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THE APPROXIMATE SUBDIFFERENTIAL OF
COMPOSITE FUNCTIONS

A. JOURANI AND L. THIBAULT

This paper deals with the approximate subdifferential chain rule in a Banach space.
It establishes specific results when the real-valued function is locally Lipschitzian
and the mapping is strongly compactly Lipschitzian.

0. INTRODUCTION

In [8] we have proved that, under the metric regularity assumption (a general
constraint qualification), a point a: is a local minimum to the constrained problem

(P) minimise g(x) subject to x 6 C and G(x) 6 D

(where g: X —» R and G: X —> Y are locally Lipschitz at x and C and D are two
closed subsets of the Banach spaces X and Y respectively) if and only if x is a local
minimum to the unconstrained problem

(V) minimise / o F(x) over all x £ X

where F(x) = (g(x), G{x), kd(x; C)) € R x Y x R and f(s, y,t) - s + kd(y, D) + t.

Obviously / and F are also locally Lipschitz. When Y is finite dimensional Clarke's
formula says that, for z := F(x),

(1) dc(foF)(x)Ccol U dc(z*oF)(x)

and hence, because of the convex closure operation co, one cannot get directly Lagrange
multipliers for problem (V) by applying formula (1) and the well known principle 0 £
dc(f o F)(x). One of the most important properties of the approximate subdifferential
introduced by Mordukhovich [9] is that it satisfies formula (1) without the convex
closure operation, that is

(2) dA(foF)(x)C (J dA(z*oF)(x)
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whenever X and Y are both finite dimensional (see [3, 9, and 7]) and hence by using
our reduction procedure above we can easily derive Lagrange multipliers (relative to the
approximate sub differential) for problem [V) by writing 0 G 9 A ( / ° F){x)- Moreover
these multipliers are also multipliers relative to the Clarke subdifferential since the
approximate subdifferential for any locally Lipschitz function is included in the Clarke
sub differential.

Ioffe [6] has extended formula (2) to the case where X and Y are general Banach
spaces and F admit a strict prederivative with compact values. Our aim in this paper is
to prove (when X and Y are Banach spaces) formula (2) for the larger class of strongly
compactly Lipschitzian mappings F, a variant of the class of compactly Lipschitzian
mappings introduced by the second author in [10]. Many results of this article are
largely inspired by the papers [2] and [6] of Ioffe. Because of the importance, in our
opinion, of this composition formula, and in order to make the paper self-contained we
recall all the notion that we use and we give detailed proofs of the main results.

1. PRELIMINARIES

Throughout the paper X and Y are Banach spaces and we denote by Bx, BY ,

Bx and BY the closed unit balls of X, Y, X* and Y* respectively and B(v, s) -

{z: \\v — z\\ ^ s}. By (.;.) we denote the canonical pairing between the space and its
dual and also the inner product in any Euclidean subspace L C. X. We also write

L*- = {x* e X* : (x*;x) = 0, Vz 6 L}.

If / is an extended-real-valued function on X, we write for any subset D of X

j f(x), if z £ D
y +oo, otherwise.

The function

d~f(x; h) = liminf ^ ( / ( z + tu) - f{x))

is the lower Dini derivative of / at x and

d~f{x) = {x* £ X* : (x*; h) ^ d~f(x; h), Vh € X}
and

a.-/(x) = {z* € X* : (x*; h) $ d~/(*; h) + e \\h\\, V / . £ l }

are the Dini subdifferential and the Dini e-subdifferential of / at x.
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REMARK. For any locally Lips chit z function / one has

d~f(x;h) =Uminfr1(/(a; + th) - /(*)).

DEFINITION 1.1: A collection £ of closed subspaces of X will be called admissible
if

(a) every x £ X belongs to some L £ £;
(b) for any L\, i 2 e £ there is an L £ C containing both L\ and £2 •

EXAMPLE: The family T of all finite dimensional subspaces of X is an admissible

one.
In all the sequel limsup9~/j;-)-£,(x) will denote the weak-star superior limit set,

x-Lx
that is

limsupd~/I+x,(x) = {x* £ X* : x* = w* - l imi,- , x\ £ d~ fXi+i,(x) and x; > x}
f _ *

X >X

where x —> x means that x —> x and /(x) —> f(x).

