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Abstract

The goal of this paper is to provide formulae for the expectation and variance of the
height and length of the ancestral recombination graph (ARG). While the formula for
the expectation of the height is known (see, e.g. Krone and Neuhauser (1997)), the other
formulae seem to be new. We obtain in particular (see Theorem 4.1) a very simple formula
which expresses the expectation of the length of the ARG as a linear combination of the
expectations of both the length of the coalescent tree and the height of the ARG. Finally,
we study the speed at which the ARG comes down from infinity.

Keywords: Wright–Fisher model; coalescent; recombination; ancestral recombination
graph

2000 Mathematics Subject Classification: Primary 60J27
Secondary 60G51; 92D10

1. Introduction and preliminaries

Consider a sample of size n from a population of fixed size N . If the genealogy of the
population is described by Canning’s model [2] (which generalizes the Wright–Fisher model)
or by Moran’s model [9] and time is scaled by a factor 1/N , then, under very mild assumptions
on the model, the genealogy of the above sample, looking backwards in time, is described in
the limit N → ∞ by Kingman’s n-coalescent [7].

If we ignore the partitions (i.e. which genes coalesce at each coalescence event), Kingman’s
n-coalescent is a death process {Xt, t ≥ 0}, where Xt is the number of lineages ancestral to the
sample that are alive at time t , starting from X0 = n and ending at state 1 at the random time
τ1 = inf{t > 0, Xt = 1}, when the most recent common ancestor (MRCA) is found. Each
death happens at a time when two lineages ancestral to the sample find a common ancestor.
The waiting time Tk in state k is exponential with parameter k(k − 1)/2, the various Tks being
mutually independent. Clearly, τ1 = Tn + Tn−1 + · · · + T2.

Let us now account for recombinations. At rate ρ/2 along each branch of Kingman’s
coalescent tree, a recombination takes place between an individual from the sample and an
individual from outside the sample. Now Xt is a birth-and-death process, since at each
recombination the genome of an individual splits into two genomes of two different individuals.
Kingman’s coalescent tree is replaced by the ancestral recombination graph (ARG). The effect
of recombination will be that the ancestral material to a specific DNA sequence comes from
two DNA sequences in the parental generation, each of which also came from two different
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Figure 1: The ARG.

grandparents, etc (see Figure 1). In the generation before a sequence was created by a
recombination, there would have been one more sequence carrying ancestral material then
after. If we focus on a single point on the sequence, it will be inherited from one parent only;
thus, the Wright–Fisher model with recombination reduces to the Wright–Fisher model without
recombination for each point on the sequence, but different points on the sequence are correlated
instances of the Wright–Fisher process without recombination. The tree relating the sequences
in a single position is called the local tree of that position. Thus, the genealogy of the whole
sequence can be seen as a collection of local trees, one for each position.

Births happen at rate ρXt/2, while deaths happen at rate Xt(Xt − 1)/2. Because the
death rate is a quadratic function of Xt , while the birth rate is linear, we can easily show that
τ1 = inf{t > 0, Xt = 1} is finite almost surely (a.s.). We refer the reader to [4]–[6] and [12,
Chapter 10] for more complete introductions and descriptions of Kingman’s coalescent and
the ARG.

Now we define the height of the ARG as H = τ1 = inf{t, Xt = 1} and the length of the
ARG as L = ∫ τ1

0 Xt dt .
It does not seem possible to give formulae for the laws of H and L. In this paper we compute

the first two moments of these random variables. While the formula for the expectation of the
height of the ARG (Theorem 2.1) is not new (see [8], in which the analogue of Kingman’s
coalescent for models with selection rather than recombination was provided, and [12]), we
believe that our three other formulae are new. In particular, we obtain a very simple formula
which expresses the expectation of the length of the ARG as a linear combination of the
expectations of the length of Kingman’s coalescent and the height of the ARG.

Let us make precise the fact that we do not specify any model for the splitting of the
ancestral genome during a recombination event. Consequently, we do not restrict the ARG
to those branches which effectively contain genetic material ancestral to the sample. In other
words, τ1 is the time when the so-called ultimate ancestor (the ancestor of all branches of the
ARG) is found, which may very well differ from the MRCA of all the genetic material ancestral
to the sample.

Note that a model formally identical to our ARG has been introduced by Krone and
Neuhauser [8] under the name of the ancestral selection graph (ASG) to model the genealogy
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of a population where some of the individuals possess a selective advantage. In this model an
increase in the sample size while going backwards in time corresponds to the fact that we do
not know which branch we should follow, unless we know whether or not the individual we are
following backwards in time possesses the selective advantage (this can be decided only when
we follow the time forward, after having found the ultimate ancestor of the ASG). In the ASG,
individuals follow one or the other branch depending upon whether or not they possess the
selective advantage. In the ARG, a particular gene follows one or the other branch, depending
upon whether it is located to the left or to the right of the recombination point. At any rate, our
results also apply to the ASG.

The first four sections of this paper respectively give formulae for the expectation and
variance of the height of the ARG, and the expectation and variance of the length of the ARG.
In Sections 6 and 7 we respectively give formulae for the expectation and variance of the number
of recombinations.

We write Hn and Ln for the height and the length, respectively, of the ARG with n leaves.
It follows from the formulae below that the expectation of Hn remains bounded as n → ∞.

Consequently, the ARG, like Kingman’s coalescent, comes down from infinity, in the sense that
we can define it with X0 = +∞, while Xt < ∞ for all t > 0. It is possible to describe the
speed at which the ARG comes down from infinity, through a law of large numbers (LLN) and
a central limit theorem (CLT). We show in Section 8 that the ARG satisfies the same LLN and
CLT as Kingman’s coalescent. This indicates that, asymptotically as n → ∞, the number of
recombination events that happen while Xt goes down from n to 1 is of order smaller than n.
Nevertheless, the number of recombination events that happen while Xt goes down from +∞
is a.s. infinite. See more on this at the end of Section 6.

