k
K(`),min

⊗OE,`/λ). (4.36)

By [Lan08, Proposition 7.2.4.3], the special fiber Smin
K(`),λ is normal. Hence, the Koecher

principle implies that

H0(Smin
K(`),λ, ω

⊗k
K(`),min

⊗OE,`/λ) =H0(SK(`),λ, ω
⊗k
K(`) ⊗OE,`/λ). (4.37)

Choose k > k0 divisible by `− 1, say k = a(`− 1) with a ∈ Z>0. Now Ha
K(`),λ is an element

of H0(SK(`),λ, ω
⊗k
K(`) ⊗OE,`/λ), hence also of H0(Smin

K(`),λ, ω
⊗k
K(`),min

⊗OE,`/λ). Since the sheaf

ω⊗kK(`),min
⊗OE,`/λ on Smin

K(`),OE,` is supported on the fiber Smin
K(`),λ, one has H0(Smin

K(`),λ, ω
⊗k
K(`),min

⊗
OE,`/λ) =H0(Smin

K(`),OE,` , ω
⊗k
K(`),min

⊗OE,`/λ). Thus, Ha
K(`),λ ∈H

0(Smin
K(`),OE,` , ω

⊗k
K(`),min

⊗OE,`/λ)

so it is the image of some H̃a
K(`),λ in H0(SK(`),OE,` , ω

⊗k
K(`)), as desired. 2

5. Archimedean theory II: explicit formulas

5.1 Classical unitary groups over R
Let p0 and q0 be non-negative integers, not both zero, with n= p0 + q0. Define a Hermitian form

Bp0,q0 : Cn ×Cn −→C (5.1)

of signature (p0, q0) by

Bp0,q0(z, w) = z1w̄1 + · · ·+ zp0w̄p0 − zp0+1w̄p0+1 − · · · − zp0+q0w̄p0+q0 (5.2)

for all z = (z1, . . . , zn) and w = (w1, . . . , wn) in Cn. Let GU(p0, q0) be the unitary similitude
group of the form Bp0,q0 :

GU(p0, q0) =
{
γ ∈GL(n,C)

∣∣∣∣ there exists µp0,q0(γ) ∈R× such that
B(γz, γw) = µp0,q0(γ)B(z, w) for all z, w ∈Cn

}
. (5.3)

The function µp0,q0 : GU(p0, q0)−→R× is the multiplier character. Put U(p0, q0) = ker µp0,q0 and
U(p0) = U(p0, 0). Define

G(U(p0)× U(q0)) =
{(

A B
C D

)
∈GU(p0, q0)

∣∣∣∣B = C = 0
}
. (5.4)
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Then G(U(p0)× U(q0)) is a maximal Zariski-connected, compact modulo center subgroup of
GU(p0, q0).

5.2 The real group associated to a unitary Kottwitz datum
Let U be a unitary Kottwitz datum (§ 3.1), let G = G(U) be the associated unitary Q-algebraic
group and put G= G(R). Then

G∼=
{
γ = (γ1, . . . γd) ∈

d∏
i=1

GU(pi, qi)
∣∣∣∣ µp1,q1(γ1) = · · ·= µpd,qd(γd)

}
, (5.5)

where the non-negative pairs of integers (pi, qi) are as in § 3.7. We henceforth identify G with
the right-hand side of (5.5).

Given γ ∈G, define µG(γ) = µp1,q1(γ1) and set Gµ=1 = ker µG. Then

Gµ=1 =
d∏
i=1

U(pi, qi). (5.6)

For z ∈C×, let zp0,q0 denote the diagonal n× n matrix with the first p0 diagonal entries z
and the last q0 diagonal entries z̄. By [Kot92, § 4] we may assume that h : S(R)−→G is given
by

h(z) = (zp1,q1 , . . . , zpd,qd). (5.7)

Then

K∞ =
{
γ = (γ1, . . . , γd) ∈G

∣∣∣∣ γi = r

(
Ai 0
0 Di

)
,

for some Ai ∈ U(pi),
Di ∈ U(qi), r ∈R×

}
. (5.8)

ForH∞ we may take the subgroup ofK∞ consisting of γ such that γi is diagonal for all i, 16 i6 d.

5.3 Roots and weights
Consider the embedding G ↪→GL(2n,R)d induced from the following standard embedding.

GL(n,C) ↪→ GL(2n,R)

X + iY 7→
(
X −Y
Y X

)
. (5.9)

Write diag(a1, . . . , an) for the diagonal n× n matrix with a1, . . . , an along the diagonal. Then
we can identify h∞,C with those b= (b1, . . . , bd) ∈ gl(2n,R)d such that, in blocks,

bi =
(

diag(t, . . . , t) −diag(ai1, . . . , ain)
diag(ai1, . . . , ain) diag(t, . . . , t)

)
, (5.10)

for some aij , t ∈C. If R is a commutative ring, let Md×n(R) denote the R-module of d times n
matrices with entries in R. Given (λij) ∈Md×n(C) and c ∈C, define a functional

((λij), c) : h∞,C −→C (5.11)

by

b 7→ ct+
i=d,j=n∑
i=1,j=1

iλijaij . (5.12)
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This allows us to identify h∗∞,C with Md×n(C)⊕C. Under this identification, one has

Λ =
{

((λij), c) ∈Md×n(Z)⊕ Z
∣∣∣∣ i=d,j=n∑
i=1,j=1

λij ≡ c (mod 2)
}
, (5.13)

where Λ is the weight space, as defined in § 2.3.
Let Eij denote the d× n matrix with (i, j) entry equal to 1 and all other entries 0. The set

of roots ∆ is
∆ = {(Eij − Eik, 0) | 16 i6 d, 16 j, k 6 n, j 6= k}, (5.14)

and the subset of compact roots is

∆c = {(Eij − Eik, 0) ∈∆ | 16 j, k 6 pi or pi+1 6 j, k 6 n}. (5.15)

