COHOMOLOGY RELATIONS IN SPACES WITH A
TOPOLOGICAL TRANSFORMATION GROUPV

SZE-TSEN HU

1. Introduction

Let & be a topological transformation group operating on the left of a
topological space X. Let us denote by. B the orbit space and p: X— B the
projection. p is a continuous and open map of X onto B. For an arbitrary
abelian coefficient group G, the continuous map p induces homomorphisms

" H"B. G)»H"(X. G), (n20),

of the Alexander-Wallace cohomology groups [1]®. These induced homomor-
phisms are, in general, not onto isomorphisms. They depend on the manner in
which the topological transformation group @ operates on X.

To measure the devia‘ion of these induced homomorphisms p* from the
onto isomorphisms. we introduce, in the present paper. the weakly residual
cohomology groups

HiX. G). (n=0).

They are invariants depending on X, €. G and the operatiocns of @ on X. By
means of these groups. we shall establish an exact sequence

H(B, 6% ... >H"B, G5 H'X. G)»Hy(X, G)-H" B, G)% ....

This indicates that the weakly residual cohomolegy groups Hu(X, G) might
play an important role in the further studies of the cohomology structures of
the orbit space.

For each point x € X, there is a canonical homomorphism

ki Ho(X, G)-H"(Q, G), (nx0).

It is proved that if @ is compact and if x and y are two points contained in a
compact connected subset of X then % = k.

2. Preliminaries

Throughout the present paper, let @ be a topological group acting as a

Received, August 10, 1952,

1) Presented to the American Mathematical Society, September 2, 1952. This work was done
under Contract N7-ONR-424, Office of Naval Research.

2) Numtbers in square brackets refer to the bibliography at the end of the paper.

https://doi.org/10.1017/5S002776300001549X Published online by Cambridge University Press


https://doi.org/10.1017/S002776300001549X

114 SZE-TSEN HU

group of transformations on the left of a topological space X. By this we mean
that, with each element g in Q. there is associated a transformation

We:X->x
such that, if we use the notation W,(x) = gx, the following conditions are satis-
fied.
(2.1) gx is continuous in ¢ and x simultaneously ;
(2.2) algx) = (qg)x. (qE€Q, ¢.€Q, xeX);
(2.3) ex=x, ((x€X),

where e denotes the neutral element of Q. More precisely, the condition (2.1)
means that the map

M:QxX-X

defined by M(q, x) = gx for each ¢EQ and each ¥ € X is continuous. Obviously,
W, is a homeomorphism of X for each ¢EQ.

Two points ¥ and'y are said to be equivalent if there exists an element q
in @ such that y =gx. This equivalence relation divides the points of X into
disjoint equivalence classes called the orbits of @ in X. The orbit which con-
tains the point x& X will be denoted by @x. Hence @x =@y if and only if x
and y are equivalent. Let B denote the set of all orbits of @ in X. There is
a natural map

p:X-B

of X onto B defined by p(x) = Qx for each x&X. p will be called the projec-
tion of X onto B. Let us give B the identification topology determined by »p.
That is to say, a subset V in B is called open if and only if p~'(V) is an open
set in X. The topological space B thus obtained will be called the orbit space
of the transformation group Q. B is a Ty -space if and only if every orbit of @
is a closed subset in X.

The projection p: X— B is both continuous and open. In fact, the con-
tinuity of p follows from the definition of the identification topology in B de-
termined by p. To see that p is open, let U be an arbitrary open set in X and
call V=p(U). It suffices to show that »~'(V) is an open set in X. By the
definition of , the set » (V) consists of the totality of the points gx in X
such that g Q and x€U. Hence p~'(V) is the union QU of the sets Wo(U)
for all g€Q. For each ¢q in . W, is a homeomorphism of X. This implies
that W,(U) is open and hence, as a union of open sets, p~'(V) is open.