In this paper, Pρ , Eρ , and varρ respectively stand for the probability, the expectation, and
the variance in the model with recombination rate ρ/2. The case in which ρ = 0 corresponds
to Kingman’s coalescent (no recombination).

2. Expectation of the height of the ARG

Let us first recall the following result. This result is not new; see, e.g. [8] for a proof. We
provide a proof since it is the model for some other proofs in this paper.

Theorem 2.1. The expectation of the height of the ARG for a sample of n individuals is given by

Eρ(Hn) = 2

(
1 − 1

n

)
+ 2

n−1∑
k=1

1

k(k + 1)

eρ

ρk+1

∫ ρ

0
tk+1e−t dt.

Note that the first term in this formula is well known to be E0(Hn), the expectation of the
height of Kingman’s n-coalescent tree. The second term is thus the expectation of the additional
height due to the recombinations.

Proof of Theorem 2.1. Define Un = Eρ(Hn). Clearly, U1 = 0. Let us write a recursion
formula for the Uns. The mean waiting time of Xt in state n is 2/n(n + ρ − 1), the next state
is n + 1 with probability ρ/(n + ρ − 1), and state n − 1 has probability (n − 1)/(n + ρ − 1).
Consequently, for n ≥ 2,

Un = 2

n(n + ρ − 1)
+ ρ

n + ρ − 1
Un+1 + n − 1

n + ρ − 1
Un−1.

https://doi.org/10.1239/jap/1253279845 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1253279845


672 E. PARDOUX AND M. SALAMAT

If we define Wn = Un − Un−1, we obtain the following relation:

Wn = (n − 2)!
(

2
m−1∑
k=0

ρk

(n + k)! + ρm

(n + m − 2)!Wn+m

)

= 2(n − 2)!
ρn

(
eρ −

n−1∑
k=0

ρk

k!
)

+ lim
m→∞

(n − 2)! ρm

(n + m − 2)!Wn+m.

On the other hand, we have

Wn+m = Un+m − Un+m−1 = Eρ(Hn+m) − Eρ(Hn+m−1) := Eρ(Tn+m),

where Tn+m is thought of as the time until the birth-and-death process started from n + m

reaches the value n + m − 1. Let Rn+m be the number of recombinations that occur before the
process reaches n + m − 1, starting at state n + m. For k ≥ 1, we have

Pρ(Rn+m = k) ≤ ak

(
ρ

n + m − 1

)k

,

where ak is the number of distinct sequences of k − 1 recombinations and k − 1 coalescences
which respect the constraint that there are always at least n lineages alive. The number ak is
the ‘Catalan number’ (see [11, pp. 172–173]), i.e.

ak = 1

k + 1

(
2k

k

)
∼ 4k

k3/2
√

π
. (2.1)

Conditionally upon Rn+m = k, there are k births and k + 1 deaths until the process reaches
the value n − 1. Bounding the expectation of the time between two consecutive birth or death
events we obtain

Eρ(Tn+m | Rn+m = k) ≤ 2(2k + 1)

(n + m)(n + m − 1)
.

Moreover, Pρ(Rn = 0) ≤ 1. Finally, provided that n + m > 1 + 4ρ,

Eρ(Tn+m) =
∞∑

k=0

Eρ(Tn+m | Rn = k) Pρ(Rn+m = k)

≤ c

(n + m)(n + m − 1)

∞∑
k=0

(
4ρ

n + m − 1

)k

≤ c′

(n + m)(n + m − 1)
.

It is now easy to deduce that

Un+1 − Un = 2
(n − 1)!
ρn+1

∞∑
j=n+1

ρj

j ! ,

and, consequently,

Un =
n−1∑
k=1

(Uk+1 − Uk) = 2
n−1∑
k=1

(k − 1)!
ρk+1

∞∑
j=k+1

ρj

j ! ,
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since U1 = 0. We now deduce the following formula for Eρ(Hn) = Un:

Eρ(Hn) = 2
n−1∑
k=1

∞∑
j=0

(k − 1)!
(k + j + 1)!ρ

j (2.2)

= 2

(
1 − 1

n

)
+ 2

n−1∑
k=1

1

k(k + 1)

(k + 1)!
ρk+1

∞∑
�=k+2

ρ�

�! ,

and the result finally follows from the identity

eρ

∫ ρ

0
tk+1e−t dt = (k + 1)!

(
eρ −

k+1∑
�=0

ρ�

�!
)

,

which is easily checked by successive integrations by parts.

Corollary 2.1. For small ρ > 0,

Eρ(Hn) = 2

(
1 − 1

n

)
+ (n − 1)(n + 2)

2n(n + 1)
ρ + (n − 1)(n2 + 4n + 6)

9n(n + 1)(n + 2)
ρ2 + O(ρ3).

Corollary 2.2. As n → ∞,

lim
n→∞ Eρ(Hn) = 2

ρ

∫ 1

0

eρx − 1

x
dx.

Proof. We have

lim
n→∞ Eρ(Hn) = 2

∞∑
j=1

∞∑
k=1

ρj

k(k + 1) · · · (k + j + 1)

= 2

ρ

∞∑
j=1

ρj

j (j !)

= 2

ρ

∫ ρ

0

ex − 1

x
dx,

where the second equality follows from
∞∑

k=1

1

k(k + 1) · · · (k + j)
= 1

j (j !) for all j ≥ 1. (2.3)

See Appendix A for a proof of (2.3).