The choice of positive non-compact roots ∆+
n in § 2.2 translates to

∆+
n = {(Eij − Eik, 0) ∈∆ | 16 j 6 pi, pi+1 6 k 6 n}. (5.16)

According to § 2.2 we are free to choose any system of positive compact roots; we choose the one
for which the set of all positive roots is

∆+ = {(Eij − Eik, 0) ∈∆ | j < k}. (5.17)

Then
Dom = {((λij), c) ∈Md×n(R)⊕C | λi1 > · · ·> λin for all i, 16 i6 d} (5.18)

and ρ= (ρij , 0) where ρij is the matrix with every row equal to(
n− 1

2
,
n− 3

2
, . . . ,

−(n− 3)
2

,
−(n− 1)

2

)
. (5.19)

In particular, ρ lies in Λ if and only if n is odd.

5.4 Holomorphic limits of discrete series II
Combining §§ 2.3 and 5.3 we have the following explicit description of the Harish-Chandra
parameters of X-holomorphic limits of discrete series: suppose λ ∈Λ + ρ ∩Dom; the latter set
is explicitly determined by means of (5.18) and (5.19). Write λ= ((λij), c). Then π(λ,Dom) is
an X-holomorphic limit of discrete series if and only if:
HLDS1. there exists an i, 16 i6 d such that λipi = λipi+1;
HLDS2. if λij = λij+1 for some i, j, then j = pi.

5.5 Vector bundle dictionary
Let U be a unitary Kottwitz datum with associated Shimura variety Sh(G,X) as defined in § 3.1.
Two constructions of G(Af )-equivariant vector bundles on Sh(G,X)(C) have been given: first
in § 2.5 and second in § 3.8. It is now explained how the two are linked over C.

Theorem 5.5.1. Let Ωτ+
i
⊗C (respectively Ωτ−i

⊗C) be the vector bundle on Sh(G,X)(C)
defined in § 3.7. Under the identification (5.13), one has

Ωτ+
i
⊗C∼= V(−Eipi ,−1) and Ωτ−i

⊗C∼= V(Eipi+1,−1). (5.20)

Before embarking on the proof of Theorem 5.5.1, we note the following three immediate
corollaries.
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Corollary 5.5.2. Put

ε+τi =
(
−

pi∑
j=1

Eij ,−pi
)

and ε−τi =
( n∑
j=pi+1

Eij ,−qi
)
. (5.21)

Then

ωτ+
i
⊗C∼= Vε

τ
+
i

and ωτ−i ⊗C∼= Vε
τ
−
i

. (5.22)

Proof. Apply determinants to (5.20). 2

Corollary 5.5.3. Define ε= r
∑d

i=1(ετ+
i

+ ετ−i ). Then

ω ⊗C∼= Vε. (5.23)

Proof. Combine (3.14) with Corollary 5.5.2. 2

Corollary 5.5.4. Suppose that H lift
K(`),λ is a lift of Ha

K(`),λ. Then the weight of H lift
K(`),λ is

a(`− 1)ε.

Proof. This follows from Corollary 5.5.3 and the fact that H lift
K(`),λ ∈H

0(SK(`),OE,` , ω
⊗(`−1)
K(`) ). 2

Proof of Theorem 5.5.1. Let VC,X be the holomorphically trivial, G-equivariant vector bundle
on X whose fiber at every point is a copy of V (C), where V pertains to the unitary
Kottwitz datum U . Let VC,Sh(G,X) denote the corresponding G(Af )-equivariant vector bundle on
Sh(G,X)(C). On the other hand, let H1(A/Sh(G,X)) be the G(Af )-equivariant vector bundle
on Sh(G,X)(C) whose fiber at a point x is H1(Ax,C), where Ax is any representative of the
isogeny class parameterized by x.

Since V is a left B-module, the vector bundle VSh(G,X) admits an action of B(C). By
(§ 3.2, property Ab3) B(C) also acts on H1(A/Sh(G,X)). It follows from [Kot92, § 8] that
VC,Sh(G,X)

∼=H1(A/Sh(G,X)) as G(Af )×B(C)-equivariant vector bundles.
Furthermore, each of VC,Sh(G,X) and H1(A/Sh(G,X)) has a natural holomorphic quotient

bundle, namely the H−1,0 of the corresponding weight −1 variations of Hodge structure:
let VR,X be the G-equivariant vector bundle on X whose fiber at h ∈X is V (R) with the
complex structured induced from h. Let VR,Sh(G,X) denote the descended vector bundle on
Sh(G,X)(C). On the other hand, one has the vector bundle Lie (A/Sh(G,X)) whose fiber at x
is H1(Ax,R)∼= LieAx. Again it follows from § 8 of loc. cit.that VR,Sh(G,X)

∼= Lie (A/Sh(G,X))
as G(Af )×B(C)-equivariant vector bundles. Taking duals gives

V∨R,Sh(G,X)
∼= Ω⊗C. (5.24)

Since B(C) acts on both sides of (5.24), both sides decompose as in § 3.7 and we obtain

Ωτ+
i
⊗C∼= (V∨R,Sh(G,X))τ+

i
and Ωτ−i

⊗C∼= (V∨R,Sh(G,X))τ−i . (5.25)

In view of (5.25), the following lemma is sufficient for completing the proof of Theorem 5.5.1.