3. The various cohomology groups

For convenience of the reader, we shall briefly recall the definition of the
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Alexander-Wallace cohomology groups [1]. Let G be an abelian group used as
the coefficient group of the various cohomology groups defined in the sequel.
Denote by

AMX, G). (nx0),
the group of all n#-functions ¢: X" -G on X into G and
A7(X, G), (nx0),

the subgroup of A™(X, G) consisting of the »-functions with empty support,
where the support S(¢) of an n-function ¢:X™'->G is the closed set of X
defined by the following assertion:

(3.1) A point x£X is not in S(¢) if and only if there exists an open
neighborhood U of x in X such that

¢(x0, xl, DRI xn) =0
whenever x;€U for all i=0,1,..., n.
The coboundary homomorphism
(3.2) 8:AMX, G)-» A" (X, B)

is defined as usual, namely®

n+l

(5(!))(270, “ ey xn+1) =20(—'1)i¢(xo, P 2;‘, ey Xnet)

for arbitrary (%o, . . ., %as1) € X" Obviously we have

SATU(X, G)CAY(X, G).
Let
C*(X, G) = A™(X, G)/A¥(X, G).

Then ¢ in (3.2) induces a coboundary homomorphism
(3.3) 8:CMX, G)»C"" (X, G).

The elements of C"(X, G) are called the #n-cochains of X over G. For each
n-function ¢ € A”(X, G), we shall denote by [¢] the n-cochain which contains
¢, that is,

[pl=9+ AV(X, G),
We say that ¢ represents [¢].

Let ZM(X, G)CC™ X, G) denote the kernel of ¢ in (3.3), and B*"'(X, G)
=8(C™ X, G)). Further, we define B"(X, G) =0. Since 88 =0, we have
BYX, GO)CZMX, G). (n=0).

H' (X, G)=2Z"(X, G)/B"(X, G)

The quotient group

3) The circumflex over x; indicates that x; is omitted.
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is called the n-dimensional cohomology group of X over G.
An n-function o€ A™(X, G) is said to be strongly invariant under Q if

o (@Xo, o v v Guxn) =Ko, o ... Xn)

for all x;€X and all ¢€Q, :=0..... #. An sa-cochain ceC* X. G) is said
to be strongly invariant under @ if c contains an n-function ¢ € A*(X. G) which
is strongly invariant under . Obviously the strongly invariant z-cochains of
X over G form a subgroup

CitX, G)CCX G

and

JCHX., GNCCIUX, G,
hence the ¢ in (3.3) defines a coboundary homomorphism
(3.4) 0:CHX, GY-»CHUX, G).

Let ZH X, G)CCHX, G) denote the kernel of ¢ in (3.4) and Bf*'(X. &)
=§(CHX.G)). Further, we define B3 X, G) =0. Then evidently we have
S(X, G)=2Z"X GINCIX, G).

The quotient group

HI(X, 6 =Z{X, G)/Bs(X, G)

is called the n-dimensional sirongly invariant cohomology group of X over G
(under the topological transformation group Q).

For each integer n=0. let
CulX, G)=C"X G/ CHUX, G).

The elements of Cu(X, G) are called the weakly residual n-cochains (with

respect to @) of X over G. Since the coboundary homomorphism ¢ in (3.3)
maps C¥ X, G) into C§™(X. G), it induces a coboundary homomorphism
(3.3) 3:CulX. GY-Ci (X, G).

Let ZX(X, GYCCH(X. G) denote the kernel of ¢ in (3.3) and Bi (X, G)
=6{(Ci(X, G)). Further, we define Bl( Y. G) =0. The quotient group

HiyX, G)=ZipX, G)/Bus X, G)

is called the n-dimensional weakly residual cohomology group of X over G (with
respect to the topological transformation group Q).

Let us denote respectively by

1 CH(X, G)~»CH(X, G},
71 CHX, GY-»Cul X, G)
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the natural inclusion and projection homomorphisms. Since both : and = commute
with the coboundary operator d. they induce homomorphisms

(3.6) FIHNX, G)»H'X, G),

3.7 m* H"X, G)-» Hu(X, G)

for each integer z=>0. We are going to define a homomorphism
(3.8) 8" Hy X, G)» H (X, G)

for every n20 as follows. Let « be an arbitrary element of Hy(X, G). Choose
a weakly residual n-cocycle cw=Ciu( X, G) which represents «. Since » maps
C"(X, G) ontp Cu(X, G). there is an n-cochain c&C™( X, G) with z¢ = cu». Since
ndc = dmc = dcuw = 0, we have dc€ Z2"(X, G). Hence dc represents an element 8
of H3"( X, G). 1t is not difficult to see that ;7 depends only on a. We define the
homomorphism 8™ by taking

0 a) = 5.

