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0. Introduction. A generalized tensor product of groups was introduced by R.
Brown and J.-L. Loday [6], and has led to a substantial algebraic theory contained
essentially in the following papers: [6, 7 ,1 , 5,11,12,13,14,18,19, 20, 23, 24] ([9, 27, 28]
also contain results related to the theory, but are independent of Brown and Loday's
work). It is clear that one should be able to develop an analogous theory of tensor
products for other algebraic structures such as Lie algebras or commutative algebras.
However to do so, many non-obvious algebraic identities need to be verified, and various
topological proofs (which exist only in the group case) have to be replaced by purely
algebraic ones. The work involved is sufficiently non-trivial to make it interesting.

In this article we have chosen to work with Lie algebras. We introduce a non-abelian
tensor product of Lie algebras and investigate its properties. In particular we study its
relation to the low dimensional homology of Lie algebras. (A few results on this Lie
tensor product have been obtained previously [10, 15, 21].)

Many of the results in this article are analogues of known group theoretic results.
However the proofs are often quite different. Several of our proofs convert to new proofs
of corresponding group theoretic results. In particular our proof of Theorem 24 yields,
using [17], a new proof of the main result of [30] which avoids intricate elementwise
calculations. Our proof of Proposition 19 yields a new proof of the main result of [18]
which again avoids many intricate elementwise computations. Our proof of Theorem 18
yields an algebraic proof of a corresponding group theoretic result (see [13]), thus solving
a problem posed in [5].

1. The tensor product. Let A be a commutative ring with identity. We shall use the
term Lie algebra to mean a Lie algebra over A; we shall use [,] to denote the Lie bracket.

Let M and P be two Lie algebras. By an action of P on M we mean a A-bilinear map
P xM-*M, {p,m)*-*pm satisfying

p[m, m'] = [pm, m'] + [m,pm'],

for all m, m' e M, p, p' e P. For example, if P is a subalgebra of some Lie algebra Q
(maybe P = Q), and if M is an ideal in Q, then Lie multiplication in Q yields an action of
Pon M.

Suppose that M and N are Lie algebras with an action of M on N and action of N on
M. For any Lie algebra Q we call a bilinear function h:Mx N—> Q a Lie pairing if

h([m, m'l n) = h{m, m'n) - h(m', mn),
h(m, [n, n']) = h("'m, n) - h("m, n'),
h(nm,m'n') = -[h(m,n),h{m',n')),

for all m, m' e M, n, n' e N. For example if M and N are both ideals of some Lie algebra
then the function M x N-»M HN, (m,n)^[m, n] is a Lie pairing.

A Lie pairing h:MxN-*Q is said to be universal if for any other Lie pairing
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h' :M X N—>Q' there is a unique Lie homomorphism 6: Q —* Q' such that the diagram

MxN —U. Q

Q'

commutes. Clearly if h is universal then Q is determined up to isomorphism by M, N and
the actions. In fact Q can be described as a "tensor product".

DEFINITION. The tensor product M ® N is the Lie algebra generated by the symbols
m®n (for me M, neN) subject only to the relations:

(i) A(m ®n) = km ®n = m® An,
(ii) (m+m')®n = m<8n + m'®n,

m <8> (n + « ' ) = m <8> n + m <£> n',
(iii) [m, m']®n = m®(m'n)-m'®(mn),

m ® [n, n'] = (n'm) <g> n - (nm) ®n',
(iv) [(m <g> n), (m' <8)n')] = -("m) ® ("•'«')

for A e A, m, m' e M, n, n' e N.

PROPOSITION 1. The mapping

h:MxN->M®N, {m,n)^m®n

is a universal Lie pairing.

To be able to say much about the tensor product M <8> N we need to assume that the
action of M on N is compatible, in the following sense, with the action of N on M.

DEFINITION. The actions are compatible if

(am)n' = [n',mn) and rn)m'= [m',nm]

for all m, m' e M, n, n' e N.

From this point on we assume that the actions of M and N are compatible. This is the
case, for example, if M and N are both ideals of some Lie algebra with the actions given
by Lie multiplication.

PROPOSITION 2. There are two Lie homorphisms

H:M<8>N^>M and v:M®N^>N

defined on generators by [i(m ® n) = -"m and v(m ®n) = mn.

We shall denote by [M, N]N or [N, M]N the submodule of N generated by the
elements of the form mn with meM, neN. It follows from the compatibility condition
that [M, Nf is an ideal of N.