Lemma 5.5.5. Let (e1, . . . , en) be the standard (ordered) basis of the C-vector space
Cn; let (e1, . . . , en, ie1, . . . , ien) be an (ordered) basis of ResC/RCn. Let Stdp0,q0 be the
standard representation of GU(p0, q0) on Cn. Let σ be the complexification of the 2n-
dimensional representation of GU(p0, q0) on ResC/RCn gotten by composing Stdp0,q0 with the
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embedding (5.9). Let σcpt (respectively Stdcpt
p0,q0 , Stdcpt

p0,q0) denote the restriction of σ (respectively

Stdp0,q0 , Stdp0,q0) to G(U(p0)× U(q0)). Then:

(1) the representation σ decomposes as σ = Stdp0,q0 ⊕ Stdp0,q0 , where the bar indicates the
conjugate representation;

(2) one has Stdcpt
p0,q0 = V(e1,1) ⊕ V(ep+1,1) and Stdcpt

p0,q0 = V(−ep,1) ⊕ V(−en,1), where the notation Vη
is that of § 2.3;

(3) consider h : z 7→ zp0,q0 (see § 5.2); then

(σ ◦ h)(z)v =
{
zv if v ∈ spanR({ei + iei | p0 + 16 i6 n} ∪ {ei − iei | 16 i6 p0})
z̄v if v ∈ spanR({ei + iei | 16 i6 p0} ∪ {ei − iei | p0 + 16 i6 n}).

Proof. Suppose Z ∈GU(p0, q0). Write Z =X + iY . Let

U =
{
v ∈C2n

∣∣∣∣ v =
(
u
iu

)
for some u ∈Cn

}
. (5.26)

The computations (
X −Y
Y X

) (
u
iu

)
= (X − iY )

(
u
iu

)
(5.27)

and (
X −Y
Y X

) (
u
−iu

)
= (X + iY )

(
u
−iu

)
(5.28)

show that C2n = U ⊕ Ū as representations of GU(p0, q0) and that U ∼= Stdp0,q0 (respectively
Ū ∼= Stdp0,q0). This proves part (1).

Suppose now that Z ∈G(U(p0)× U(q0)). Let

Wp0 = {u= (u1, . . . , un) ∈Cn | up0+1 = · · ·= un = 0} (5.29)

and
Wq0 = {u= (u1, . . . , un) ∈Cn | u1 = · · ·= up0 = 0}. (5.30)

Writing Z =
(
A 0
0 D

)
, one sees that G(U(p0)× U(q0)) preserves the decomposition Cn =Wp0 ⊕

Wq0 . The set of weights of G(U(p0)× U(q0)) acting on Wp0 (respectively Wq0) is {(ei, 1) | 16
i6 p0} (respectively {(ei, 1) | p0 + 16 i6 n}). Since each of these two sets contains a unique
dominant weight, the representations Wp0 and Wq0 are irreducible, each with highest weight the
unique dominant weight. This proves part (2).

Finally part (3) follows by direct computation. 2

Having proved Lemma 5.5.5, the proof of Theorem 5.5.1 is complete. 2

6. Congruences and Galois representations

6.1 Hecke algebras
Suppose that π is the cuspidal automorphic representation of Theorem 1.2.1. Let P(`) be as
in § 1.2 and let p ∈ P(`). The local (spherical) Hecke algebra Hp(G, Z`) at p of G, with Z`
coefficients, is defined as follows.

(i) The underlying vector space is

Hp(G, Z`) =
{
f : G(Zp)\G(Qp)/G(Zp)−→ Z`

∣∣∣∣ f is locally constant
with compact support

}
. (6.1)
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(ii) The algebra structure is given by convolution with respect to the unique Haar measure
which assigns G(Zp) volume one. As g ranges over G(Qp), the characteristic functions of

G(Zp)gG(Zp) ∈G(Zp)\G(Qp)/G(Zp) (6.2)

span Hp(G, Z`).

Let AP(`) be the adeles that are trivial away from P(`). Put

KP(`) =
∏

p∈P(`)

G(Zp) (6.3)

Then KP(`) is an open compact subgroup of G(AP(`)). Analogous to (6.1), we have a global
Hecke algebra HP(`)(G, Z`) at P(`), with values in Z` defined in the same way, using the double
coset space KP(`)\G(AP(`))/KP(`) instead of G(Zp)\G(Qp)/G(Zp) and the Haar measure given
as the product of the Haar measures at each p ∈ P(`). When there is no possibility of confusion,
we shall often write simply H in place of HP(`)(G, Z`).

Given g ∈G(Qp), define the Hecke operator TK,g associated to the double coset
G(Zp)gG(Zp) ∈G(Zp)\G(Qp)/G(Zp) by the following diagram (notation as in (3.18)).

Mη(gKg−1 ∩ K, R)

tr g

��

Mη(K, R)

Id∗
66mmmmmmmmmmmmm

TK,g
// Mη(K, R)

(6.4)

Given a ∆+
c dominant weight η ∈Λ, the Hecke algebra of weight η, denotedHη, is the Z`-span

of TK,g, over all g ∈G(Qp), in EndR(Mη(K, R)). The algebra Hη is a free Z`-module of finite
rank. The assignment G(Zp)gG(Zp) 7−→ TK(`),g extends to a surjective algebra homomorphism

H
wtη

// // Hη. (6.5)

As observed in [Tay91, p. 304], a consequence of [Har88, Proposition 2.7.2 and Formula 3.0.1]
is the following theorem.

Theorem 6.1.1. The module H̄0(Sh(G,X)(C), Sfund
η (Ω)⊗C) of the complexified Hecke

algebra H⊗ι C is semisimple.

6.2 Congruences I: automorphic forms
Continue to suppose that K =K(`)K(`) with K(`) ⊂G(Z`) and corresponding projection Id :
SK,OE,` −→ SK(`),OE,` . Our construction of congruences is the following theorem.

