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Abstract
Machine learning has already shown promising potential in tiled-aperture coherent beam combining (CBC) to
achieve versatile advanced applications. By sampling the spatially separated laser array before the combiner and detuning
the optical path delays, deep learning techniques are incorporated into filled-aperture CBC to achieve single-step phase
control. The neural network is trained with far-field diffractive patterns at the defocus plane to establish one-to-one
phase-intensity mapping, and the phase prediction accuracy is significantly enhanced thanks to the strategies of sin-cos
loss function and two-layer output of the phase vector that are adopted to resolve the phase discontinuity issue. The
results indicate that the trained network can predict phases with improved accuracy, and phase-locking of nine-channel
filled-aperture CBC has been numerically demonstrated in a single step with a residual phase of λ/70. To the best of our
knowledge, this is the first time that machine learning has been made feasible in filled-aperture CBC laser systems.
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1. Introduction

Coherent beam combining (CBC) is one of the most
promising techniques for laser power scaling, which can
break through the physical limitations of a single beam
while maintaining excellent laser characteristics[1–3]. Due to
internal and external perturbations, such as spontaneous
emission[4], quantum defect[5], environment temperature
fluctuation[6] and mechanical and acoustical vibrations[7],
laser phases change dynamically in practical operation[8],
which severely impairs the combining efficiency and
makes the CBC laser system unstable, or even disabled[9].
Active phase control is an efficient solution to phase
synchronization and stabilization of multiple lasers in real
time, and various control methods have been developed and
demonstrated[10–15]. Facilitated by the rapid development of
active phase-control techniques, several milestones of CBC
have been achieved. The maximal average power of 10 kW
has been achieved in ultrashort pulse regimes, while active
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control of up to 1000 channels has been demonstrated[16,17].
For some advanced applications, such as laser particle accel-
erators and coherent amplification networks, higher power
and more channels are required[18–23]. Generally, faster active
phase control is demanded as the channel number scales,
and traditional control methods encounter great challenges
in terms of phase-control bandwidth or complexity[24–26].

To further increase the phase-control bandwidth while
maintaining simple configuration, machine learning, includ-
ing reinforcement learning and deep learning, has been
applied in the field of CBC phase control[27–32]. Machine
learning is a versatile technique that automatically learns
and extracts complicated features from data, enabling the
agent/network to make phase predictions based on system
state information such as diffractive patterns or other inten-
sity observations[33,34]. Direct phase recovery is achievable
once the mapping from system state to phase action is estab-
lished through learning, offering significant advantages of
simple optics structure and minimal convergence steps with-
out time-consuming iterations[35]. Theoretically, only one
step is required to optimize the phase, which is independent
of the number of the channels, making it the most promising
control technology for large-scale CBC applications[31,36].
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Deep learning is initially integrated into CBC systems by
utilizing non-focal-plane data for training, and 7- and 19-
channel CBC phase control is numerically demonstrated
with Strehl ratios of 0.98 and 0.84, respectively[37]. One-
hundred-channel CBC has been experimentally achieved
with a residual phase of λ/30, which represents the maximal
number of beams controlled by machine learning[35]. To
date, the majority of applications have focused on tiled-
aperture CBC systems[29–32,35–37]. In contrast, filled-aperture
CBC offers the highest combining efficiency as it eliminates
energy loss due to sidelobes[38–40], which is particularly
crucial for power scaling applications. However, in filled-
aperture CBC, all sub-beams overlap completely in both the
near field and far field, resulting in a combined beam pattern
that contains minimal phase information, which has limited
the utilization of machine learning in filled-aperture CBC. It
is noteworthy that machine learning methods typically yield
a larger residual phase compared to traditional approaches,
prompting researchers to devise a two-stage control scheme
to improve accuracy, albeit with increased complexity[28].