3. Variance of the height of the ARG

Definition 3.1. For all p, q ∈ N, we define the hypergeometric function pFq as a mapping
from R

p
+ × R

q
+ × R into R as follows

pFq([a1, . . . , ap], [b1, . . . , bq ], z) =
∞∑

r=0

(a1)r · · · (ap)r

(b1)r · · · (bq)r

zr

r! ,

where, for all a ∈ R and r ∈ N,

(a)r = a(a + 1) · · · (a + r − 1).

For more on this subject, see [10, p. 90].
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Theorem 3.1. The variance of the height of the ARG is given by

varρ(Hn) =
n∑

p=2

4 3F3([1, p, p + ρ − 1], [p + ρ, p + 1, p + 1], ρ)

(p + ρ − 1)p2(p − 1)

+
n∑

p=2

∞∑
k=1

4(p − 2)! ρk

(p + k − 3)! (p + k + ρ − 2)((p + k − 1)2 − 1)2(p + k − 1)2

×
(

2(p + k − 1) + ρ + (p + k + ρ − 2)eρ

ρp+k

∫ ρ

0
tp+ke−t dt

)2

.

Proof. See Appendix B.

Note that it can be shown that varρ(Hn) ≤ c(ρ) < ∞ for all n ≥ 2, where c(ρ) =
2
45π4(eρ + 4e2ρ(eρ − 1)).

4. Expectation of the length of the ARG

We now state and prove a very simple formula for the expectation of the length of the ARG.

Theorem 4.1. The expectation of the length of the ARG is given by

Eρ(Ln) = E0(Ln) + ρ Eρ(Hn).

Proof. See Appendix C.

Recalling that (in the case in which ρ = 0, the ARG reduces to Kingman’s coalescent)

E0(Ln) = 2

(
1 + · · · + 1

n − 1

)
,

we deduce the following result from Theorem 4.1.

Corollary 4.1. For large n,

lim
n→∞ Eρ(Ln) ∼ 2 ln(n) + 2

ρ

∫ ρ

0

ex − 1

x
dx.

We note that the additional length produced by the recombinations is bounded in mean as
n → ∞.

5. Variance of the length of the ARG

Theorem 5.1. The variance of the length of the ARG is given by

varρ (Ln) =
n∑

p=2

(
4 2F2([1, p + ρ − 1], [p + ρ, p], ρ)

(p + ρ − 1)(p − 1)
+

∞∑
k=1

(p − 2)! ρk−1

(p + k − 3)! Bp+k−1

)
,

where

Bn = 4ρ

n2(n − 1)2(n + ρ − 1)

(
2n − 1 + 2nρ + ρ2

n + 1
+ (n + ρ − 1)eρ

(n + 1)ρn

∫ ρ

0
tn+1e−t dt

)2

.

Proof. See Appendix D.

It can be shown that varρ(Ln) ≤ c′(ρ) for all n ≥ 2, where c′(ρ) ≤ 2
3π2eρ(4eρ + 1).
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6. Expectation of the number of recombinations

As before, we denote by Rn the number of recombinations that happen before the process
{Xt, t ≥ 0} reaches the value n − 1, starting from X0 = n.

Theorem 6.1. The expectation of Rn is given by

Eρ(Rn) = ρ

∫ 1

0
sn−2eρ(1−s) ds.

Proof. See Appendix E.

Theorem 6.2. Let R(n) denote the total number of recombination events in the sample of size
n before Xt reaches the value 1. We have the identity

Eρ(Ln) = 2

ρ
Eρ(R(n)).

Proof. Starting from identity (2.2), we have

Eρ(Hn) = 2
n−1∑
k=1

(k − 1)!
ρk+1

∞∑
j=k+1

ρj

j !

= 2

ρ2

n−1∑
k=1

(k − 1)!
ρk−1

∞∑
j=k

ρj

j ! −
n−1∑
k=1

2

kρ

= 2

ρ2

n−1∑
k=1

Eρ(Rk+1) − 1

ρ
E0(Ln)

= 2

ρ2 Eρ(R(n)) − 1

ρ
E0(Ln).

The result now follows from Theorem 4.1.

Remark 6.1. Note that
ρ

n − 1
< Eρ(Rn) <

ρeρ

n − 1
.

This is consistent with
ρ

n + ρ − 1
= Pρ(Rn ≥ 1) ≤ Eρ(Rn).

Since the Rns are mutually independent and
∑

n Pρ(Rn ≥ 1) = +∞, it follows from the Borel–
Cantelli lemma that, a.s., infinitely many recombination events occur while the ARG comes
down from infinity.

On the other hand, the expectation of the total number of recombination events that occur
while Xt goes down from n to 1 equals

n∑
k=2

Eρ(Rk) = ρ

∫ 1

0

1 − sn−1

1 − s
eρ(1−s) ds.

This grows, up to a multiplicative constant, like ρ ln(n − 1), while the number of coalescence
events grows like n.
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7. Variance of the number of recombinations

Theorem 7.1. The variance of the number of recombinations is given by

varρ(Rn) = ρn−2

(n − 2)!
∞∑
i=0

(n + i − 1)!
ρn−i−3

i∏
k=0

1

(n + k + ρ − 1)2 − ρ(n − 1)
.

Proof. See Appendix F.

8. The speed at which the ARG comes down from infinity

We have

Eρ(Hn) = 2
n−1∑
k=1

∞∑
j=0

(k − 1)!
(k + j + 1)!ρ

j

= 2
n−1∑
k=1

1

k(k + 1)

∞∑
j=0

ρj

(k + 2) · · · (k + j + 1)

≤ 2
n−1∑
k=1

1

k(k + 1)

∞∑
j=0

ρj

j !