Theorem 6.2.1. Suppose that Ha
K(`),λ (a ∈ Z>1) is a power of the Hasse invariant HK(`),λ that

lifts to characteristic zero, let H lift
K(`),λ denote a lift and put H lift

K,λ = Id∗H lift
K(`),λ. Let η ∈Λ be a

∆+
c -dominant weight and suppose f ∈Mη(K, R) is non-zero modulo λ. Then, for all j ∈ Z>1, the

product

(H lift
K,λ)`

j ⊗ f ∈Mη+aε(`−1)`j−1(K, R) (6.6)

is non-zero modulo λ and satisfies

T ((H lift
K,λ)`

j ⊗ f)≡ (H lift
K,λ)`

j ⊗ T (f) (mod λj+1), (6.7)

for all T ∈H.
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Remark 6.2.2. It is important to note that the product (H lift
K,λ)`

j ⊗ f is not necessarily an
eigenform, even if f is.

The key step in proving Theorem 6.2.1 is the following lemma, which recasts the compatibility
of the Hasse invariant with base change (Theorem 4.2.4) in terms of degeneracy maps among
Shimura varieties of different level.

Lemma 6.2.3. Suppose that K(`)
1 ,K(`)

2 are open compact subgroups of G(A`
f ) and g1, g2 ∈

G(A`
f ) satisfy K(`)

1 ⊂ (g1K(`)
2 g−1

1 ∩ g2K(`)
2 g−1

2 ). Consider the following two degeneracy maps.

SK(`)
1

g1

||yy
yy

yy
yy g2

""EE
EE

EE
EE

SK(`)
2

SK(`)
2

(6.8)

One has

g∗1HK(`)
2 ,λ = g∗2HK(`)

2 ,λ. (6.9)

Proof. By Theorem 4.2.4, both pull-backs g∗1HK(`)
2 ,λ and g∗2HK(`)

2 ,λ are equal to HK(`)
1 ,λ; hence,

they are equal to each other. 2

Proof of Theorem 6.2.1. First we show the product in (6.6) is non-zero modulo λ. Given our
assumption that λ is split in E, Corollary 4.3.3 implies that (H lift

K(`),λ) is non-zero modulo λ. Since
the map Id : SK,OE,` −→ SK(`),OE,` is separable, the pull-back (H lift

K,λ) is also non-zero modulo λ.
It is assumed that f is also non-zero modulo λ. Since the product of two sections that are each
non-zero modulo λ is non-zero modulo λ, we conclude that

(H lift
K,λ)`

j ⊗ f 6= 0 ∈Mη+aε(`−1)`j−1(K, R⊗OE,` OE,`/λ). (6.10)

Now consider (6.7). It suffices to prove it for T = TK,g. By definition,

TK,g((H lift
K,λ)`

j ⊗ f) = ((tr g) ◦ Id∗)((H lift
K,λ)`

j ⊗ f). (6.11)

Since the pull-back of a tensor product is the tensor product of the pull-backs,

((tr g) ◦ Id∗)((H lift
K,λ)`

j ⊗ f) = (tr g)((Id∗((H lift
K,λ)))`

j ⊗ Id∗(f)). (6.12)

Lemma 6.2.3 shows that

Id∗(H lift
K(`),λ)≡ g∗(H lift

K(`),λ) (mod λ); (6.13)

hence, also

Id∗(H lift
K,λ)≡ g∗(H lift

K,λ) (mod λ). (6.14)

Therefore,

(Id∗(H lift
K,λ))`

j ≡ (g∗(H lift
K,λ))`

j

(mod λj+1). (6.15)

Substituting (6.15) into (6.12) and using (g∗(H lift
K,λ))`

j

= g∗((H lift
K,λ)`

j

) yields

((tr g) ◦ Id∗)((H lift
K,λ)`

j ⊗ f)≡ (tr g)(g∗((H lift
K,λ)`

j

)⊗ Id∗(f)) (mod λj+1). (6.16)

The projection formula entails

(tr g)(g∗((H lift
K,λ)`

j

)⊗ Id∗f) = (H lift
K,λ)`

j ⊗ ((tr g) ◦ Id∗)f. (6.17)

217

https://doi.org/10.1112/S0010437X13007355 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X13007355


W. Goldring

By definition of TK,g, one has (H lift
K,λ)`

j ⊗ ((tr g) ◦ Id∗)f = (H lift
K,λ)`

j ⊗ TK,g(f), so the proof of (6.7)
is complete. 2

6.3 Congruences II: Hecke algebras
The purpose of this section is to translate the main congruence result Theorem 6.2.1 into a
statement about maps of Hecke algebras, see Corollary 6.3.1. The point is that Corollary 6.3.1
applies more naturally to Taylor’s pseudorepresentation method than Theorem 6.2.1.

Let η ∈Λ be a ∆+
c -dominant weight and fix a level K =K(`)K

(`) with K(`) ⊂G(Z`). Let
L= L(η,K) be a finite extension of Q` with ring of integers OL such that Mη(K,OL) admits a
basis of Hecke eigenforms.

For every Hecke eigenform f ∈Mη(K,OL), let

θf : Hη // OL (6.18)

be the ‘eigenvalue at f ’ homomorphism of OL-algebras given by θf (T ) = T (f)/f for all T ∈Hη.
Let θf :Hη −→OL/λj+1OL denote the reduction of θf modulo λj+1.

Corollary 6.3.1. If ξj = η + aε(`− 1)`j , then the composition θf ◦ wtη :H−→OL/λj+1OL
factors through wtξj :H−→Hξj . In other words, there exists a map θf,j :Hξj −→OL/λj+1OL
such that the following diagram commutes.