In this paper, a deep learning algorithm is modified to
suppress the residual phase and is applied in a filled-aperture
CBC system with an innovative design in optics structure and
control scheme that can achieve phase-locking in a single
step with high accuracy. The trained network can predict
phase with an error of λ/70 in a single step for a nine-
channel filled-aperture CBC, illustrating the effectiveness of
the proposed method. To the best of our knowledge, this
represents the first demonstration of machine learning phase
control in a filled-aperture CBC scenario with high accuracy.

2. Principle

2.1. System setup

The system structure of filled-aperture CBC based on deep
learning phase control is depicted in Figure 1. The seed laser
is split into multiple beam channels by a beam splitter (BS),

and each beam path passes through a phase modulator (PM),
amplifier and collimator (CO). All beams are tiled in a
dense array, such as square shape[25], hexagon shape[15] or
others[41], and are then emitted in the same direction. The
laser array is sampled before coming into the filled-aperture
beam combiner to obtain the tiled-aperture combined pattern
by a camera, which is input into the neural network to make
phase prediction and compensate phase noise with high-
bandwidth operation. The combiner can take a variety of
forms, such as diffractive optical element (DOE)[42], inten-
sity BS-based binary tree or segmented mirror[16], which
transforms spatially separated beams into an overlapped
beam. The segmented mirror combiner is employed in this
paper since it is easy to combine a laser array of linear or
square tiling, which will be superimposed into a single beam
at one output port if amplitudes match the splitting ratios and
phases are locked; it is only represented by a box in Figure
1 for simplicity, and its specific architecture can be found in
Ref. [43]. A liquid crystal (LC) is inserted in the sampled
path of each spatially separated beam, so the optical path
delays of all beams can be artificially adjusted. The laser
array of main power illuminates on the beam combiner and
is combined into a single aperture beam in the near field,
and the central intensity of the combined beam is sampled
by a photodetector (PD), which is used to drive the delay
controller and monitor the combining efficiency.

As the beam combiner needs to fill the aperture, each beam
passes through its own combining route, which results in
different optical paths and laser phases. Therefore, the phase
relationships at the camera are not consistent with those at
the PD due to optical path differences, which accounts for
why the delay control is essential to compensate for the
static path-related phases. It should be noted that although
the optical path difference dominantly occurs inside the
combiner, it can be eliminated by adjusting the phase delays
in the sampled path instead, which is consistent with high-
power operation due to the avoidance of manipulation on
high-power beams. The delay control is an optimization

Figure 1. System setup of deep learning phase control for filled-aperture CBC.
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Table 1. Procedure for delay control.

Require: Parameters Tp, Td, γ and σ are defined.

1: for step = 1 to ∞ do
2: capture an image and feed into neural network
3: update phases ϕ ← ϕ – ϕpred
4: calculate delay control step s = step·Tp/(Td/3)
5: if (s modulo 3) = 1 then
6: generate random vector δτ of variance σ2

7: apply positive perturbation τ + δτ

8: get PD signal as metric J+ = IPD (τ + δτ )
9: else if (s modulo 3) = 2 then
10: apply negative perturbation τ – δτ

11: get PD signal as metric J– = IPD (τ – δτ )
12: else
13: calculate metric change: �J = (J+ – J–)/(J+ + J–)
14: update delays τ ← τ + γ δτ�J / σ2

15: end if
16: end for

problem of multiple variables, and thus stochastic parallel
gradient descent (SPGD) can be employed to address the
issue conveniently. The process of delay control is described
in the flow chart in Table 1, where Tp/Td denotes the
time step of phase/delay update, and γ and σ are the gain
coefficient and perturbation amplitude, respectively, of the
SPGD algorithm. As the SPGD algorithm requires two-way
perturbations before parameter update, one step of delay
control is divided into three mini-steps, so the current step
of delay control is calculated according to Td/3, as shown in
line 4 of Table 1. The phase control is much faster than delay
control (Tp � Td), so phase-locking is achieved immediately
after the delays are perturbed or updated. It should be empha-
sized that the PD signal does not change directly with delays
of LCs but changes with phases of PMs, since the neural
network will dynamically drive PMs to compensate for the
delay changes and maintain phase-locking at the camera.