= 2eρ

(
1 − 1

n

)
.

So, for fixed ρ, Eρ(Hn) ≤ 2eρ for all n ≥ 2. Consequently, H∞ = limn→∞ Hn is finite a.s. We
can then clearly define the population size {Xt, 0 < t ≤ τ1}, where again τ1 = inf{t > 0, Xt =
1}, in such a way that X0 = +∞, while Xt < ∞ for all t > 0. Here, as in the introduction, Xt

is a birth-and-death process with birth rate ρXt/2 and death rate Xt(Xt − 1)/2. Indeed, if we
let {Xn

t , 0 < t ≤ τ1} denote the same process satisfying the initial condition Xn
0 = n, then we

can show that X·∧τ1 = limn→∞ Xn·∧τ1
exists, where the limit is a weak limit for the Skorokhod

topology of DE[0, +∞), with E = {0, 1, 2, . . .} ∪ {+∞}, following the arguments in [3].
The speed at which the ARG comes down from infinity is described by the following result,

which contains both an LLN and a CLT.

Theorem 8.1. For all ρ ≥ 0, as t → 0,

tXt

2
→ 1 Pρ-a.s.

and, moreover, under Pρ , √
6

t

(
tXt

2
− 1

)
⇒ N (0, 1).

This theorem says in a sense that Xt is asymptotically N (2/t, 2/3t) as t → 0. This result
does not depend on ρ. It is the same for ρ > 0 and ρ = 0. This means that the number, Rn, of
recombinations that happen before Xt reaches 1, starting with Xt = n, is of order smaller than
n, as already pointed out at the end of Remark 6.1. Again, denote by Tn the time taken by the
process Xt to reach the value n − 1, starting with Xt = n, and define

Vn =
∞∑

k=n+1

Tk,
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which is the time taken by the process Xt to reach the value n, starting from X0 = +∞. Clearly,

∞∑
n=1

n 1{Vn≤t<Vn−1} ≤ Xt ≤
∞∑

n=1

(n + Rn) 1{Vn≤t<Vn−1}.

Theorem 8.1 follows from the next result.

Proposition 8.1. For all ρ ≥ 0, as n → ∞,

nVn

2
→ 1 Pρ-a.s. (8.1)

and, moreover, under Pρ ,
√

3n

(
nVn

2
− 1

)
⇒ N (0, 1). (8.2)

Proposition 8.1 in turn follows from the next result.

Proposition 8.2. For all ρ > 0,

Eρ(|Vn − Eρ(Vn)|4) ≤ c(ρ)

n6 , (8.3)

Eρ(Vn) = 2

n
+ O

(
1

n2

)
, (8.4)

n3 varρ(Vn) → 4
3 as n → ∞. (8.5)

Note that the only difference in the statements of Proposition 8.2 between the ρ > 0 and
ρ = 0 cases is that, for the ρ = 0 case, (8.4) reads E0(Vn) = 2/n.

Aldous [1] stated Theorem 8.1 for the case in which ρ = 0 (no recombination). The proofs
of Theorem 8.1 and Propositions 8.1 and 8.2, in reversed order, will be the subject of the next
three subsections.

8.1. Proof of Proposition 8.2

Proof of (8.3). Recall that

Pρ(Rn = k) ≤ ak

(
ρ

n − 1

)k

,

where ak is the Catalan number given by (2.1). So

Eρ(|Vn − Eρ(Vn)|4) = Eρ

( ∞∑
k=n+1

|Tn − Eρ(Tk)|4
)

+ 6 Eρ

( ∑
n<k<l

|Tk − Eρ(Tk)|2|Tl − Eρ(Tl)|2
)

=
∞∑

k=n+1

Eρ(|Tn − Eρ(Tk)|4)

+ 6
∑

n<k<l

Eρ(|Tk − Eρ(Tk)|2) Eρ(|Tl − Eρ(Tl)|2).
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So we have to estimate both Eρ(|Tk −Eρ(Tk)|4) and Eρ(|Tk −Eρ(Tk)|2). It is not hard to prove
that

Eρ(T 2
k | Rk = m) ≤ 23(2m + 1)2

(k + 1)2k2 .

Hence,

Eρ(|Tk − Eρ(Tk)|2) ≤ Eρ(T 2
k ) ≤ 23

(k + 1)2k2

(
1 + c′ρ

k

)
.

By a similar argument,

Eρ(|Tk − Eρ(Tk)|4) ≤ Eρ(T 4
k ) ≤

∞∑
l=1

Eρ(T 4
k | Rk = l)al

(
ρ

k

)l

+ 25

k4(k + 1)4 ,

and standard arguments lead to

Eρ(T 4
k | Rk = m) ≤ 25(2m + 1)4

k4(k + 1)4 .

Now we have

Eρ(|Tk − Eρ(Tk)|4) ≤ 25

k4(k + 1)4

(
1 +

∞∑
l=1

(2l + 1)4
(

4ρ

k

)l)
.

It is easy to show that, for k > 8ρ,

∞∑
l=1

(l + 1)4
(

4ρ

k

)l

≤ 32
4ρ

k
. (8.6)

Hence,

Eρ(|Tk − Eρ(Tk)|4) ≤ 25

k4(k + 1)4

(
1 + 32

4ρ

k

)
. (8.7)

Now, by combining (8.6) and (8.7) with the last identity of the previous page, we obtain

Eρ(|Vn − Eρ(Vn)|4) ≤
∞∑

k=n+1

25

k4(k + 1)4

(
1 + c′′ρ

k

)

+ 6
∞∑

n<k<l

23

k2(k + 1)2

(
1 + c′ρ

k

)
23

l2(l + 1)2

(
1 + c′′′ρ

l

)

≤ 2(1 + c′′ρ)

∞∑
k=n+1

24

k4(k + 1)4 +
∑

n≤k<l

3 × 27(1 + c′ρ)(1 + c′′′ρ)

k2(k + 1)2l2(l + 1)2

≤ 25(1 + c′′ρ)

7(n − 1)7 + 27(1 + c′ρ)(1 + c′′′ρ)

3(n − 1)6 .