Recall from [26] that, in the context of Lie algebras, a crossed module is a Lie
homomorphism d:M—>P together with an action of P on M such that

(i) d{"m) = [p, dm],
(ii) lam)m' = [m,m']

for all m, m' eM, p eP.
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As another instance of compatible actions, note that if d.M-* P and d' :M'—> P are
two crossed modules then M and M' act on each other via the action of P. These actions
are compatible.

There are many examples of crossed modules. We list a few here. Throughout, P
denotes an arbitrary Lie algebra.

(1) If M is an ideal in P then the inclusion M <-» P is a crossed module.
(2) If M is a P-module (i.e. an abelian Lie algebra with a P-action) then the trivial

homomorphism M^> P is a crossed module.
(3) Any surjective Lie homomorphism M -» P whose kernel lies in the centre of M is

a crossed module. In this case p e P acts on m e M by pm = [p, m] where p e M is any
element in the pre-image of p.

(4) If P = aut(Af) is the Lie algebra of derivations on some Lie algebra M, then the
homomorphism M—*P which sends an element m e M to the corresponding inner
derivation M—>M, m'>-+[m, m'] is a crossed module.

The next proposition is taken from [10]. A published proof can be found in [21].

PROPOSITION 3. There are actions of both M and N on M <8> N given by
m\m ®n) = [m',m]®n + m® (m'n),

"(m ®n) = C'm) <g> n + m <8> [n', n]

for m,m'€M, n.n'eN. With these actions the homomorphisms fi:M<8>N^>M and
v: M &N-+N are crossed modules.

It is worth noting that for any crossed module d :M-*P the image of d is an ideal in
P, and hence we can form the quotient Lie algebra P/d(M). Also, the kernel of 9 is a
P-invariant ideal in the centre of M, and thus in particular is abelian. Moreover the action
of P on ker(d) induces an action of P/d(M) on ker(3), making ker(3) a P/d(M)-module.

So for the crossed modules /z and v of the last proposition, we get that ker(fi) is an
MI[M, /V]M-module, and that ker(v) is an N/[M, Nf-module.

There is a useful relation between our Lie tensor product M <8> N and the standard
tensor product of M and TV considered as A-modules. We denote this latter tensor product
by M 0 N. Recall that M 0 N is the A-module generated by symbols m®n (for m e M,

mod mod

n eN) subject to the relations:

K{m <8> n) = km ® n = m <8> Xn,

(m + m') <8> n = m <8> n + m' <8> n,

m <8> (n + n') = m <8> n + m ® n',

for A e A, m, m' e M, n, n' e N.

PROPOSITION 4. There is a A-module surjection

M ®N^»M®N, m®n^>m®n.
mod

Proof. The map is clearly a A-module homomorphism. It is surjective by virtue of
identity (iv) of the Lie tensor product. •

Sometimes the surjection of Proposition 4 is an isomorphism.

https://doi.org/10.1017/S0017089500008107 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500008107


104 GRAHAM J. ELLIS

PROPOSITION 5. If M and N act trivially on each other {i.e. [M, N]M = {0},
[M, N]N = {0}) then there is an isomorphism

= (Mab)®(Nab),
mod

where Mab = M/[M, M] and Nab = N/[N, N].

Proof. Here identity (iii) of the Lie tensor product states that [m, m']®n = 0 and
m ® [n,n'] = 0 for all m, m' e M, n, n' e N. •

The Lie tensor product <8> is not associative. It is however symmetric and it is
distributive over certain direct sums, as we now show.

PROPOSITION 6. There is an isomorphism

Proof. It is readily checked that h:M x N^>N<8>M, (m, «)>->« <2>/n is a Lie
pairing. The universal property of M <8> N thus yields a homomorphism M ® N—> N ® M.
There is similarly an (inverse) homomorphism N ®M^> M ®N. •

LEMMA 7. Suppose that L, M, N are Lie algebras such that
(i) L and N act compatibly on one another, and M and N act compatibly on one

another;
(ii) '(mn) = m('n) for all I e L, m e M, n e N;

(iii) the canonical homomorphisms [L,N]N ® M^>N ®M and [M,N]N<8)L^>
N <8> L are trivial.

Then the direct sum of Lie algebras L®M acts on N by ( /m)n = 'n + mn, and N acts on
L(&Mbyn(l,m) = ("I, nm). With these Lie actions there is an isomorphism

(M® N).

Proof. The actions are clearly Lie actions. It is routine to show that

a: (L 0 M) <g> A ^ (L <g> N) 0 (M ® W), (/, m) <8> n - • (/ <S> n, m <S>n)

yields a Lie homomorphism. The inclusions of L and M into L®M yield homomorph-
isms L®N-^>{L®M)®N and M®N-*(L®M)®N which combine to give an
inverse to a. •

Any Lie algebra P acts on itself by Lie multiplication and so we can consider the
tensor square P®P. Lemma 7 provides a description of P ® P for P = Px © P2 a direct
sum of Lie algebras.