With the delay control done, the phase relationships at the
tiled-aperture path (camera) are the same as at the filled-
aperture path (PD), and thus the filled-aperture combining
efficiency will be maximized when laser phases are synchro-
nized at the camera by the neural network. Therefore, filled-
aperture phase control can be converted into tiled-aperture
phase control with proper delay control. In addition, optical
path length differences in the combiner are generally piston
errors, so the delay control can be implemented in a once
and forever manner theoretically, and only phase control is
required finally.

2.2. Training strategies

Although the mapping from the combined pattern to
laser phases can be interpreted as a pattern recognition
problem, there are two barriers to cross when applying
deep learning to the phase control of CBC. The first is
the phase periodicity-induced discontinuity, where ϕ and
ϕ + 2kπ (k = 0, ±1, ±2, · · · ) represent the same phase,

but their distance is 2kπ . In general, phase is limited to a
single period [–π , π ) so that every value will correspond to
a unique phase, but this does not work well in the training
of neural networks as the distance between label and output
is usually used to calculate loss. For instance, if the network
predicts 0.9π as –π , the prediction is actually good because
it is equivalent to –1.1π and –π with a real distance of
0.1π , but it will result in a large loss because the network
interprets the distance as 1.9π . To deal with this, a sin-cos
loss is introduced and defined as follows:

L = 1
2M (N −1)

M∑
m=1

N−1∑
n=1

[∣∣sinϕ(m)
n − sinϕ∗(m)

n

∣∣2

+∣∣cosϕ(m)
n − cosϕ∗(m)

n

∣∣2
]

(1)

where ϕ* and ϕ are the true phase and the predicted phase,
respectively, subscript n denotes the beam number (the total
is N–1 as one beam is set as reference) and superscript m
denotes the sample number (the total is batch size M).

The proposed loss function calculates both sine and cosine
distances between the network output and true phase, which
is inducive to overcome the aforementioned phase discon-
tinuity, since phase is not compared directly. However, if
the network is requested to output phase predictions ϕ, the
discontinuity remains unsolved. More specifically, phases of
around –π and π should be predicted using similar image
features with the same network parameters, so the network
will struggle to minimize losses at both ends rather than
learning an accurate and unique mapping function, which
means that the learning problem is not a strict one-to-one
mapping, so the learning process is not very good. Therefore,
the output of the network is designed to consist of both the
sine and cosine of phase ϕ. It should be noted that the sine
and cosine values may not strictly satisfy the equation of
sin2ϕ + cos2ϕ = 1, as they are predicted independently by
the neural network. Letting C and S represent the predicted
cosine of phase (cosϕ) and predicated sine of phase (sinϕ),
respectively, although C and S probably correspond to dif-
ferent predicated phases, a more accurate phase prediction ϕ

can be calculated using both C and S by Equation (2). By
doing so, the prediction discontinuity can be solved, as the
real part and imaginary part are both continuously varied,
and phases of –π and π are positioned in the same line of
the complex plane:

ϕ = angle (C + iS) . (2)

The other barrier in the application of deep learning phase
control is the non-unique phase-intensity mapping, which
represents that different phase relationships may result in
the same intensity distribution of the far field. Many solu-
tions have been developed to solve the non-unique mapping
problem, and one of the simplest, a diffractive pattern at a
slightly defocused plane, is adopted here. In the simulation,
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Figure 2. Structure chart of the VGG network.

all beams are assumed to be Gaussian fundamental mode and
linearly polarized in the same direction. The intensity of the
combined beam at the defocus far field can be expressed as
follows:

I (r,z = L) = 1
iλL

exp
(

i
πr2

λL

)
FT

×
{

exp
[

i
πρ2

λ

(
1
L

− 1
f

)]