The following theorem is a direct consequence of a general theorem of
Kelley and Pitcher [2].

THEOREM 1. The sequence of groups and homomorphisms
HYX. G5 ... 5HXX )5 H X, G)SHNX, G)SHI' (X, G)5 ...

is exact in the sense that the image of each homomorphism coincides with the
kernel of the following one.

4. The isomorphism ps5
The projection p: X— B induces a homomorphism
4.1) PP AMB, G) »ANX. G)

of the nm-functions A™( B, G) of the orbit space B into the n-functions A™(X, G)
of X as follows. Let g€ A"t B. G) be an arbitrarily given n-functions of the
orbit space B into G. The n-function pFp€ A"( X, G) is defined by

PO NXs o oo X)) =OUDXs o .. L DXR)
for every (%o. ..., %) of X"*'. Since
Plgx) =plx)
for every x€X and every g€, p*¢ is strongly invariant under @. Let us
denote by
ANX. &

the subgroup of A™( X, G) which consists of the strongly invariant z-functions.
Then (4.1) may be written in the following more precise form
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(4.2) pE:AM(B, G)-» AU X, G).
(4.3) LemMma. pf maps A™(B, G) isomorphically onto AXX, G).

Proof. That p¥ is an isomorphism is a consequence of the fact that p is
onto. In fact, suppose that g€ A™(B, G) and pf¢p=0. Let (b . ... b,) be an

arbitrary point of B**'. Since » maps X onto B, there are # + 1 points %o, . . . ,
%» in X such that px;=b; for each i=0, ..., n. Then we have

¢(bn, “ e e s bn) = (p§¢)(X|), “ e ey xn) =0.
Since (&g, ..., bn) is arbitrary, this proves that ¢ =0 and hence p¥ is an
isomorphism.
To prove that p§ maps A™( B, G) onto A¥( X, G), let

¢ : Xn+l - G
be an arbitrary strongly invariant n-function. Define an n-function
¢ : Bn+l - G

as follows. Let (b, ..., by) be any point in B**'. Choose n+1 points x,,
.5 ¥ in X such that px; =b; for each £=0, ..., n. Then ¢ is defined by

taking

(4.4) ¢(bo, vy ba) =9')(x0» « e e Xn).

To justify this definition, it suffices to show that ¢(bo, . . . , bx) does not depend
on the choice of %, . .., x». In fact, let », ..., y» be any #+1 points in X
with py; =b; for each ¢=0, ..., n. Then there are qo, . . . , g» in @ such that

i = qi%i, (1=0,..., n).
It follows from the strong invariance of ¢ that
¢’(}’o, .« e ey yn) =¢(Qoxo, PN (Inxn) =(/1(xo, o« e o s xn).

This justifies the definition of ¢. By (4.4), it is clear that ¢ = p¥s. Hence pE
maps A™(B, G) onto AY(X, G). This completes the proof of (4.3).

(4.5) Lemma. pf maps AXB, G) onto AXX, GYNANX, G).

Proof. Let 9= A7(B, G) and x€ X be arbitrarily given. Call » = px. Since
¢ is of empty support, there is an open neighborhood V of & in B such that

¢(bo, “« .o s bn)':o

whenever b;€ V for each i=0, ..., n. It follows from the cor;tinuity of p that
there exists an open neighborhood U of x in X with

pHCV.

Then we have
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(PE3)(%or o o, %n) =0(D%0, . . ., PXn) =0
whenever x;€ U for each i=0, ..., n. Hence x is not in the support of pfg¢.
Since x is arbitrary, pi¢ is of empty support. This and (4.3) prove that
PHAY(B, G))CANX, GINAI(X, G).