PROPOSITION 8. There is an isomorphism

(A © P2) <g> (A © P2) = (Pi ® P,) © (A ® P2) © (P2 ® Pr) © (P2 ® P2).

Proof. Note that P} and P2 act on each other trivially. So we can apply Lemma 7
twice. •

The tensor product ® is functorial in some sense. To make this precise let Sie2 be
the category whose objects are ordered pairs of Lie algebras (M, N) which act compatibly
on each other; the morphisms of Sue2 are pairs of Lie homomorphisms 0:M—»Af,
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V: N-* AT such that <p(nm) = (v"\<t>M) and y(mn) = ilpm\xpn) for all m e M, n e N. Then
® is a functor from Stie2 into the category of Lie algebras.

In 2<«2 we have the obvious notions of kernel, image and exact sequence. Note that
if

(0, 0)-> (K, L)-> {M, A 0 - (P, Q)-> (0, 0)

is an exact sequence, then the action of M on N restricts to an action of M on L, and also
to an action of K on N. Similarly there is an action of N on K and of L on M. By
Proposition 3 there is a homomorphism M ® L—» L and an action of A/ on K® N; there
is thus an action of M ® L on K<8>N, from which we can form the semidirect product

PROPOSITION 9. A short exact sequence

(0, 0)-> (K, L)-> (A#, A 0 - (P, Q)-» (0, 0)

in S&e2 gives rise to an exact sequence of Lie algebras

(K ® N) X] (M ® L) -^ M ® A/ A. p (8) g -^. 0.

Proo/. Clearly /3 is surjective. Letting a^.K® N^> M <8) N and a2: M 8) L-> M <8) N
be the functorial homomorphisms we set #(u, w) = a^v) + ar2(iv). Certainly a is a
module homomorphism; the Lie bracket is preserved by a since, by Proposition 3,
rn)(m'®n') = [m®n, m ' ® « ' ] for all m ® « , m '®n '€M®A/ . The image of a- is
generated by all k®n, m ® / with k eK, Is L, meM, neN. Clearly Pa is the trivial
homomorphism. Now Im(cr) is an ideal in M®A/ since we have [m®n, &®n'] =
(rn)fc)®n' + fc®[m/i, n'] and [m®«, m' ® /] = fn)m') ® / + m' ® [mn, /]. To finish
the proof, it suffices to check that h : P x Q-> (M ® A/)/Im(ar), (p, ^) >-*p ® q + Im(ar),
with p e M and ^ e A/ being any elements in the pre-images of p and q respectively,
is a well-defined Lie pairing; the universal property of the tensor product then implies
that h induces a homomorphism P ® (3-»(Af ® A/)/Im(<?) for which there is an inverse
homomorphism induced by /?. •

One easy consequence of Proposition 9 is that if K is an ideal in the Lie algebra M
then there is an exact sequence

(A/ ® K) XI (K ® M)-+ M 0M^(M/K) ® (M/K)-*0.

If moreover K lies in the centre of M then the semi-direct product XI is just the direct
sum ©.

We end this section by showing how the tensor product is related to universal central
extensions. (Recall that a central extension

of P is universal if for any other central extension

there is a unique homomorphism 6: U-* M such that (f>6 = (p. It is well-known that P has
a universal central extension if and only if P is perfect, i.e. P = [P, P]. It is also
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well-known that if

is a universal central extension, then L is isomorphic to H2(P), the second homology of
P with coefficients in A.)

LEMMA 10. / / O—^K-^M ^»P—»0 is a central extension, then there is a Lie
homomorphism %:P®P^>M such that (j)^(p ® p') = [p> />']• Moreover, if P is perfect
then § is unique.

Proof. Since K is in the centre of M we get a Lie pairing h:PxP—>M,
(P> P')*~*\P> P] where p and p' are any elements in <p~l(p) and <t>~x{p') respectively.
This induces §. If §, §':P®P—>A/ are two homomorphisms such that 0§ = $£' then
§ — §' = it], where t]\P ® P—> K is a homomorphism which factors through the projec-
tion P<8>P-»(P<8>P)ab. By relation (iv) of the tensor product, if P is perfect then so is
P <S> P. The uniquenes of § for perfect P follows. •

This lemma give us

THEOREM 11. If P is a perfect Lie algebra then P®P-*P is the universal central
extension of P, and hence H2(P) = ker(P <8> P-> P).