H
wtη

// //

wtξj
����

Hη

θf
��

Hξj
θf,j

// OL/λj+1OL

(6.19)

Proof. The claimed factorization is equivalent to ker wtξj ⊂ ker(θf ◦ wtη), so we proceed to show
the inclusion of kernels. Suppose T ∈ ker wtξj . Since (H lift

K,λ)`
j

f ∈Mξj (K,OL), one has

T ((H lift
K,λ)`

j

f) = 0. (6.20)

By our congruence result (Theorem 6.2.1, (6.7)), equation (6.20) entails

(H lift
K,λ)`

j

T (f)≡ 0 (mod λj+1). (6.21)

Since λ does not divide H lift
K,λ, one has that λj+1 divides T (f). Hence, θf (T ) = 0 in OL/λj+1OL. 2

6.4 Galois representations
All of the necessary ingredients for proving Theorem 1.2.1 have been assembled. We now conclude
the proof Theorem 1.2.1, following [Tay91, § 1.3, Example 2].

Proof of Theorem 1.2.1. By the ‘patching lemma’ (over quadratic extensions, cf. the proof of
Theorem VII.1.9 in [HT01]) we may assume without loss of generality that:

(1) F is the composite of F+ and an imaginary quadratic field;

(2) all primes of F+ above ` split in F .

Let π be as in the statement of Theorem 1.2.1. Let (β,Dom) be the Harish-Chandra
parameter of π∞. There exists an open compact subgroup K =K(`)K(`), with K(`) ⊂G(Z`)
and K(`) ⊂G(A`

f ), such that πK 6= {0}. Let fπ ∈ πK be a corresponding Hecke eigenform. By
Theorem 2.6.1, fπ ∈Mη(K,Q`), where η is the highest weight of V ∨β+ρn−ρc .

218

https://doi.org/10.1112/S0010437X13007355 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X13007355


Galois representations associated to holomorphic limits of discrete series

As in § 6.3, put ξj = η + aε(`− 1)`j for all j ∈ Z>1. Then (H lift
K,λ)`

j ⊗ fπ ∈Mξj (K,Q`). Let ψ
be an automorphic representation generated by an eigenform in Mξj (K,Q`). By the Casselman–
Osborne theorem (cf. [Har88, Proposition 3.1.4]), the infinitesimal character of the Archimedean
component ψ∞ is identified with β + aε(`− 1)`j (modulo the Weyl group). By condition HLDS2
(see § 5.4), β + aε(`− 1)`j is regular. Hence, ψ is cohomological in the sense of the appendix (see
§A.1).

This means the base change result of Labesse [Lab11, Corollary 5.3], as strengthened by
Shin in Theorem A.1, Shin’s construction of Galois representations [Shi11, Theorem 1.2], as
slightly extended by Chenevier–Harris [CH10], and the determination of the residual spectrum
by Moeglin–Waldspurger [MW89] may be applied to the eigenforms in Mξj (K,Q`). The result
is a Galois representation

ρj : Gal(F/F )−→GL(n,Hξj ⊗Q`) (6.22)

whose trace is contained in the Hecke algebra Hξj .
Hence, [Tay91, Lemma 1, no. 2] applied to Hξj ↪→Hξj ⊗Q`, gives a pseudorepresentation

rj : Gal(F/F )−→Hξj . (6.23)

Composing with the map θfπ,j , constructed in Corollary 6.3.1, gives a pseudorepresentation
sj = θfπ,j ◦ rj with values in OL/λj+1OL. Moreover, the pseudorepresentations sj are compatible
in j in the sense that sj+1 ≡ sj (mod λj+1). Hence, the system {sj} gives a pseudorepresentation

s : Gal(F/F )−→OL ↪→Q` (6.24)

into an algebraically closed field of characteristic zero. By [Tay91, Theorem1, no. 2], s is the
trace of a Galois representation

ρs : Gal(F/F )−→GL(n,Q`) (6.25)

which satisfies Theorem 1.2.1. This proves the existence of R`,i(π).
As for uniqueness, the set of primes of F which are split (i.e. of degree one) has density one

in the set of all primes of F (cf. [Ser68, ch. I, § 2.2]). Since only finitely many primes are not in
P(`) (see § 1.2), the set of primes ℘ of F which are split and which lie over some prime in P(`)

also has density one. If ℘ is such a prime, then ℘ ∈P(`). Hence, P(`) has density one, so R`,ι(π)
is unique by the Cebotarev density theorem. 2
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Appendix. On the cohomological base change for unitary
similitude groups

Sug Woo Shin

A.1 Introduction
This appendix14 is devoted to the proof of Theorem A.1 on the automorphic base change for
unitary similitude groups. The relationship with other results in the literature is explained
between Theorem A.1 and Remark A.2. We wish to thank Wushi Goldring and Sophie Morel for
their valuable comments on this appendix.

Let F be a complex multiplication (CM) field and F+ its maximal totally real subfield so
that [F : F+] = 2. Let n> 1. Let G1 be a unitary group over F+ associated to a Hermitian form
on n-dimensional F -vector space. Let G be the associated unitary similitude group over Q with
multipliers in Q× so that the multiplier map G→Gm has kernel ResF+/QG

1. We assume that
• F contains an imaginary quadratic subfield E (so that F = EF+).

However, we do not assume that G is quasi-split at all finite places, nor do we impose any
condition on G(R). Let (ξ, V ) be an irreducible algebraic representation of G over C. Let π be a
discrete automorphic representation of G(A) such that π∞ is ξ-cohomological. The latter means
that there exists j > 0 such that

Hj(g, K, π∞ ⊗ ξ) 6= 0. (A.1)

Let Sram be the set of finite places v of Q such that either G or π is ramified at v. Let
G := ResE/QG×Q E. There is an L-embedding

BC : LG= Ĝo Gal(Q/Q)→ LG' (Ĝ× Ĝ) o Gal(Q/Q) (A.2)

given by g o σ 7→ (g, g) o σ. The corresponding functoriality is usually referred to as
(automorphic) base change. Although the global base change is expected to exist unconditionally,

14 The author’s work was supported by The National Science Foundation during his stay at the Institute for
Advanced Study under agreement No. DMS-0635607. Any opinions, findings and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science
Foundation.
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[Lab11, Corollary 5.3] and [Mor10, Proposition 8.5.3] seem to be the best results available so far.
Our modest goal is to make a small improvement on their work so that Goldring’s result applies
without unnecessary restriction.