Proof of (8.4). Since Tn = Hn − Hn−1, we deduce from Theorem 2.1 that

Eρ(Tn) = 2
∞∑

j=0

(n − 2)!
(n + j)!ρ

j .
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Then

Eρ(Vn) = 2

n
+ 2

∞∑
k=n+1

∞∑
j=1

(k − 2)!
(k + j)!ρ

j = 2

n
+ O

(
1

n2

)
.

Proof of (8.5). Since Hn = Tn + Hn−1, Hn−1, and Tn are independent,

varρ(Tn) =
∞∑

k=1

4(n − 2)! ρk−1

(n + ρ + k − 2)(n + k − 1)2(n + k − 2)!

+
∞∑

k=1

(n − 2)! ρk

(n + k − 3)! (n + k + ρ − 2)

( ∞∑
j=0

2(n + k − 3)! (2n + 2k + j − 2)

(n + k + j)! ρj

)2

.

It is easy to show that

∞∑
l=n+1

( ∞∑
k=1

4(l − 2)! ρk−1

(l + ρ + k − 2)(l + k − 1)2(l + k − 2)!
)

=
∞∑
l=n

4

(l + ρ)(l + 1)2l! + O

(
1

n4

)

and also that
∞∑

l=n+1

∞∑
k=1

(l − 2)! ρk

(l + k − 3)! (l + k + ρ − 2)

( ∞∑
j=0

2(l + k − 3)! (2l + 2k + j − 2)

(l + k + j)! ρi

)2

= O

(
1

n4

)
.

Hence,

varρ(Vn) =
∞∑
l=n

4

(l + ρ)(l + 1)2l
+ O

(
1

n4

)
.

But

1

3(n + ρ)3 =
∫ ∞

n+1

dx

(x + ρ)4 ≤
∞∑
l=n

1

(l + ρ)(l + 1)2l
≤

∫ ∞

n−1

dx

x4 = 1

3(n − 1)3 ,

and the result follows.

8.2. Proof of Proposition 8.1

Relation (8.1) follows easily from (8.3), (8.4), and the Borel–Cantelli lemma. We now
prove (8.2). It suffices to prove that the sequence

Zn =
√

3n3

2
(Vn − Eρ(Vn))

converges in law to N (0, 1).
Let φn be the characteristic function of the random variable Zn, let cn = √

3n3/2, and let
T̄k = Tk − Eρ(Tk). For every t ∈ R, the characteristic function of T̄k satisfies

�T̄k
= 1 − t2 c2

n

2
varρ(T̄k) − ic3

nt
3

6
(Eρ((T̄n)

3) + δk(t)),
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where, for all k ≥ 1, δk(t) → 0 as t → 0, and |δk(t)| ≤ 2 Eρ(|T̄k|3) for all t ∈ R. We have

φn(t) = Eρ

(
exp

(
itcn

∞∑
k=n+1

T̄k

))

=
∞∏

k=n+1

Eρ(exp(itcnT̄k))

= exp

( ∞∑
k=n+1

log

(
1 − t2 c2

n

2
varρ(T̄k) − ic3

nt
3

6
(Eρ((T̄k)

3) + δk(t))

))

= exp

( ∞∑
k=n+1

(
−t2 c2

n

2
varρ(T̄k) − ic3

nt
3

6
(Eρ((T̄k)

3) + δk(t))

))

= exp

(
−t2 c2

n

2
varρ(Vn) −

∞∑
k=n+1

ic3
nt

3

6
(Eρ((T̄k)

3) + δk(t))

)

= exp

(
−t2 3n3

8
varρ(Vn) + O

(
1

n3/2

))

→ exp

(
− t2

2

)
as n → ∞, using (8.5).

The last equality above follows from

Eρ(|T̄k|3) = Eρ(|Tk − Eρ(Tk)|3) ≤ (Eρ(|Tk − Eρ(Tk)|4))3/4 = c

k6

(
1 + O

(
1

k

))
.

8.3. Proof of Theorem 8.1

The idea is to use the relations It ≤ Xt ≤ Jt , where

It =
∞∑

n=1

n 1{Vn≤t<Vn−1}, Jt =
∞∑

n=1

(n + Rn) 1{Vn≤t<Vn−1}.

We first show the following result.

Lemma 8.1. As t → 0, √
t(Jt − It ) → 0 Pρ-a.s.

Proof. We note that, for all ε > 0,{
lim sup

t→0

√
t(Jt − It ) > ε

}
⊂ lim sup

n
An,

where
An = {√Vn−1Rn > ε}.

But
Pρ(An) ≤ Pρ(Vn−1 > ε2n−1/4) + Pρ(Rn > n1/8)

≤
√

n

ε4 Eρ(V 2
n−1) + n−1/4 Eρ(Rn)

≤ c(ε, ρ)n−3/2 + ρeρn−9/8.