DEFINITION 1.2: [4] Let T be the previous collection and / be a lower semicon-
tinuous function on X with |/(sT)| < +00. The ̂ -approximate subdifferential of / at
x is defined by

#A/(X) = p | limsupd~/I +i(x).
L£T x-^->x

REMARK. The set-valued mapping x —> C?A/(X) is upper semicontinuous in the follow-
ing sense: 9^/(x) = Iimsup3>i/(x), (see [4]).

/1_
DEFINITION 1.3: [4] One says that X is a weak trustworthy space (WT-space)

if for any two lower semicontinuous functions f1 and f2 on X and any e > 0

97 (f1 + /2)(x) C limsup (d-fixi) + d-f2(x2)).

x-^x
i=l,2

EXAMPLE: Every separable space is a WT-space (see [5]).

LEMMA 1.4. Let T: X —> Y be a surjective continuous linear operator between
two Banach spaces X and Y and let M: Z =1 Y be a multifunction with nonempty
values where Z is a metric space. Then
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where || || — lira sup denotes the strong superior limit set.

PROOF: Let Tx £ limsupM(z). Without loss of generality we may assume that
z—*z

there is zn —> 1 and yn £ M(zn) such that yn —> Tx. From the surjectivity of T one
has (see for example [1]) the existence of o ̂  0 and r > 0 such that

for all x' £ B(x, r) and y' £ B(Tx, r), where d(v, D) = inf{||-u - v ' | | : v' £ D}. So
there is no £ N such that for n > TIQ one has yn £ B(Tx, r) and

d(x,T-l{ynj)^ad{yn,Tx),

and hence there is xn £ T—1(i/n) such that

d(x,xn)^2ad{yn, Tx)

which implies that x £ lim supT~1(yn) C limsupT~1(Jl/(2:)) . Q
n—» + oo z—*~z

The following lemma and the next propositions will be used in Section 2.

LEMMA 1 . 5 . Let L be a Unite dimensional subspa.ce of X, f1 and f2 two lower

semi-continuous functions on X and 6 > 0. Then

r
xt >x
»=1,2

PROOF: Let P: L -> X be the imbedding operator and let P* : X* -> X*/^ be
the canonical projection. For each ft. £ i we set gi(h) = fl+^{x + Ph) and 52C1) =
/ Z + L ( Z + -P^)- It is not difficult to see that for any u-i, ui £ L

<r<7i(ui, h) = d~fx+Pui+L(x + PUl, Ph) and d~g2{u2, h) = d~fx+Pu2+L(x + Pu2, Ph).

Let us note that d~fl+Pui+L{x + Pu^) = (P*)"1 (d~gi(m)) since for P*x £ d~gi{ux)
we have for all h £ L

which is equivalent to x* £ d~fx+Pui+L(x + Pu). So as L is a WT-space

C lim sup (d~gi(u{) + d~g2(u2))

. = 1,2
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and hence becasue the surjectivity of P* and Lemma 1.4 it follows that

87 (f1 + f)x+L(x) = (PT1 (87(9l + 92)(o))

i=l,2

C limsup(P*)"1 (d79i(«i) + Kg2{u2))

t=l,2

C"

i=l,2

C ]imsup[d7fl+Pui+L(x + Pui) + 87 fl+Pua+L(x + Pu2) + L1]

i=l,2

>"=1,2

D
In the sequel we shall denote by d(S; .) the distance function to a subset S of X.

The notation x —> x will mean x —> x and x £ 5.

