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THEORETICAL PEARLS

Enumerators of lambda terms are reducing
HENK BARENDREGT

Faculty of Mathematics and Computer Science, Catholic University of Ntjmegen, The Netherlands

Abstract

A closed X-term E is called an enumerator if

=j )M.

Here A0 is the set of closed X-terms,. is the set of natural numbers and the rw~> are the Church's
numerals Xfx.f"x. Such an E is called reducing if, moreover

An ingenious recursion theoretic proof by Statman will be presented, showing that every
enumerator is reducing. I do not know any direct proof.

1 Introduction

Remember that in Barendregt (1991) a simple proof of the existence of a self-
interpreter E e A0 was given. Such an E satisfies

VAfeA°ErAT = p M .

The first construction of a self-interpreter is due to Kleene (1936), and I presented
another one due to P. de Bruin. Such an E is automatically an enumerator. Inspection
of the details of the construction of E by Kleene (1936) or by P. de Bruin shows that
these E are in fact reducing enumerators.

In my thesis (Barendregt, 1971) I constructed as application a universal generator,
that is, a term reducing to terms of arbitrary complexity.

Definition 1.1
A term Ue A is called a universal generator iff

VMeA3NeA[£/-»flAr&MsubtermofiV].

Proposition 1.2
There exists a universal generator UeA°.

Proof
If E is a reducing enumerator, then one can take U = /•"'"O"1 with
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where [-, -] is a pairing in the X-calculus. Indeed, one then has

Since the Er«n collectively reduce to all Me A0 and any Ne A is a subterm of some
closed term, it follows that U is a universal generator.

F can be constructed easily from E using the fixed-point combinatory and a X-
defining term for the successor function. (For example,

U = (Xab. b(aab)) (kab. b(aab)) (kfxz. z(Ex) (f(kbc. b{xbc)))) (Xbc. c)

works.) •
A short universal generator has been constructed in Mulder (1990): in one of the

propositions (stellingen) accompanying the thesis he constructed

U = (kkpy. y(kl ,pk(p(kxyz. xz(yz))

{y{Xfxyz. zkQJit. x(f(phy) (phy) /)) (kuv .p(hu) (fvyt))) kkl))))

(kxy. x) (kxyzf.fxy) (Xf. (kx. xx) (kx .f(xx))).

The fact that the given enumerators are reducing brought me to the following:

Conjecture 1.3
Every enumerator is reducing.

Some vague evidence for the conjecture is this. If E has to make every Me A0 by
having Ernn = p M for some nsN, then the only way to do this is to construct every
Me A0 by a reduction from Er«n for an appropriate n. This is plausible, since the
collection

BM = {NeA°\M=?N}

is undecidable. It seems easier to make the Ern1 reduce to all members of all BM than
to just some of them.

Of course, this intuition is far from being a proof. I explained my conjecture to Rick
Statman in 1983 and in 1987 he settled it in the positive. In fact, as we will see, he
proved something much more general.

2 Proof of the conjecture

If v|/ is a partial recursive function, then \|/(n) [ means that y(w) is defined and \|i(w) f
means that \|/(n) is undefined. A set A c fo| is called recursively enumerable (r.e.) if for
some partial recursive y. N-+N one has A = dom(vy), i.e. VneN[neAoy(ri) j]. In
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the following the reader is supposed to know some elementary properties of r.e. sets.
For example, that if A and its complement are both r.e., A is recursive; moreover, that
there exists a set K ^ (̂  that is r.e. but not recursive.

Lemma 2.1
For every Me A there exists an M,e A in $-nf such that Mx I -»p M. Here \ = Xx.x.

Proof
By induction on the structure of M we define Mx in the following table:

M Mx

x Xz.zx
PQ Xz.zP^zQ.z)
Xx.P Xzx.zPxz

Then by induction it follows that Mx I -»? M. Q
Remember that a term Me A is of order 0 if for no PeA one has M =&Xx.P. For

example (kx. xx) (kx. xx) is of order 0.

Lemma 2.2
(i) For every partial recursive function \|/ there is a term Fe A0 such that for all neN
one has

v|/(«) f => Frn^ is of order 0.

(ii) let K £ M be an r.e. set. Then for some PK e A0 one has for all neN

PKW is of order 0.

Proof
(i) Inspection of the usual proof of the .̂-definability of the partial recursive functions
shows that in case the function is undefined on an argument the representing X-term
is of order 0 on the corresponding numerical. (One of the next' Pearls in Theory' will
be devoted to possible representations of'undefined'.)

(ii) Let K = dom(y). Let F .̂-define y. Then take PK = Xc.Fdl. (Remember that
for Church's numerals one has r«nll =pl.] •

Theorem 2.3 (Statman, 1987)
Let rfsA" (after coding) be an r.e. set. Suppose

iM. (1)
Then

*M. (2)
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Proof
Assume (1). Suppose towards a contradiction that (2) does not hold, i.e. for some
MoeA°

Using Lemma 2.1 construct a term Mx in P-nf such that M1\-»pM0. Define a
predicate R on f̂l as follows:

where P = PK as in Lemma 2.2 for some non-recursive r.e. set K. Note that R is an
r.e. predicate. Claim

As to (=>), suppose R(ri), i.e. for some Nesf and Q esrf one has

Q and N

If neK, then I =p P
rrP =^Q, so by the Church-Rosser theorem Q-»pl and there-

fore N-»^XM1 l ^ p M 0 , contracting (2). Therefore «£.K and we are done. As to
(<^), suppose n$K. Then Prr0 is of order 0. By (1) there is an Ness? such that
N =gi)r«"1M1l. By the Church-Rosser theorem there is a common reduct L of N
and Prn~lM11. Since -Prnn is of order 0 and Mx, I are in nf one must have L = QMXI
with Prni -»•[, Q. Therefore R(n).

From the claim it follows that the complement of K is r.e., hence recursive (since
K is itself r.e.) contradicting the choice of K. •

From the theorem the conjecture follows immediately by taking si = {Er«n|«eN}.
From the proved conjecture I mistakenly concluded that every self-interpreter in

the ^.-calculus is reducing in the sense that

But this does not follow. Do you see why? Moreover, that this is not true was pointed
out to me by Peter de Bruin, who provided a counterexample. Can you construct one?
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