Consequently,
∑

n Pρ(An) < ∞. The result follows.
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It now remains to prove Theorem 8.1 with Xt replaced by It , i.e. we only have to verify that,
as t → 0,

tIt

2
→ 1 Pρ-a.s. (8.8)

and, moreover, that √
6

t

(
tIt

2
− 1

)
⇒ N (0, 1) under Pρ. (8.9)

Let us first prove (8.8). We have
{

lim sup
t→0

∣∣∣∣ tIt

2
− 1

∣∣∣∣ > ε

}
⊂ lim sup

n
Bn,

where

Bn =
{

sup
Vn≤t<Vn−1

∣∣∣∣ tn2 − 1

∣∣∣∣ > ε

}
.

Consequently,

Bn ⊂
{∣∣∣∣nVn

2
− 1

∣∣∣∣ > ε

}
∪

{∣∣∣∣ (n − 1)Vn−1

2
− 1

∣∣∣∣ >
ε

2

}
∪ {Vn−1 > ε}.

It follows from (8.1) that Pρ(lim supn Bn) = 0 provided that ε > 0. Hence, (8.8) is established.
Let us finally prove (8.9). For all t > 0, let

τ(t) = inf{0 < s ≤ t, Is = It }.
It follows readily from (8.2) that the relation

√
3It

(
τ(t)It

2
− 1

)
⇒ N (0, 1).

Combining this with (8.8), we deduce that
√

6

t

(
τ(t)It

2
− 1

)
⇒ N (0, 1).

Equation (8.9) will follow if we prove that

t − τ(t)√
t

It → 0 in probability, as t → 0,

which from (8.8) is equivalent to

t−3/2(t − τ(t)) → 0 in probability, as t → 0.

This is a consequence of

V
−3/2
n Tn → 0 in probability, as n → ∞.

Since nSn → 2 a.s. as n → ∞, it suffices to show that n3/2Tn tends to 0 in probability. But
Eρ(Tn) ≤ c/n2. The result follows.
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Appendix A. Proof of (2.3)

We define

Cj :=
∞∑

k=1

1

k(k + 1) · · · (k + j)
.

It is easy to show that Cj − Cj+1 = Cj − 1/(j + 1)! + jCj+1, so

Cj+1 = 1

(j + 1)(j + 1)! for all j ≥ 0.

On the other hand,

∞∑
j=1

ρj−1

j ! = eρ − 1

ρ
; hence

∞∑
j=1

ρj

j (j !) =
∫ ρ

0

ex − 1

x
dx.

Appendix B. Proof of Theorem 3.1

Let
Hn = Sn + Hn−1 1{coalescence} +Hn+1 1{recombination},

where Sn is the time until the first jump, starting with n individuals. It is easy to show that Sn

is independent of Hn−1 1{coalescence} +Hn+1 1{recombination}; hence,

varρ(Hn) = varρ(Sn) + varρ(Hn−1 1{coalescence} +Hn+1 1{recombination}).

Moreover, since Hn−1 and the event {coalescence} are independent, as well as Hn+1 and the
event {recombination},

varρ(Hn) − varρ(Hn−1) = 4

(n + ρ − 1)n2(n − 1)
+ ρ

n − 1
(varρ(Hn+1) − varρ(Hn))

+ ρ

n + ρ − 1
(Eρ(Hn+1) − Eρ(Hn−1))

2.

But we have

Eρ(Hn+1) − Eρ(Hn−1) =
∞∑

j=0

2(n − 2)! (2n + j)

(n + j + 1)! ρj .

If we now define Yn := varρ(Hn) − varρ(Hn−1), we have

Yn = 4

(n + ρ − 1)n2(n − 1)
+ ρ

n − 1
Yn+1 + ρ

n + ρ − 1

( ∞∑
j=0

2(n − 2)! (2n + j)

(n + j + 1)! ρj

)2

.

Hence,

Yn = 4

(n + ρ − 1)n2(n − 1)
+ ρ

n − 1
Yn+1 + An,

where

An = ρ

n + ρ − 1

( ∞∑
j=0

2(n − 2)! (2n + j)

(n + j + 1)! ρj

)2

.
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It is easy to deduce the following recursion formula for Yn:

Yn =
m∑

k=1

4(n − 2)! ρk−1

(n + ρ + k − 2)(n + k − 1)2(n + k − 2)!

+
m∑

k=1

(n − 2)! ρk−1

(n + k − 3)! An+k−1 + (n − 2)! ρm

(n + m − 2)!Yn+m.

But we have

An = 4ρ

n + ρ − 1

( ∞∑
j=0

2n

(n − 1)n · · · (n + j + 1)
ρj +

∞∑
j=0

j

(n − 1)n · · · (n + j + 1)
ρj

)2

.

(B.1)
We easily obtain

∞∑
j=0

ρj

n(n + 1) · · · (n + j + 1)

= 1

n(n + 1)
+ 1

n(n + 1)

(
ρ

n + 2
+ ρ2

(n + 2)(n + 3)
+ ρ3

(n + 2)(n + 3)(n + 4)
+ · · ·

)

= 1

n(n + 1)
+ 1

n(n + 1)

eρ

ρn+1

∞∑
j=0

(−1)j
ρn+j+2

j ! (n + j + 2)

= 1

n(n + 1)
+ 1

n(n + 1)

eρ

ρn+1

∫ ρ

0
tn+1e−t dt.

The second equality follows from

1

(n + 2)(n + 3) · · · (n + j + 1)
= a2

n + 2
+ a3

n + 3
+ · · · + aj+1

n + j + 1
,

where the coefficients are given by al = (−1)l/(l − 2)! (j − l + 1)!.
The first term on the right-hand side of (B.1) can be written as

2n

n − 1

∞∑
j=0

ρj

n(n + 1) · · · (n + j + 1)
= 2

n2 − 1

(
1 + eρ

ρn+1

∫ ρ

0
tn+1e−t dt

)
,

and also

∞∑
j=0

ρj

(n − 1)n · · · (n + j + 1)
= 2

n(n2 − 1)

(
1 + eρ

ρn+1

∫ ρ

0
tn+1e−t dt

)
.