The global base change is believed to be compatible with local base change, which can be
constructed explicitly and unconditionally at almost all places. There are two cases to consider.
• At finite places outside Sram: according to the unramified Langlands correspondence, (A.2)

induces
BCSram,∞ : Irrur(G(ASram,∞))→ Irrur(G(ASram,∞))

as well as a C-algebra morphism BC∗ : H ur(G(ASram,∞))→H ur(G(ASram,∞)) such that

tr π(BC∗φ) = trBCSram,∞(π)(φ), ∀π ∈ Irrur(G(ASram,∞)), φ ∈H ur(G(ASram,∞)). (A.3)

• At a finite place v split in E: using the isomorphism G(Qv)'G(Qv)×G(Qv), define

BCv : Irr(G(Qv))→ Irr(G(Qv))

by BCv(π) := π ⊗ π. There is a corresponding algebra morphism BC∗ : H (G(Qv))→
H (G(Qv)) such that

tr π(BC∗φ) = trBCv(π)(φ), ∀π ∈ Irr(G(Qv)), φ ∈H (G(Qv))). (A.4)

The main theorem of this appendix is as follows. Let χ(·) signify the central character of a
representation.

Theorem A.1. For π and Sram as above, there exists an automorphic representation Π = ψ ⊗Π1

of G(A)'GL1(AE)×GLn(AF ) such that:

(i) ΠSram,∞ 'BCSram,∞(πSram,∞);
(ii) Πv 'BCv(πv) for any place v ∈ Sram which splits in E;

(iii) the infinitesimal character of Π∞ is the same as that of (ξ ⊗ ξ)∨ of G(C)'G(C)×G(C);
(iv) χΠ1 |A×E = ψc/ψ and (Π1)∨ 'Π1 ◦ c;
(v) Π1 is isomorphic to an isobaric sum Π1 � · · ·�Πr for some r > 1 and discrete

representations Πi such that Π∨i 'Πi ◦ c.

The theorem is due to Labesse [Lab11, Corollary 5.3] if the following two conditions hold:
• ξ has regular highest weight or G(R) is compact modulo center;
• [F+ : Q]> 2.

(Labesse makes it clear in his footnote 1 that the second condition can be removed with additional
work. He works with unitary groups rather than their similitude groups but it should not be
difficult to carry over his results.) In the other cases his method does not apply as his condition
(∗) in Corollary 5.3 is hardly satisfied. The failure of (∗) causes the trouble that the coefficients
in a certain sum are no longer non-negative and have alternating signs. His argument relies on
the non-vanishing of that sum, which is not obvious when there are alternating signs.

The purity of weight for intersection cohomology is what enables us to get around the above
difficulty coming from alternating signs. This strategy (already used by [CL99, Theorem A.4.2,
Proposition A.4.3], based on a result of Kottwitz for a simpler Shimura variety) was adopted in
[Mor10, Corollary 8.5.3], which led to the proof of Theorem A.1 modulo the fact that it proves
parts (i) and (ii) outside an unspecified finite set of finite primes unless G is quasi-split over Q.
(Strictly speaking, Morel works in the setting F+ = Q. However, her method yields a similar
result without that assumption. On the other hand, see [Mor10, Remark 8.5.4] for a case when
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the unspecified set can be specified.) Thus, our contribution may be seen as getting rid of the
unspecified set from the picture. For this it could have sufficed to supply necessary changes and
complements to Morel’s proof. However, for the reader’s convenience and completeness of the
argument, we decided to rewrite the proof, sketchy as it may sometimes be. No originality is
claimed on our part.

Remark A.2. Eventually the above theorem should be a consequence of the most general base
change result for G, which would follow from a full stabilization of the (twisted) invariant trace
formula for G and G and their endoscopic groups, with all the complicated terms. As such a
general result would have to await some years to come,15 we find it reasonable to prove here
a simple case, namely Theorem A.1, especially when it has an immediate arithmetic application.

A.2 Proof of Theorem A.1
We will freely adopt the notation and terminology of [Mor10]. (The reader may refer to the index
at the end of that book.) Occasionally we adopt a few things from [Shi11] as well. The symbols
ξ and V will be used interchangeably. (The former is used in [Shi11] while the latter is used
in [Mor10].) One notable difference from [Mor10] is our selection of notation for groups, which
is as follows:

• G is a unitary similitude group as above, and H denotes its elliptic endoscopic group;

• G := ResE/QG×Q E, H := ResE/QH ×Q E.

(Compare this with the two different uses of G and H in [Mor10]. For instance, see §§ 2.3 and
8.4 in that book.)

Choose a Hecke character ω : A×E/E
×→ C× whose restriction to A×/Q× is the quadratic

character associated to the extension E/Q via class field theory. Let Ram(ω) be the set of finite
primes v such that ω is ramified at a place dividing v. We may and will arrange that every
prime v in Ram(ω) splits in E. For each elliptic endoscopic group H of G, one uses ω to fix an
L-embedding η : LH → LG as in [Shi11, § 3.2]. Then η is unramified outside Sram ∪ Ram(ω).