2. An exterior product and universal quadratic functor. Suppose that d:M—>P and
d':N—>P are two crossed modules. In this context we say that a Lie pairing
h.MxN^Q is an exterior Lie pairing if h{m, n) = 0 whenever d(m) = 9'{n). For
instance, if 3 and d' are just inclusions of ideals, then the Lie pairing h:MxN—>Mr\N,
(m, n)*-^[m, n] is exterior.

Replacing "Lie pairing" by "exterior Lie pairing" in our definition of a universal Lie
pairing, we obtain the notion of a universal exterior Lie pairing.

Let MDiV be the submodule of M <8> N generated by the elements m®n with
3{m) = d'(n). Note that MDN lies in the centre of M ® N since for any m ® n e M• N
and m' <8> n' e M ® N we have

[m'®n',m®n] = -("'m') 0 (mn)

= - ( n W ) 0 [/!,«]
= -("'/!!')®0
= 0.

In particular, MON is an ideal.

DEFINITION. The exterior product M A N of M and N is the quotient

for /n ® n e M ® iV we denote the coset m ® « + MDAfbymA/i.

PROPOSITION 12. 77ie mapping

h:MxN->M AN, {m,n)^>m An

is a universal exterior pairing.
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It is readily seen that Propositions 2, 3, and 6 hold with <8> replaced by A. For any
Lie algebra P we can construct P A P from the identity map P—*P (which is a crossed
module). Theorem 11 then holds with <S> replaced by A , since for a perfect Lie algebra P
we have P <8> P = P A P. (This isomorphism follows from identity (iv) of the Lie tensor
product.)

Note that for any p,qeP we have (p + q) A (p + q) = 0 in PAP and, as a
consequence, p A q = — q A p. This last identity implies that the exterior analogue of
Proposition 8 is an isomorphism

(P, © P2) A (P, © P2) = (P, A P,) © (P, <g> P2) © (P2 A P2)

f (g) Pfwhen P = Pi® P2. Here, as in Proposition 8, P, ® P2 = Pf (g) P
mod

As a special case of the exterior analogue of Proposition 9 we have that a short exact
sequence

of Lie algebras induces an exact sequence

Again, this analogue is obtained using the identity m A n = — n A m which holds in
M A M. We can say more if M—> P is split.

PROPOSITION 13. A split short exact sequence of Lie algebras

induces a natural split short exact sequence

0 -> K A M-^ M A M ±5 P A P -^ 0.

Proof. We just need to prove the injectivity of K A M-^ M A M. We do this by
constructing a Lie homomorphism (p:M A M—* (K A M) XI (P A P) such that </H is the
canonical inclusion. Here x e P A P acts on (A A m) e /C A M by *(& A m) = ([3JC, k] A m)
+ (k A [dx, m\), where d: P A P—* P and P is considered as a subalgebra of M. Since M
= Ky\P we can define 0 :(/C X] P) A (K X] P ) ^ (/C A (K X] P)) XI (P A P) by (f>((k]>Pl)
A(k2, PT)) = (kt A (k2, p2) - k2 A (0, p{), ( p ,Ap 2 ) ) . A page of routine calculations
shows that <f> preserves the defining relations of the exterior product and is thus the
required Lie homomorphism. •

In order to study the relation between the Lie exterior product and the Lie tensor
product, we use a slightly generalized version of J. H. C. Whitehead's universal quadratic
functor, the generalization being due to [31].

DEFINITION. [31] The universal quadratic functor V is defined for any A-module A to
be the A-module T(A) generated by the symbols y(a) with a eA, subject to the relations

y(a + b + c) + y(a) + y(b) + y(c) = y(a + b) + y(a + c) + y(b + c),

y{Xa + b) + Xy{a) + Xy{b) = Xy(a + b) + y(Xa) + y(b),

for all A, A' e A, a, b, c eA.
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Consider the Lie subalgebra MxPN = {(m, n):d(m) = d'(n)} of the direct sum
M(BN. Recall the homomorphisms n:M<8)N-*M, v:M®N-*N from Proposition 2
and let (M, N) = {(fJJC, vx) :x e M <8> N). It is readily checked that (M, N) is an ideal in
MXpN, and that the quotient (MxPN)/{M, N) is abelian. For (m,n)eMxPN we
shall write (m, n) to denote the coset (m, n) + (M, N).

PROPOSITION 14. There is a natural exact sequence of Lie algebras

r((MxPN)/(M, N))2*M<g)N^M A N^O

where i//(y(m, n)) = m®n, and n(m ® n) = m A n.