Differentiating with respect to ρ and multiplying by ρ, we deduce that

∞∑
j=0

jρj

(n − 1)n · · · (n + j + 1)
= ρ

n(n2 − 1)

(
1 + (ρ − n − 1)eρ

ρn+2

∫ ρ

0
tn+1e−t dt

)
.
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So we have the following identity:

An = 4ρ

(n + ρ − 1)(n2 − 1)2n2

(
2n + ρ + (n + ρ − 1)eρ

ρn+1

∫ ρ

0
tn+1e−t dt

)2

, (B.2)

from which we deduce that

An ≤ 16ρ

n2(n − 1)2(n + ρ − 1)

( ∞∑
j=0

ρj

j !
)2

≤ 16ρe2ρ.

Hence,
∑∞

k=0 Ak+2ρ
k/k! converges for all ρ.

Now, by letting m tend to ∞ we have

Yn =
∞∑

k=1

4(n − 2)! ρk−1

(n + ρ + k − 2)(n + k − 1)2(n + k − 2)!

+
∞∑

k=1

(n − 2)! ρk−1

(n + k − 3)! An+k−1 + lim
m→∞

(n − 2)! ρm

(n + m − 2)!Yn+m.

It is easy to check that

∞∑
k=1

4(n − 2)! ρk−1

(n + ρ + k − 2)(n + k − 1)2(n + k − 2)!

= 4 3F3([1, n, n + ρ − 1], [n + ρ, n + 1, n + 1], ρ)

(n + ρ − 1)n2(n − 1)
.

We need to show that

lim
m→∞

(n − 2)! ρm

(n + m − 2)!Yn+m = 0.

With the notation introduced in Section 2, we have Hn+m = Tn+m + Hn+m−1, and from the
strong Markov property, Tn+m and Hn+m−1 are independent. Consequently,

varρ(Hn+m) − varρ(Hn+m−1) = varρ(Tn+m) ≤ Eρ(T 2
n+m).

By an argument similar to that used in the proof of Theorem 2.1, we can show that

Eρ(T 2
n+m) ≤ c′

(n + m)2(n + m − 1)2 . (B.3)

Consequently,

lim
m→∞

(n − 2)! ρm

(n + m − 2)! (varρ(Hn+m) − varρ(Hn+m−1)) = 0.

The theorem follows.
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Appendix C. Proof of Theorem 4.1

Let Qn = Eρ(Ln). By considering the possible states after the first transition we obtain the
recursion formula

Qn = 2

n + ρ − 1
+ ρ

n + ρ − 1
Qn+1 + n − 1

n + ρ − 1
Qn−1.

It is easy to show that Fn := E0(Ln) + ρ Eρ(Hn) satisfies the same recursion. So we have

(n − 1)(Qn − Qn−1) = 2 + ρ(Qn+1 − Qn).

If we define Mn = Qn − Qn−1, we obtain the relation

Mn = 2
m∑

k=1

ρk−1

(n − 1)n · · · (n + k − 2)
+ ρm

(n − 1)n · · · (n + m − 2)
Mn+m.

Hence,

Mn = 2
∞∑

k=1

ρk−1

(n − 1)n · · · (n + k − 2)
+ lim

m→∞
ρm

(n − 1)n · · · (n + m − 2)
Mn+m.

On the other hand, we have

Mn+m = Qn+m − Qn+m−1 = Eρ(Ln+m) − Eρ(Ln+m−1) := Eρ(L′
n+m).

Again, by conditioning upon the value of Rn+m we can show that

Eρ(L′
n+m) ≤ c′

(n + m)(n + m − 1)
.

It is now easy to deduce that

lim
m→∞

ρm(n − 2)!
(n + m − 2)!Mn+m = 0 for all ρ ≥ 0.

We can easily obtain the relation

Fn = 2
∞∑

k=1

ρk−1

(n − 1)n · · · (n + k − 2)

+ lim
m→∞

ρm

(n − 1)n · · · (n + m − 2)
(E0(Ln+m) − E0(Ln+m−1))

+ lim
m→∞

ρm+1

(n − 1)n · · · (n + m − 2)
(Eρ(Hn+m) − Eρ(Hn+m−1)).

Again, the two limits on the right-hand side vanish. The result follows.
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Appendix D. Proof of Theorem 5.1

We have, for n ≥ 2, with the same notation as in Section 3,

Ln = nSn + Ln−1 1{coalescence} +Ln+1 1{recombination}.

It is easy to show that Sn is independent of Ln−1 1{coalescence} +Ln+1 1{recombination}; hence,

varρ(Ln) − varρ(Ln−1) = 4

(n + ρ − 1)(n − 1)
+ ρ

n − 1
(varρ(Ln+1) − varρ(Ln))

+ ρ

n + ρ − 1
(Eρ(Ln+1) − Eρ(Ln−1))

2.

But we have

Eρ(Ln+1) − Eρ(Ln−1) = 4n − 2

n(n − 1)
+

∞∑
j=1

2(n − 2)! (2n + j − 1)

(n + j)! ρj .

Define Dn := varρ(Ln) − varρ(Ln−1); hence,

Dn = 4

(n + ρ − 1)(n − 1)
+ ρ

n − 1
Zn+1 + Bn,

where

Bn = ρ

n + ρ − 1

(
4n − 2

n(n − 1)
+

∞∑
j=1

2(n − 2)! (2n + j − 1)

(n + j)! ρj

)2

.