×
N−1∑
n=0

Aexp

[
−

(
ρρρ −ρρρ0n

w

)2
]

exp(iϕn)

}
,

(3)

where A, ϕ, w, ρρρ0 and λ are the amplitude, phase,
waist width, central position and wavelength of the laser,
respectively, and ρρρ and r are the position vectors at the
emission plane and observation plane while ρ and r of
normal forms represent corresponding scalar distances from
the origin. FT{· } refers to Fourier transform, and L and
f represent the propagation length and the focus length,
respectively (in our study, L �= f ). It should be pointed out
that the strategy of the defocus pattern is not contributed in
this work, but it is important not only for solving the non-
unique mapping problem but also for clarifying the optical
model of dataset preparing. Therefore, the advantages of the
strategies discussed in the following section correspond to
the strategies of sin-cos loss and two-layer output, rather
than the defocus pattern, since the training dataset is kept the
same with or without strategies.

2.3. Neural network construction

The VGG model, which is a powerful and prevalent tool in
computer vision, is modified and employed as our neural

network to achieve CBC phase control[44]. It is a classical
convolution neural network, which consists of a series of
convolution layers, max-pooling layers and fully connected
(FC) layers, as shown in Figure 2. For simplicity, the network
is divided into five blocks, and each block is made up of one
or more convolution layers followed by a max-pooling layer.
Based on the number of convolutional layers, VGG can be
named VGG-11, VGG-13 and so on, and the one used in our
study is VGG-16, including 13 convolution layers and three
FC layers. The kernel size of all convolution layers is 3×3
and the padding size is 1, so the image height and width do
not change after convolution, but the channel number might
be different depending on the number of convolution filters.
The kernel size of max-pooling layers is 2×2, so the image
height and width will be reduced to the half after pooling. It
should be noted that a rectified linear unit (ReLU) function is
followed with each convolution layer and FC layer, which are
not shown in the figure. A dropout layer with a possibility of
0.5 is added in both FC1 and FC2 to reduce the possibility
of overfitting, and the activation function of FC3 is changed
from softmax to sigmoid, as phase prediction is a regression
problem rather than a classification problem.

The built VGG network can extract features of the input
intensity profile by convolution operations layer by layer, and
it can leave out redundant features by max-pooling layers
to prevent overfit. In addition, the ReLU activation layers
are beneficial to enhance the nonlinear expression ability
of the network. After a series of convolution and max-
pooling layers, the image features are efficiently extracted
and condensed, and are flattened and reorganized by the
FC layers. Finally, the output layer is formatted in size
of 2 × (N – 1) while it is 1 × (N – 1) for traditional
networks, so it maps these extracted features into the real
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and imaginary parts of a complex phase vector and achieves
phase prediction consequently. To accommodate the phase-
control tasks, the input image size of the VGG-11 model is
changed to 64×64×1, and the intensity value is normalized
with the maximal value being 1.

3. Results

3.1. Phase prediction with improved accuracy

The modified VGG-16 network for nine-channel CBC is built
up and trained with 18,000 labeled data pairs. The batch size
is 250 and the epoch is 90, and stochastic gradient descent
with a momentum term is selected as the optimization
algorithm, with a learning rate of 0.05 and momentum factor
of 0.9. It takes less than 20 minutes for a personal computer
to finish the training process. The calculated mean squared
error (MSE) loss of 1000 testing samples at every epoch is
plotted in Figure 3. The MSE loss drops from 1.0 at the start
to 0.015 at the end, and it can be seen that the loss decreases
very fast at the first five epochs and gradually becomes stable
in the later epochs, illustrating that the network is convergent
and the mapping from pattern to phase is constructed.