PROPOSITION 1.6 . [4] Let C be an admissible coUection of WT-subspaces
ofX. Then

8Af(x)= P| limsupd7fx+L(x).
L€C X-L,x

do

Moreover if S is a subset of X which is closed around x G S (that is S D B(x, r) is
closed for some closed ball B(x, r)), then

djid^S',^^ = f I Hmsup9e dx+i,(S]x).
Lee xJLx

REMARK. Following Ioffe [2] we see that for any e > 0 and any L G C, each x* G
d~dx+L(S; x) satisfies {x*, h) ^ (1 + e) \\h\\ for all h G L. Therefore x* e (1 + e)Bx. +
L1- (where Bx* is the closed unit ball of X* ) and hence

d7dx+L(S; x) C d7dx+L{S; x) n (1 + e)B*x + Lx.
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As the reverse inclusion is obvious we obtain

d~dx+L(S; x) = drdx+L(S; x) n (1 + e)B*x + LL

which ensures that

dAd(S;x) = P | ]imsupd~dx+L(S;x)n(l+e)B*x.
Lee x±si

D
THEOREM 1 . 7 . [4] Let f be a iower semicontinuous function on X with

\f(x)\ < +00 and let g be a Lipschitz function at x. Then

dA{f + g){x) C dAf(x) + dAg{x).

PROPOSITION 1 . 8 . [12] Let F be a mapping from X into Y which is Lips-

chitz at x. Then

for all x and y belonging to some neighbourhood of x and F(x) respectively, where

k is a Lipschitz constant of F at x and GrF denotes the graph of F, that is GrF =

{(x,y)EXxY:y = F(x)}.

2. THE MAIN RESULT

DEFINITION 2.1: [8] A mapping F: X -> Y is said to be strongly compactly
Lipschitzian at x if there exists a multifunction R: X =t Comp(Y"), where Comp(y) is
the collection of all non void || ||-compact subsets of Y, and a function r: l x l - t R+
satisfying the following properties:

(1) hm_r(x, h) = 0,

(2) there is \i > 0 such that for all h E fj.Bx, x, £ B(x; n) and all t G ]0, n[

+ th) - F{x)) £ R(h) + \\h\\ r(x, th)Bx,

(3) R{0) = {0} and R is upper semicontinuous.

REMARKS.

(1) If F is strictly differentiable at SB, then F is strongly compactly Lips-
chitzian at x.

(2) If Y is finite dimensional, then F is strongly compactly Lipschitzian at
x if and only if it is Lipschitzian at x.
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Let us recall some results concerning these mappings. The proof of the following

is similar to the one established by Thibault [11].

PROPOSITION 2.2.

(1) Every strongly compactly Lipschitzian mapping at x is Lipschitzian at

x~.

(2) The sum of two strongly compactly Lipschitzian mappings is strongly

compactly Lipschitzian.

The proof of the following result is inspired by Ioffe [2].

PROPOSITION 2 . 3 . Let F: X —> Y be a strongly compactly Lipschitzian map-

ping at x, c > 0 and e > 0. Tien there is 7 > 0 such that for all L £ J7 there exists a

u>*-neighbourhood U of 0 in Y* such that for all x £ B(x;~f), v* £ U with \\v*\\ ^ c,

a > 0 and all x* £ d~(v* o F)x+L(x) one has

PROOF: Since JF is strongly compactly Lipschitzian at x~ there are fj, > 0, a multi-

function R: X 14 Comp(F) and a function r: X x X —> M.+ satisfying the conditions

(1), (2) and (3) of Definition 2.1. Let e > 0 and c > 0 be given. The compactness of

the closed unit ball BL of L in (X; || ||) ensures the existence of elements h\, ... ,hp

of Bi, such that

(2.1) BL C \J

where k is a Lipschitz constant of F at x. The compactness of R(/j,hj), for j

1, . . . , p, in ( F ; || ||) also ensures the existence of v\, ..., vq^ in R(fihj) such that

J
1 = 1

For each j = 1, . . . , p put Uj = Hj- + (jie)/(8&)i?y, where Hj is the subspace of

Y generated by {vi, ..., vq} and where 6 = max sup ||z||. Then for each

j — 1, . . . , p Uj is a ^'-neighbourhood of 0 in Y* and for all v* £ Uj , with ||i>*|| ^ c,

and z £ R(fj,hj)

(2.2) ( » V ) ^ .
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p
ppIf we take U — p| Uj then U is a iu*-neighbourhood of 0 and satisfies relation (2.2)

i
Ufor all v* 6 U with ||v*|| < c and z G U R(fihj). Because of (1) of Definition 2.1 if we

i=i
put r(x) = limsupr(x, h) one can get j 6 ]0, fi[ such that for all a; € B{x;j)

h->0

(2.3) cr(x) < \.