Next, let ¢ € AX(X, G)NAF(X, G) be arbitrarily given. By (4.3), there is
an n-function ¢€ A”(B, G) such that ¢ =pi¢. It remains to show that the
support of ¢ is empty. Let b€ B be any given point. Since p maps X onto B,
there is a point & X with px=05. Since ¢ is of empty support, there is an
open neighborhood U of x in X such that

(b(xo, « e oy xn) =0
whenever ;€U for each 7=0,..., n. Call
V=p(D).

Since p is an open map, V is an open neighborhood of #in B. Let (by, . . . , b,)

be any point in B™! with b€ V for each £=0, ..., n. Choose #+1 points

X0, . - - - Xn in U such that px;=b; for each =0, ..., n. Then we have
&by « .., b)) =¢(x0, . . ., %) =0.

This proves that & is not in the support of ¢. Since b is arbitrary, the support
of ¢ must be empty. This completes the proof of (4.5).

Since »* maps A7(B. G) into A7(X, G) by (4.5), it induces a homomorphism
(4.6) p*:CM(B, G)~ C"(X, G).

By (4.3), »* in (4.6) maps C*(B, G) into C3(X, G). Hence (4.6) may be written
in the following more precise form

(4.7) 25:C*(B, G)~Ci(X, G).

(4.6) and (4.7) are connected by the following obvious relation
(4.8) epf =p",

where ¢: C/(X, G) > C"(X, G) denotes the inclusion homomorphism.
(4.9) LemMA. ! maps C*(B, G) isomorphically onto C3(X, G).

Proof. To prove that p! maps C"(B, G) isomorphically into C{(X, G), let
ceC™B, G) be any n-cochain of B such that pic=0. Choose an z-function
¢:B""'>G which represents ¢. pic=0 implies that ¥ is of empty support.
By (4.3) and (4.5), this implies that the support of ¢ is empty. Hence ¢=0
and pf is an isomorphism.

To prove that p§ maps C*(B, G) onto C{(X, G), let d be any strongly
invariant z-cochain of X over G. Choose a ¢ & AJ(X, G) which represents d.
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By (4.3), there is a 9& A”(B. G) such that pfp =¢. ¢ represents an n-ccchain
c€C™(B. G) and obviously pic=d. This completes the proof of (4.9).
Since both p* and pf commute with the coboundary operator 8. they induce

homomorphisms
(4.10) P H"B.G)~H"X. G)
(4.11) PFHMB. GV»H{(X. G)

for each integer n=>0. The relation (4.8) gives
(4.12) P =P
The following theorem is an immediate consequence of (4.9).

TueoreM 1L pS maps H™(B. G) isomorphically onto H¥(X. G).

5. The exact sequence
Let us call
d’  Hp(X. G)~H"B. G)
the homomorphism defined by
(5.1) d”=1pd) e

Then the following theorem is a consequence of the theorems I and H together
with the relations (4.12) and (3.1).

TueoreM lIl. The sequence of groups and homomorphisms
H'B. G5 . .. B HYB. )5S HYX. G5 Ho(X. OB HB. G . ..

is exact.

6. The canonical homomorphism &5

Let x& X be a given point. We are going to construct a canonical homo-
morphism

(6.1) EYH(X. G)» H"Q. G)

for each integer n=0.

Let a € Hiy( X, G) be arbitrarily given. « is represented by a weakly residual
n-cocycle co € Zun( X, G) and ¢y itself is represented by an s-function o€ A™(X.
G) such that

(6.2) dp=¢+47y, f€AINMX G). 1€ ATMX, G).
We may assume that

(6.3) X . ...x)=0
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Infact.if p(x. . ... x) = a %0, we define a strongly invariant n-function ¢.€ A% ( X.
&) by taking

Pl Xoe o v o Xn)=a
for each point (%o. . . . . %) of X"*'. Then, we replacc ¢ by ¢ — ¢, which re-

presents the same weakly residual »n-cocycle ¢y that ¢ does.
Now let us define an n-function k9= A™(Q, G) of @ over G by taking

(B o) qo. . ... qn) =0(qux. . ... Qnx)
for each point ‘¢q. . . . . gn) of Q"
(6.4) Lemma. The coboundary 0k ¢ of k*¢ is of empty support.