Then the trained network is validated on 1000 datasets that
are not included in the training and testing process, and the
phase predictions are compared with the true labels. Firstly,
the root mean square (RMS) residual phase is introduced for
quantitative analysis, which is calculated by the following:

ϕres = 1
N

N−1∑
n=0

(ϕn −ϕ)2, ϕ = 1
N

N−1∑
n=0

ϕn. (4)

The RMS residual phase describes how well laser phases
are synchronized, where a large value represents poor syn-
chronization. The initial states of laser phases are quite
different; the network predictions on samples of different

Figure 3. Testing loss with respect to the training epoch.

initial states are shown in Figure 4, where the true phase and
predicted phase of each beam are compared one by one (only
eight beams are shown because one beam is used as the phase
baseline). The initial RMS residual phases are 0.7, 1.2, 1.8
and 2.4 rad, respectively, the neural network makes precise
predictions on these samples despite the initial conditions
and no selectivity on beam position is observed. If predicted
phases are used to compensate initial phases, phase-locking
will be achieved in a single step, leading to RMS residual
phases of λ/88, λ/83, λ/67 and λ/95 for the four samples,
respectively.

Moreover, the phase prediction of each validation sam-
ple is calculated, and the compensated phase is equal to
the initial phase minus predicted phase. The compensated
phases of the 1000 validate samples with corresponding
initial phases on each beam are plotted in Figure 5(a), where
the dashed lines in the middle equal ±π /20, which is helpful
to directly evaluate the prediction accuracy. The phase points
in Figure 5(a) are gathered to a horizontal line with several
slight ups and downs, and there are no isolated points far
from the dashed area, indicating the network is capable of
excellent phase prediction over the full phase range; thus,
one-step phase control can be implemented no matter what
the initial phases are. The RMS residual phase after one-
step compensation averaged on the sample number is λ/95,
which shows high prediction accuracy of our network. In
addition, the same network is trained with the same dataset
and same epochs using traditional MSE loss, and the phase
compensation performance is as shown in Figure 5(b). It is
obvious that the accuracy is much worse, especially when
the initial phases are close to ±π , and the average residual
phase after one-step control is only λ/12, showing the great
advantages of the proposed training strategies.

3.2. Single-step phase control in filled-aperture system

Based on the trained neural network, single-step phase con-
trol is implemented in the filled-aperture CBC system with
the assistance of delay control. The control procedure was
described previously in Table 1 in detail, and the active
control simulations are carried out in the entire phase and
delay feedback loop. The parameters of the SPGD algorithm
for delay control are optimized as γ = 0.6 and σ = 0.05,
and the execution speed of deep learning phase control is
set to be 10 times the delay loop, so the phases are locked
when the delay controller acts and loop crosstalk will be
avoided. The power in bucket (PIB) of the far-field pattern
at the focus plane is calculated at each step to monitor
the state of the sampled beam, and the PD signal intensity
represents the combining efficiency of the whole system.
The PIB and PD signal intensity during the process of phase
delay are shown in Figure 6, where the x-label represents
the delay control step. The drop-off lines in Figure 6(a)
correspond to the voltage perturbations and updates of LCs,
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Figure 4. Predicted phase versus true phase for samples of different initial RMS residual phases: (a) 0.7 rad, (b) 1.2 rad, (c) 1.8 rad and (d) 2.4 rad.

Figure 5. Prediction error as a function of true phase: (a) cos-sin loss and two-layer output and (b) traditional MSE loss and one-layer output.

Figure 6. System state variation during delay control process: (a) PIB of the tiled-aperture combined beam and (b) normalized intensity of the filled-aperture
combined beam.
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Figure 7. Single-step phase control of filled-aperture CBC.

and combining efficiencies of both filled and tiled-aperture
beams are maximized after around 35 steps. This result
demonstrates that delay control is effective and single-step
phase control for filled-aperture CBC is feasible.