Then

Dn =
m∑

k=1

4(n − 2)! ρk−1

(n + ρ + k − 2)(n + k − 2)! +
m∑

k=1

(n − 2)! ρk−1

(n + k − 3)! Bn+k−1 + (n − 2)! ρm

(n + m − 2)!Zn+m.

Similarly to the proof of (B.2) we have

Bn = 4ρ

n2(n − 1)2(n + ρ − 1)

(
2n − 1 + 2nρ + ρ2

n + 1
+ (n + ρ − 1)eρ

(n + 1)ρn

∫ ρ

0
tn+1e−t dt

)2

.

It is easy to show that
∑∞

k=1 Bk+2ρ
k/k! converges for all ρ.

It is not hard to show that

∞∑
k=1

4(n − 2)! ρk−1

(n + ρ + k − 2)(n + k − 2)! = 4 2F2([1, n + ρ − 1], [n + ρ, n], ρ)

(n − 1)(n + ρ − 1)
.

Similarly as in Section 3, Ln+m = Xn+m + Ln+m−1, where

Xn+m ≤ (n + m + Rn+m)Tn+m,

again with Xn+m and Ln+m−1 independent, so that

varρ(Ln+m) − varρ(Ln+m−1) = varρ(Xn+m)

≤ 2(n + m)2 Eρ(T 2
n+m) + 2 Eρ(R2

n+mT 2
n+m).
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We deduce from (B.3) that, for large enough m, say (m + n ≥ 8ρ),

(n + m)2 Eρ(T 2
n+m) ≤ c1

(n + m − 1)2 ,

and also

Eρ(R2
n+mT 2

n+m) =
∞∑

k=1

k2 Eρ(T 2
n+m | Rn+m = k) Pρ(Rn+m = k)

≤ c2

(n + m)(n + m − 1)

∞∑
k=1

(k + 1)2
(

4ρ

n + m − 1

)k

≤ c′
2

(n + m)(n + m − 1)
.

Consequently, for all ρ ≥ 0, as m → ∞,

(n − 2)! ρm

(n + m − 2)!Dn+m → 0.

Therefore, we obtain the relation

varρ(Ln) − varρ(Ln−1) = 4 2F2([1, n + ρ − 1], [n + ρ, n], ρ)

(n + ρ − 1)(n − l)
+

∞∑
k=1

(n − 2)! ρk−1

(n + k − 3)! Bn+k−1.

The theorem follows.

Appendix E. Proof of Theorem 6.1

We can obtain the following relation for Rn:

Rn = ξn(1 + R′
n + R′

n+1), (E.1)

noting that (ξn, R
′
n, R

′
n+1) is a sequence of independent random variables, ξn is a Bernoulli

(ρ/(n + ρ − 1)) random variable, and R′
n and R′

n+1 are copies of Rn and Rn+1, respectively.
So we have

Eρ(Rn) = ρ

n + ρ − 1
(1 + Eρ(Rn) + Eρ(Rn+1)).

We can easily deduce the following relation from the above recursion formula:

Eρ(Rn) =
m∑

k=1

(n − 2)! ρk

(n + k − 2)! + (n − 2)! ρm

(n + m − 2)! Eρ(Rn+m).

On the one hand, we have

lim
m→∞

(n − 2)! ρm

(n + m − 2)! Eρ(Rn+m) = 0,

because

Eρ(Rn+m) =
∞∑

k=1

k Pρ(Rn+m = k) ≤
∞∑

k=1

kak

(
ρ

n + m − 1

)k

≤ 4ρ

n + m − 1 − 4ρ
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for n + m − 1 ≥ 8ρ, where again ak is the Catalan number. On the other hand, it is easy to
show that ∞∑

k=1

(n − 2)! ρk

(n + k − 2)! = eρ

ρn−2 (
(n − 1) − 
(n − 1, ρ)),

where 
(a, x) is the incomplete gamma function defined as


(a, x) =
∫ ∞

x

ta−1e−t dt.

Hence, for all ρ, we obtain

Eρ(Rn) = eρ

ρn−2 (
(n − 1) − 
(n − 1, ρ))

= eρ

ρn−2

∫ ρ

0
tn−2e−t dt

= ρ

∫ 1

0
sn−2eρ(1−s) ds.

The theorem follows.

Appendix F. Proof of Theorem 7.1

From the recursion formula (E.1) we deduce the following formula for the variance of Rn:

varρ(Rn) =
m∑

i=0

i∏
k=0

ρ(n + k − 1)

(n + k + ρ − 1)2 − ρ(n − 1)

+
m∏

k=0

ρ(n + k − 1)

(n + k + ρ − 1)2 − ρ(n − 1)
varρ(Rn+m).

We have

Eρ(R2
n+m) =

∞∑
k=1

k2
(

4ρ

n + m − 1

)
≤

∞∑
k=1

k2ak

(
4ρ

n + m − 1

)
≤ 4(n + m − 1)ρ

(n + m − 1 − 4ρ)2

for 8ρ ≤ n + m − 1. From this we deduce that

varρ(Rn+m) ≤ 4(n + m − 1)ρ

(n + m − 1 − 4ρ)2 .

We can easily show that

lim
m→∞

m∏
k=0

ρ(n + k − 1)

(n + k + ρ − 1)2 − ρ(n − 1)
varρ(Rn+m) = 0.

Hence,

varρ(Rn) =
∞∑
i=0

i∏
k=0

ρ(n + k − 1)

(n + k + ρ − 1)2 − ρ(n − 1)
.

The result follows after some algebraic simplifications. It is easy to show that

varρ(Rn) = ρ(n − 1)

(n − 1)2 + ρ(n − 1) + ρ2 + O

(
1

n2

)
.
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