Let p be a prime outside Sram ∪ Ram(ω) which splits in E. Let ℘ be a prime of F dividing
p. Put S := Sram ∪ Ram(ω) ∪ {p}. As G is unramified at p, it has a smooth reductive integral
model over Zp. Choose a place λ of F not dividing p. For i> 0, define a λ-adic vector space

H i(Sh, V ) := lim−→
K

H i(MK(G, X )∗Q, IC
KVQ),

where K =KpG(Zp), and Kp runs over all sufficiently small open compact subgroups Kp of
G(Ap,∞). Define

W+
λ :=

∑
2|i

H i(Sh, V ), W−λ :=
∑
2-i

H i(Sh, V ), Wλ =W+
λ −W

−
λ ,

which are considered in the Grothendieck group of H(G(Ap,∞))×H(G(Qp), G(Zp))× FrobZ
℘-

modules (cf. [Mor10, Remark 6.3.3]). In view of Zucker’s conjecture (proved by Looijenga, Saper-
Stern and Looijenga-Rapoport) and the Matsushima–Borel–Casselman’s formula, (A.1) implies
that Hj(Sh, V ) 6= 0. In particular,

W+
λ 6= 0 or W−λ 6= 0. (A.5)

15 At the time of press Chung Pang Mok released a paper extending Arthur’s endoscopic classification for
automorphic representations to quasi-split unitary groups. This represents a significant step.
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It is primarily due to Beilinson, Deligne and Pink that ICKVQ is pure of some weight and
the following is satisfied (cf. [Mor10, pp. 112–113]; ICKVQ is pure of weight zero there due to
the assumption that V is pure of weight zero, but we do not impose it here).

Lemma A.3. There exists some integer a ∈ Z such that for every i> 0, every eigenvalue α of
Frob℘ on H i(Sh, V ) is a Weil i+ a number.

Corollary 6.3.2, Remark 6.3.3 and Proposition 8.3.1 of [Mor10] state that the following holds.

Proposition A.4. Let f∞ = fp,∞1G(Zp) with fp,∞ ∈H(G(Ap,∞)).

(i) One can construct a function fH = (fH)p,∞fH,(j)fHξ ∈ C∞c (H(A), ξ−1
H ) for each elliptic

endoscopic triple (H, s, η0) such that for every sufficiently large integer j > 0,

tr (Φj
℘f
∞ |Wλ) =

∑
(H,s,η0)∈E(G)

ι(G, H)STH(fH,(j)).

(ii) Suppose that fH ∈ C∞c (H(A), ξ−1
H ) and φH ∈ C∞c (H0(A), ξ−1

H ) are associated in the sense
of [Lab99, 3.2] and that fH∞ and φH

∞ are as in [Mor10, Proposition 8.3.1]. Then there is a constant
c ∈ R× (independent of φH and fH) such that

TH(φH) = c · STH(fH).

Now we are ready to start the proof. In the notation of diagram of [Shi11, (4.18)] (exception:
η is used instead of η̃ to conform to the notation of [Mor10]), we have commutative diagrams

H ur(G(AS,∞))
ζ̃∗

//

BC∗

��

H ur(H(AS,∞))

BC∗

��

Irrur(G(AS,∞)) Irrur(H(AS,∞))
ζ̃∗

oo

H ur(G(AS,∞))
η∗

// H ur(H(AS,∞)) Irrur(G(AS,∞))

BC

OO

Irrur(H(AS,∞))η∗
oo

BC

OO

(A.6)

and similarly over AS,p,∞. Choose any φS,p,∞ ∈Hur(G(AS,p,∞)). Put (φH)S,p,∞ := ζ̃∗(φS,p,∞),
fS,p,∞ :=BC∗(φS,p,∞) and (fH)S,p,∞ := η∗(fS,p,∞). Take φp, φHp , fp and fHp to be the unit
elements in the corresponding unramified Hecke algebras. At S, choose fS and let fHS be its
transfer. Make a hypothesis, depending on fS , that there exists φS (respectively φH

S ) whose BC
transfer is fS (respectively fHS ). (This assumption will be satisfied by our later choice of fS .)
Since p splits in E, one can find a function φ

H,(j)
p such that fH,(j)p and φ

H,(j)
p are associated in

the sense of Labesse. At infinity, by construction [Kot88, § 7] (see also [Mor10, 6.2]), fHξ is a
finite linear combination of Euler–Poincaré functions. Hence, there exists φH

ξ such that fHξ and
φH
ξ are associated [Mor10, Corollary 8.1.11].

Applying (A.3) at finite places away from S one obtains

tr (Φj
℘f
∞ |Wλ) = tr (Φj

℘fSφ
S,∞ |BCS,∞(Wλ)).

On the other hand the spectral expansion of TH(φH) can be put in the form (cf. [Mor10,
Proposition 8.2.3] or [Art88, Theorem 7.1])

TH(φH) =
∑
ΠH

aHΠH
(fS , ξ)tr ΠS,p,∞

H ((φH)S,p,∞) (A.7)
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where ΠH runs over automorphic representations of H(A) which are θ-stable and θ-discrete (but
not necessarily discrete). Here we wrote aHΠH

(fS , j, ξ) for

adisc(ΠH) · tr (ΠH,p(φH,(j)
p )AΠH,p

) · tr (ΠH,S(φH
S )AΠH,S

) · tr (ΠH,∞(φH
ξ )AΠH,∞). (A.8)

Note that an intertwining operator for θ is not needed in the expression tr ΠS,∞
H ((φH)S,∞) of

(A.7) because it does not matter for unramified representations up to sign (due to a normalization
of the intertwining operator). (See the paragraph above (4.5) in [Shi11].)