Therefore, the phase relationships between tiled- and
filled-aperture beams are synchronized after delay control,
and phase control can be implemented directly in the filled-
aperture CBC with delay value fixed. The delay residual after
control of Figure 6 is λ/101 (converted to phase residual),
which is small enough and is expected to have no significant
impact on the control performance as the achieved combin-
ing efficiency is very close to 100%, as shown in Figure 6(b).
This delay residual is considered in the simulation while the
real-time delay control is turned off; the results of 20 random
initial states are shown in Figure 7. One can clearly see that
the system reaches the maximal intensity in a single step
from any initial state. The combining efficiency is 98.7% and
the residual phase is λ/70, which is limited by the delay con-
trol residual. Moreover, filled-aperture CBC is implemented
by the traditional network as well and the combining effi-
ciency over 20 random cases is 79.2% on average, showing
great improvement brought about by the training strategies.

As mentioned in Section 2.1, phase-control performance is
critical for delay control, which will determine the feasibility
of filled-aperture CBC by deep learning. Therefore, the
requirement on phase prediction accuracy with application
to filled-aperture CBC is investigated. A neural network with
different prediction accuracy is obtained by varying training
epochs, and the results are shown in Figure 8. It is apparent
that the one-step phase residual decreases rapidly as training
epochs increase, and the filled-aperture combining efficiency
by using the neural network in cooperation with the delay
controller becomes higher at the same time. For a typical
efficiency of 95%, the one-step residual phase of the neural
network should be better than λ/50.

Another important issue is the dynamic phase perturba-
tions that are commonly encountered in a real laser system.

Figure 8. Single-step residual phase for filled-aperture CBC and combin-
ing efficiency for tiled-aperture CBC with respect to training epochs.

Bandwidth-limited white noise is introduced in the simu-
lation model[22], where the noise cut-off frequency is set
to 100 Hz and RMS amplitude is λ/30. The time domain
phase drift of one of the lasers is exemplified in Figure 9(a),
and each laser experiences independent phase perturbations
with the same cut-off frequency and RMS amplitude. The
execution rate of the deep learning algorithm is set as 1 kHz
(single-step time of 1 ms), and filled-aperture combining
efficiency from open and closed loops is illustrated in Figure
9(b). With the control loop on, the combining efficiency
rises immediately from less than 10% in the open loop to
96.7% in the closed loop. More specifically, the transition
process at the moment of control turning on, as shown in
Figure 9(c), manifests that phase-locking is achieved in a
single step (1 ms) even with dynamic phase noise. Therefore,
the dynamic phase noise does not affect the time conver-
gence, but leads to a reduced efficiency loss (from 98.7%
to 96.7%) and an increased residual phase (from λ/70 to
λ/36). As the control loop takes actions at a step of 1 ms,
the combining efficiency slowly drifts within the relaxation
time before the next phase action is implemented. The
power spectral density of phase noise of one laser, plotted
in Figure 9(d), indicates that phase noise below 1 kHz is
suppressed, and the control bandwidth of 1 kHz is achieved
in a 1 kHz control loop thanks to the single-step advantage.
It is predicted that the control bandwidth will be further
improved by using a faster control loop.

4. Discussion

One of the most attractive advantages of deep learning
phase-control lines is that phase-locking can be achieved
in a single step in spite of increasing channels. Indeed,
phase-control performance highly depends on the residual
phase or prediction error of the neural network, and previous
studies showed decreasing accuracy with increasing channel
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Figure 9. Filled-aperture CBC with dynamic phase noise: (a) time-dependent phase noise, (b) combining efficiency in open and closed loops, (c) time
convergence detail from the open to the closed loop and (d) phase noise spectra in open and closed loops.

Table 2. Residual phase after one-step phase control for different
channel numbers.

N 9 16 25 36

Dataset size 18,000 32,000 50,000 72,000
Training epochs 90 160 250 360
Training time (h) 0.60 1.86 4.52 9.37
One-step time (ms) 1.1 1.1 1.0 1.0
ϕres of this network λ/70 λ/43 λ/27 λ/21
ϕres of traditional network λ/12 λ/4 λ/4 λ/4

number[37], so it is important to find out whether the channel
number affects the residual phase in our models.

