Acute Hydrofluoric Acid Mass Exposure: Experience in Teaching Hospitals
Soon-Joo Wang1, Seongyong Yoon2, Seokjooon Yoon3, Sangtae Jun4
1. Hallym University, Hwaseong/Republic of Korea
2. Sooncheonyhung University, Gumi/Republic of Korea
3. Chemical Safety Research Institute, Seoul/Republic of Korea
4. Inje University, Busan/Republic of Korea

Study/Objective: The study objective is to share the experience of acute hydrofluoric acid mass exposure disaster in Korea, and to understand the response needed.

Background: There are many flat display panel and semiconductor factories in Korea, and hydrofluoric acid is an important chemical to make the panel and semiconductor. We investigated the clinical characteristics and demographics of patients who suffered from hydrofluoric acid chemical injury when mass exposure happens.

Methods: We retrospectively reviewed the medical records of patients who were exposed to hydrofluoric acid in a recent disaster in Korea, and who were seen at the emergency centers and ICUs in the university teaching hospitals. Multiple patients occurrence was included, and single patient occurrence was excluded.

Results: Seventy two patients out of 240 suffered from chemical burns, and the burn injuries of the remaining 168 could not be identified by the medical records - even though chemical exposure exists. A total of 72 hydrofluoric acid chemical injury patients were enrolled during the study period, and their mean age was 34. All the patients were accidentally injured by contact with the material, and none of them ingested the material. Only 28 patients wore appropriate protective equipment, and 24 underwent the water irrigation for more than 10 minutes. The most common exposure area was the hand and forearm. Less than 1% of all of the patients had their Total Body Surface (TBS) conducted on mass exposure. A total of 72 hydrofluoric acid chemical injury patients were enrolled during the study period, and their mean age was 34. All the patients were accidentally injured by contact with the material, and none of them ingested the material. Only 28 patients wore appropriate protective equipment, and 24 underwent the water irrigation for more than 10 minutes. The most common exposure area was the hand and forearm. Less than 1% of all of the patients had their Total Body Surface (TBS) exposed to hydrofluoric acid. The mean time interval from calcium gluconate administration to pain relief was 28.6 hours.

Conclusion: When exposed to hydrofluoric acid, it was important to wear protective equipment and undergo massive water irrigation. After treatment, we concluded that administration of calcium gluconate and pain killers was successful in relieving pain. When mass exposure by hydrofluoric acid occurs, the severity of patients are various, and most of the patients were mild cases.

Nanoemulsion for Nuclear and Radiological Decontamination of Skin
Navneet Sharma1, Mitra B. Chiller2, Dharam P. Pathak2, Rakesh K. Sharma2
1. Div. Of Cbrn Defence, Institute of Nuclear Medicine and Allied Sciences, Delhi/India
2. University Of Delhi, DIPSAR, Delhi/India

Study/Objective: Nanoemulsion for skin decontamination of the radio nuclides. Decontamination Efficiency (DE) of the formulation was evaluated on the rat model using the Whole Body Counter. After application on the contaminated skin, there is a significant decrease in the net count of the gamma emitting radiation of the radioisotopes. Skin histopathology was also found to be compatible.