Proof. Let g be an arbitrary point in €. It suffices to show that ¢ is not
in the support of sk*¢. By 16.2). we have

0p =<+

where f€ A" (X. G) and 7€ A{"(X. G). Since 7 is of empty support. there is
an open neighborhood U of the point gx ih X such that

/AW 7 Xn) =0

whenever x; (7 for all i=0..... n. Then there exists an open neighborhood
V of ¢ in @ such that
VxC U.
On the other hand. we have 7(x, ..., x)=0. It follows that, for any point
(e v v gr-1) of @77 such that ¢;€ V for all =0, ..., n+1, we have
OR oUdu. « « « s @) = 20 - DB (g .. .. @ir v o v s Quet)
n:i i N\
:L(—l\ ¢(qox, e e GiX, o ... qn+1%) :5¢(q0x, c e QnriX)
e=0
= QoK o v e s GuerX) + QoK. o o ., Qurrx) =8, .. LX)
=0piX. . ... x)—7x,....%2)=0

This proves that ¢ is not in the support of d%°¢ and hence completes the proof
of 16.1).

By (6.4). the n-cochain [k*¢]= C™( @, G) which contains the »n-function £*¢
defined above is an n-cocycie of @ over G and hence it represents an elemen:
Eita) of H'(Q. G).

(6.3) LEMMA. The element ki(a) does not depend on the choice of the a-
function ¢ A*(X. G) which represents the given element a & Hy( X. G

Proof. First assume n>>0. Let ¢’ be any n-function which represents «
and such that ¢/(x. . ... x)=0. Then
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o —p=0p+0+7
where ¢ = A" M X, G), 6 A¥(X, G) and r€ A¢(X., G). Define an (n — 1)-func-
tion c€ A"(Q. G) of § over G by taking
C((Iu ..... Qn—-l) :(/J(Q()x, « o s (];z—jx) -gb(x, PRSP x)
for each point (go. . . - , gu-1) of @". In order to prove (6.5) for n>0, it suffices
to show that
RE — kP~ oC
has empty support. Let ¢ be an arbitrary point in €. Since the support of r is
empty, there is an open neighborhood U of the point gx in X such that

1:(-0, C e e xn)=0
whenever x;€U for all =0.. ... n. Let V be an open neighborhood of ¢ in
@ such that
VaC U.
Then, for each point (qu, . ... qx) of @' with ¢;€V for all £=0, ..., n,
we have
(k”¢'—k:¢—3C)(ql)., « o o 9 q”)
=(¢ — ) (qox, . . ., gux) —00(qo%, . . ., qnXx)+0P(x, ..., %)
=0(qux. ..., qux)+7(qux, ..., gux)+00(x, ..., %)

=0(x, ..., %) +0p(x, ....x)
=¢(x, ..., %) —¢(x. ..., x)=0.

Hence ¢ is not in the support of k*¢' — k*¢ — 8¢,  Since q is arbitrary, this proves
that the support of k*¢' — kf¢ — 0¢ is empty.

It remains to dispose of the trivial case #=0. Let ¢ and ¢/ be any two
O-functins which represent the same element a € H)(X, G) and such that ¢{x)
=0=¢'(x). Since AYX, G) =0, we have ¢' — o= ANX, G). In order to prove
(6.5) for »=0, it suffices to show that A*¢' —k*¢p =0. Let q be an arbitrary
point in . Then we have

(k¢ — B*¢)(q) = (¢ — ¢)(gx) = (¢' — ¢)(x) = 0.

Since ¢ is arbitrary, we have k°¢/ — k*¢ =0. This completes the proof of (6.5).

The correspondence a-> k3 (a) obviously defines a homomorphism of Hp! X,
G) into H"(®, G). This completes the construction of the canonical homomorpism
(6. 1).

7. Relations between the canonical homomorphisms

THEOREM IV. If @ is compact and if x and y are two points contained in
« compact connected subset K of X, then ki = kY.
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Proof. Let n=0 be an arbitrary integer and « € ki (X, G) be an arbitrary
element. It is required to prove that

ki) =k (a).
The element « is represented by an n-function ¢ &€ A™( X, G) such that
dp=2E&+17 f€AVNX, G), e AV(X, G).