Neural networks for 9, 16, 25 and 36 beams are constructed
and trained using the same strategies aforementioned, with
a dataset size of 2000 times the beam number and train-
ing epochs of 10 times the beam number, as shown in
Table 2. The network structure is VGG-16, as described
before, but the output number is varied with the beam num-
ber. The average residual phases after one-step correction in

filled-aperture systems with different channels are listed in
Table 2. It is indicated that the residual phase increases as the
channel scales, but the accuracy for a 36-channel CBC sys-
tem is λ/21 and the combining efficiency is higher than 90%,
which is acceptable for typical applications. In contrast, for
a traditional network without using the proposed strategies,
the one-step residual phase is about λ/4 for 16 or more
channels, and the combining efficiencies are less than 5% for
these cases. In the presence of dynamic perturbations (noise
properties are the same as in the nine-channel case), filled-
aperture CBC of 36 channels controlled by deep learning is
simulated as well, and the results are shown in Figure 10.
It is indicated that convergence speed is not affected by the
dynamic noise, but the combining efficiency becomes worse
in the closed loop, which is about 81%. In contrast, a neural
network without training strategies is simulated as well,
resulting in a combining efficiency of only 2%, showing no
improvement by phase control. The other issue of concern is
that the dataset size and training time rise rapidly with the
channel number, as shown in Table 2, which is because the
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Figure 10. Filled-aperture CBC of 36 channels with dynamic phase noise. Phase control by deep learning (a) with and (b) without strategies.

phase relationships and diffraction patterns become far more
complicated. Specifically, if the laser phase is divided into p
discrete pieces, such as p-values equally spaced in the range
of [–π , π ], the permutation and combination of N lasers
will be pN, which means the problem dimension increases
exponentially with channel number N. To acquire a higher
accuracy, the number of phase pieces p should be larger,
which will lead to a much larger dimension expansion rate.
Therefore, the linearly increasing dataset size cannot catch
up with the problem complexity, and thus the residual phase
for a larger array becomes worse to some extent. In addition,
the one-step time of network prediction, given in Table 2,
shows that control speed is not affected by channel number,
and the one-step time is close to 1 ms.

In our simulation, the network is not optimized for differ-
ent system scales, and it can be speculated that a smaller
residual phase is possible at the price of a deeper and
larger network and more effort on training. For instance, if
the dataset size of 36-channel CBC is supplemented twice
(144,000), the residual phase of filled-aperture control after
one step will be improved to λ/29. Although more time
and effort are spent in the network training for a larger
array, the accuracy is still worse than in the nine-channel
case. Therefore, to apply the method to a large-scale system,
other phase-intensity mapping schemes, such as the sparsely
sampled speckle pattern after a diffuser[35], the diffraction
pattern of a two-dimensional DOE[34] and other innovative
setups, are desirable to simplify the learning task so that a
smaller network can be employed and the training process
will be less intractable[30,45]. In addition, the design and
optimization of the dataset will probably make a difference
since with randomly generated samples of limited size it is
impossible to cover the problem space, and most samples
will be far from the phase-locking state according to the
statistical theorem. Therefore, the channel scalability of our
method is related to the design of the optical mapping and
network structure.

5. Conclusion

A deep learning algorithm for phase control of filled-
aperture CBC is proposed and verified in a nine-channel
system. By accommodating the mapping problem of pattern
to phases, the modified neural network employing strategies
of sin-cos loss and complex output yields single-step phase
compensation with residual phase error as low as λ/95. The
modified deep learning algorithm is then applied to the
filled-aperture phase control assisted by delay control, and
phase-locking can be achieved in a single step, resulting in
a residual phase of λ/70. Furthermore, the scalability and
performance under dynamic phase perturbations of deep
learning phase control are discussed, and the results can
offer a promising solution to bandwidth improvement for
filled-aperture CBC.
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