Let a; G B(x;-f), a > 0 and w* G Z7 with ||w*|| ^ c be fixed and let x* G

»» («* ° F)*+L(X)-
 T h e n for all j = 1, . . . , p

^ liminf t 1(v*:F(

because \\hj || ^ 1. As x G B{^x\ 7) C B(x; fi) it follows that for each j = 1, . . . , p

(x*;/x/ij)^ sup (v*; z) + fir(x) \\v*\\ + flo-

ated hence by (2.2) and (2.3)

which implies that

(2.4) <x*;fc,K| + <r.

But for any h G BL where exists, by (2.1), some j G {1, ..., p} such that

which together with relation (2.4) implies that

{x';h) = {x*;h-hi) + (x';hi)

^d(v*o F)x+L(x; h-hA + aWh-hjW + l
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By the homogeneity of this it follows that for all h £ L

and hence x* £ (e + 2a)B*x + Lx. D

In the sequel Tx a n d TY denote the families of all finite dimensional subspaces
of X and Y respectively.

Some techniques in the proof of the following proposition come from Ioffe [6].

PROPOSITION 2 . 4 . Let F: X —> Y be a strongly compactly Lipschitzian map-
ping at x and let k be a Lipschitz constant of F over x + SBX and y = F(x). Then
the following assertions are equivalent:

(i) (x*,-y*)e(k + l)\\y*\\dAd{GrF;x,y)
(ii) (*•, -y*) £ R+dAd{GrF;x, y)
(iii) x* £dA(y*oF){x).

PROOF: Since F is strongly compactly Lipschitzian at x, there are a multifunction

R: X =t Comp(r), a function x: X x X -v R+ with lin^r(z, h') = 0 and a > 0

k'-.O

such that for all x £ B(x, s), t 6 ]0, s[ and h £ Bx

(2.4.1) t-^Fix + t(ah)) - F(x)) £ R(sh) + a \\h\\ r{x, t(sh))BY.

Let L £ JFX • Then the closed unit ball BL of L is a compact subset of (X, \\ ||) and
from the upper semicontinuity property of R the set R(SBL) is a compact subset of
(Y, || | |). Put VL = clY[vect(R(sBL))]. Then VL is a separable subspace of Y and for
all M £ Ty the subspace M + VL — CIY[M + Vi] of Y is also separable and hence the

family {L X M + ^ i J ixMer^x^y is an admissible family of WT-subspaces of X x Y
(see [5] and the example following Definition 1.3).

(1) (i) —* (ii): this implication is obvious.

(2) (ii) -» (iii): let (x*, -y*) £ R+dAd(GrF;x, y). Then there exists («*, -v*) £

dAd(GrF;x, y) such that (z*, -y*) = \(u*, -v*), with A ̂  0. Then by the remark

following Proposition 1.6 for each L £ Tx and each M £ TY there are nets e,- | 0

with ti < 1, i j - t i and (uj, v?) •—> («*, v*) such that

; xit F{xt)))n(i +

For any fixed e > 0 there exists »o a n d a > 0 such that Xi £ x + (S/2)Bx and
r(xi, h') < l/2e for all i > i0 and ||fe'|| < a, since lim_r(x, h') = 0. Let t > t0 be

h'->0
= 1 and let tn J. 0 be such that

https://doi.org/10.1017/S0004972700015276 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700015276


452 A. Jourani and L. Thibault [10]

From (2.4.1) there are an G R(sh) C VL and bn G sr(xi, tn(sh))BY such that

(2.4.2) *»*(*"(*« + *»('*)) - F{*i)) = «» + bn.

Note that ||frn|| < se for n large enough. As R(sh) is a compact set we may assume
that an-+ a£VL. Thus

;a> +ei(||s/i|| + ||a||) +liminf t~1d(GrF;xi +tsh, F(xi)+ta)

; a) + e,(||s/i|| + ||a||) + liminf f^d^GrF; x,- + tnsh, F(xi) + tna)
t—>-t-oo

because by (2.4.2) (x< + tnsA, F(xi) + tn{an + bn)) G GrF and ||6n|| < es. As on -» a,
H&nll < se, IKII ^ 2, ||a|| < (k + e)s and lim « ; o n + 6n) = <*"(«? o ^ . ^ ( x i , «/i)

Ti—>OO •

one has
(»J; A> < d-(w? o F)x.+L{Xi; h) + £i(k + 1 + e) + 3e.