We may use (A.6) to rewrite (A.7) as

TH(φH) =
∑
ΠH

aHΠH
(fS , j, ξ) · tr ζ̃∗(ΠS,p,∞

H )(φS,p,∞).

Hence, Proposition A.4 tells us that tr (Φj
℘fSφ

S,∞ |BCS,∞(Wλ)) equals

c−1
∑

(H,s,η0)

∑
ΠH

ι(G, H)aHΠH
(fS , j, ξ) · tr ζ̃∗(ΠS,p,∞

H )(φS,p,∞).

When the functions at S ∪ {p,∞} are fixed, there are only finitely many terms contributing
to both sides of the formula as the choice of φS,p,∞ varies (and the other functions outside
S ∪ {p,∞} vary accordingly). By using the linear independence of Hur(G(AS,p,∞)) modules, we
deduce

tr (Φj
℘fS |Wλ{ΠS,p,∞}) =

∑
(H,s,η0)

∑
ΠH

ζ̃∗(Π
S,p,∞
H )'BC(πS,p,∞)

ι(G, H)aHΠH
(fS , j, ξ). (A.9)

Claim. The left-hand side of (A.9) does not vanish for some j� 0 and fS . Moreover, this holds
for fS such that the following holds: for every H, any endoscopic transfer fHS of fS is in the
image of the BC transfer from H to H. (Namely fHS is a BC transfer of some φH

S .)

Proof of claim. For the first assertion it suffices to show that

tr (fS |Wλ{ΠS,∞}) = tr (fS |W+
λ {Π

S,∞})− tr (fS | (W−λ {Π
S,∞}) ∈Groth(FrobZ

℘)⊗Z C

is non-trivial. Thanks to purity of weight, it is enough to show that tr (fS |W ?
λ{ΠS,∞}) 6= 0 for

either ? = + or ? =−. Take fS = 1KS for an open compact subgroup KS ⊂G(QS). Since π is
automorphic and cohomological, Matsushima-type formula for L2-cohomology (see [Art96, § 2]
for instance) implies that Hj(Sh, V ) contains π as a G(A∞)-submodule where j is as in (A.1).
Hence, tr (fS |W ?

λ{ΠS,∞}) 6= 0 for ? = + (respectively ? =−) when j is even (respectively odd),
if KS is small enough such that πS has a non-zero KS-fixed vector.

It remains to take care of the second requirement of the claim. This is satisfied if KS is
sufficiently small by [Mor10, Lemma 8.4.1.(i)]. 2

The claim implies that the right-hand side of (A.9) is non-zero. In particular there exists
a θ-stable and θ-discrete automorphic representation ΠH such that ζ̃∗(Π

S,p,∞
H )'BC(πS,p,∞).

Hence, Π := ζ̃∗(ΠH), defined to be a character twist of n-indG(A)
H(A)ΠH (see [Shi11, § 4.4] for the

precise definition), is automorphic and satisfies part (iv) of the theorem, which amounts to
the θ-stable property of Π. A fortiori assertion (v) follows easily from the construction of Π
and the fact that ΠH is θ-stable and θ-discrete. Moreover,

ΠS,p,∞ 'BCS,p,∞(πS,p,∞). (A.10)
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The character identities at v ∈ S obtained from (A.9) have the form

tr (φS | aπS + · · · ) =
∑
H

∑
i∈IH

bitr (ζ̃∗(Πi
H)(fS)A

ζ̃∗(ΠiH)
)

where a and bi are non-zero complex numbers and IH is a finite index set parametrizing Πi
H such

that BC(πS,p,∞) = (Πi
H)S,p,∞ and the summand of (A.9) is non-zero. The base change character

identity at split places (cf. [Shi11, 4.2]) shows that there exists Πi
H (i.e. on the right-hand side of

(A.9)) such that BCv(πv) = Πv for every v ∈ S split in E. So we could have defined Π by using
that Πi

H. Then condition (ii) holds. Moreover, the coefficient for ΠH = Πi
H in (A.9) being non-

zero implies, in view of (A.8), that ΠH,p is unramified at p, since φH,(j)
p belongs to the unramified

Hecke algebra.
Recall that S = Sram ∪ Ram($) and every v ∈ Ram($) splits in E. Hence, (A.10) is improved

to
ΠSram,p,∞ 'BCSram,p,∞(πSram,p,∞). (A.11)

For part (iii), one uses the trace computation of Euler–Poincaré functions and their twisted
analogues at infinity. A careful book-keeping of their infinitesimal characters yields the result.

It remains to improve upon (A.11) to include the place p. The key point is that the
choice of p, made at the start of the proof, was auxiliary. Choose any other prime p′ outside
Sram ∪ Ram(ω) which splits in E and repeat the above argument. Then we obtain Π′ satisfying
(Π′)Sram,p′,∞ 'BCSram,p′,∞(πSram,p′,∞) as well as parts (ii), (iii) and (iv). Applying Jacquet–
Shalika’s strong multiplicity one to Π and Π′, we deduce that Πp and Π′p appear as sub-quotients
of the same parabolic induction. On the other hand, Πp and Π′p are both unramified. Indeed, we
have seen this for Πp above, and Π′p 'BC(πp) is unramified as πp is. Therefore, Πp 'Π′p since
there exists at most one unramified representation in a parabolic induction. Hence Πp 'BC(πp)
as desired.

References
AGV73 M. Artin, A. Grothendieck and J.-L. Verdier, SGA 4: Théorie des topos et cohomologie étale
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formula, vol. 1, eds L. Clozel, M. Harris, J.-P. Labesse and B.-C. Ngô (International Press,
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