According to the construction of the canonical homomorphism &7 for an arbitrary
point z€ X. the element %5 (a) of H*(Q, G) is represented by the n-function

k:-:(/):Q””“’G
defined by
(k‘E(/))((Iu. e Q) =¢(qoz, - . . . ) —plz, ..., z)

for each point (qo, . . . . g») of @',
Now. for any two points a and b of X and any (#+ 1)-function ¢ € A" ( X,
G), let us define an n-function

Dr,l,h (/; : Q" T G
of @ by taking

n

(Da,b(,[i)((]() ..... (In) = >_J_.:)( —l)i(ﬁ(qoa. «. .. qia, qib. “ e e . q;zb)

for each point (qo, . ... @) of @*"". Let E,»¢ denote the constant n-function
of @ defined by

(Eapd)(qos - - - @u)=(Dap¢)le, ....e€)
for each point (gu. . . .. qx) of @""\. where e denotes the neutral element of &.
Since £ AY"(X. G). clearly we have
Dups=Eapé.
If »> 0. direct calculation shows that

. 1) k2 — kap = (8Dap ¢ + Dap 6¢) — (6Eap ¢ + Eap 09)
= 0(Dap ¢ — Eap ) + Dapn— Easn
since 69 =5 +7 and Dap s =Esp s, If n=0. then we have
(7.2) k¢ — kap = Dap 0¢ — Eap 00 = Dapn — Eap.
Since 7 is of empty support, there exists for each point z in X, an open
neighborhood U, of z in X such that

'0(.760.‘. e Xnr) =0

whenever x;E U, for each ¢=0.....n+1. It follows from the simultaneous
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continuity of the operations of @ on X that, for each z& X and w&E® there
exist an open neighborhood Vi of z in X and an open neighborhood Wy of w
in @ such that

WV C Uy .
Since @ is compact. there are a finite number of points w, . . . . wx such that
the open sets
Be={Wu, - - » Wa,}
form an open covering of @. Call
Ve=Vw,N...0\Vu,.

Then V: is an open neighborhood of z in X.

Now let @ and & be any two pointsin V.. We are going to show that both
Duan and Eqpy are of empty supports. Let ¢ be an arbitrary point in €. Choose
an open set Wy, from the covering . which contains g. Then we have

ij Vz C ijz.

Let (g, . ... g+ be any point of Q"' such that ;€ Wuw, for each ¢=0, ...,
n. Then the points

Qs « - . 5 Gn@, Qob, . .« ., Qnb
are all contained in Uy;z. Hence we have
(Dapn)qo, « .. . Qn) =§,( V% qa, . . ., gia, qib, . . . , qub) =0.
This proves that ¢ is not in the support of Dss#. Since ¢ is arbitrary, the
support of Dgp% must be empty. This implies that
(Eapn)(qo, ..., qn) =(Da,p)le, ...,e)=0

for every point (g, . . . , @) of @""". Thatis to say, Ezs7 =0 and hence Ezp7
is of empty support. Then it follows from (7.1) and (7.2) that

i7.3) ki (a) = Bf ().

Since x and y are contained in a compact connected subset K of X, there
exist a finite number of points z;, . .., 2 of X such that x& V,,, y& V;,.. and
the intersection V3, V2, is nonvoid for every ¢=1,..., r—1. Choose a point
t; from V; N\ V., for each i=1,..., r—1 and call =2 £ =y. Thus we
obtain a finite sequence of points

x=1to, b1, « v ., tre1, tr=y
such that V:, contains #-; and 4 for each i=1, ..., 7. By (7.3), this implies
that
ki la) =ki(a)
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for each i=1,...,r. Hence we obtain ki(a) =Ek}(a). This completes the
proof of Theorem IV.

A topological space X is said to be compactly connected if every pair of
points ¥ and y of X are contained in some compact connected subset of X.
Compact connected spaces and arcwise connected spaces are examples of com-
pactly connected spaces.

The following theorem is an immediate consequence of Theorem 1V.

TueoreMm V. If a compact transformation group Q operates on a compactly
connected topolegical space X, then the canomical homomorphism kY does not
depend on the choice of the basic point x X and hence it may be denoted by

EY: Hy(X, G) > H™Q, G).
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