Thus for £(e,») = et(k + 1 + e) + 3e one has

If we write v£ o F = («,* — t ) ' ) o f + » * o f we can get, by Lemma 1.5, some nets u,- —» x,

Vi -» x, *; G 0i(.,o(»'o n,.+L(«0 and «f G [ ^ ( W - «() o f ) ^ ) + I1]

such that z^ + g? •—> u*. But v^ — v* -̂ -> O and (u^ — u*)̂  is bounded and hence by
Proposition 2.3 one has the existence of i(e) > to such that q* G (e + 2JB(e, i))By
for all i > i(e). Thus

«• G limsup
«io

C lim sup (a,-(i»* o F)m+L(x) + Lx)

and hence

X—»Z

•10

u*e f) limsup (arKoF)i+L(x)

= limsup («,"(»• o F) I + L(x) + Lx)

= lim sup de (v* oF)x+L(x)
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It follows that x* E XdA{v* o F)(x) = dA{Xv* o F)(x) = dA{y* o F)(x).

(3) (iii) -> (i): Let x* G dA(y* o F)(x). Then for each L G Tx there are nets

X{ —> af, e; J. 0 and x? -̂ -> x* such that x? G 5~(t/* ° •?"):,..+i(zi) which means that
for all h G L

(x*;h) ^Urnmit-^iy* oF^ixi+th1)-^ oF)Xt+L(Xi)) + Ci

= liminf t'1 (y*; F{x{ + ih) - F(Xi)} + a \\h\\

because y* o F is Lipschitz at x. This and Proposition 1.8 imply that for all M 6
he L and v £Y

{xl,h) - (y*;v) < (* + 1) ||y'|| d~d(x.tF(..)HLxU(GrF; xit F(Xi); h, t>) +

which gives by Proposition 1.6 that (x*, -y*) G (fc + 1) \\y*\\ dAd(GrF;x, F(x)). D

THEOREM 2 . 5 . Let F: X —> Y be a. strongly compactly Lipschitzian mapping

at x and let f: Y —> R be a Lipschitz {unction at y — F(x). Then

dA(foF)(x)c U dA(y*°F)(x).
y'8Af(v)

PROOF: Since / and F are Lipschitz at y and x respectively we have (see Propo-
sitions 1.8 and 2.2) the existence of a > 0 such that for all x G B(x, a) and y G B{y, a)

foF(x) < f{y) + k\\y- F(x)\\ and \\y - F(x)\\ ^ (k'+ l)d(GrF;x, y)

where k and k' are the Lipschitz constants of / and F respectively. If we put s(x, y) =

f(y) + k(k' + l)d(GrF;x, y), we note that for all x G B(x, a) and y G B(y, a)

foF(x)^s(x,y) and / o F(x) = s(x, F(x)).

For each (h, v) G X X Y and for all finite dimensional spaces L and M of X and Y

respectively we have

i — l f / / « E A / i j L \ / £ ^ T?\ t W

^ t [S(X,F(X))+LXM(* + th, F(x) + tv) — S(X,F(X))+LXM(*> F{X))]

for all t small enough and x sufficiently close to x and hence

d-(foF)x+L(x, h) < d-s(x>F(x)HLxM(X, F(x);h, v),

https://doi.org/10.1017/S0004972700015276 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700015276


454 A. Jourani and L. Thibault [12]

which implies that

d~(f ° F)x+L(x)X{0} C d-s(Xt

Therefore we obtain that

dA(foF)(x)X{0}C f| limsuPa-J(l |F
L,M '-*'

C P | limsup_ d~8{x<y)+LxM(x, y) = dAs(x, y).

So Theorem 1.7 ensures that

dAf o F(x) x {0} C {0} x dAf(y) + k(k' + l)dAd(GrF;x, y)

and hence it suffices to use Proposition 2.4 to complete the proof. D
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