Proof. Certainly n is surjective. Now any element x e M <8> N is of the form
x = E m, ® nh so

ux ® vx = - 2 (<"'>(«.•) ® ^ ( n , ) ) + 2 ( ( ^ K ) ® (m/>(/zy)) - (<"/>(«,.) ® ^(/ i , ))) .
i i<j

Applying relation (iv) of the Lie tensor product, we see that fix <8> vx = 0. Thus if
(m^n) = 0e(M XpN)/(M, N) then xp(y{m, n)) = m <8> n = 0. Certainly V preserves the
defining relations of T(_), and thus xjt is a A-module homomorphism. Clearly I m ^ =
MON. But Af • N is in the centre of M ® N, and so xp is a Lie homomorphism. •

One consequence of Proposition 14 is that for any Lie algebra P there is an exact
sequence

r(Pab)-H> P ® p -» p A P->0.

More generally, if Af and N are ideals of P, there is an exact sequence

r((Af n AO/[A/, J V ] ) - » W » I V ^ M A N ^ O.

From [31] we recall the following two results.

PROPOSITION 15. [31] For any A-modules A and B there is an isomorphism

T(A ®B) = Y(A) 0 Y{B) ® IA <g)
\ mod

PROPOSITION 16. [31] Let I be a well-ordered set. If A is a free A-module with basis
{e,},e/, then T(A) is a free A-module with basis

{y(«/)}.-6# U {(o(e,, e,) = y(e, + et) - y(e,) - y(e;)},<y.

In particular there is an isomorphism T(A) = A.

PROPOSITION 17. If P is a Lie algebra such that Pab is a free A-module, then the
sequence

0-» r(/>ab) ^P®P±*PAP-*0

is exact.

Proof. We have only to prove that rl>:r(Pab)->P®P, y(p + [P, P])^>p ®p is
injective. Let 8: P <8> P—»Pab ® Pab be the Lie homomorphism induced by the projection
P_» pa b . Now Pab ® Pab s pa b <g) p a b is a free A-module, and so too is T(Pab). Moreover

mod
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the composite homomorphism Oip maps a basis of r(Pab) injectively to part of a basis of
pab 0 pab T h u s gy i s m j e c t j v e j t follows that i/> is injective. •

Note that if A is a field, then any Lie algebra P over A satisfies the hypothesis of this
last proposition.

In [15] a natural isomorphism

was obtained for any Lie algebra P. Consequently, for any free Lie algebra F there is an
isomorphism F A F = [F, F], since H2(F) is trivial.

DEFINITION. For any Lie algebra P we set

J2(P) = ker(P <8> P^P, p ®p'^ [p, p']).

In Section 4 we obtain (a more general version of) the following theorem (see
Theorem 27).

THEOREM 18. For any Lie algebra P there is a natural exact sequence

where the homomorphism ip is injective if P is a free A-module.

We can use Theorem 18 to study J2{P * Q) where P * Q is the free product of Lie
algebras P and Q.

PROPOSITION 19. For any Lie algebras P and Q there is an isomorphism

UP * Q)=UP) ®UQ) © (Pab ® eab)-

Proof. Since Hn(P * Q) = Hn(P) © Hn(Q) and r ( (P*Q) a b )s r (P a b ) ©r(Qa b) ©
(pab(g) (3ab), we have a commutative diagram

0 0 0

I I I
H3(Q) r (0a b) © (Pab ® 0ab) H2{Q)

I I I
H,(P*Q) > T((P*e)ab) >J2(P*Q) * H2{P*Q) > 0

I i I" 1
H3(P) * T(Pab) * J2(P) * H2(P) > 0

I I J I
0 0 0 0

in which the columns are exact, the homomorphism n being induced by the projection
P*Q^> P. The rows are also exact by Theorem 18. We thus have an exact sequence

HQ) © (^ab ® 0 a b H ker(^)^H2(Q)^0.
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Now the projection P*Q—>Q induces the split vertical maps in the commutative diagram

H3(Q) * T(Qab) © (Pa b ® Qab) » ker(*:) » H2(Q) > 0

H3(Q) —> r(eab) — - Ji(Q) —> H2(Q) —* o.
As the rows of this diagram are exact, we obtain an isomorphism V.er(jz) = J2(Q) ©
(Pab®Pab). But it is split, and so J2{P* Q) sker(jt) ®J2{P). The isomorphism of the
Proposition follows. •

COROLLARY 20. For any Lie algebras Pu . . . , Pn there is an isomorphism

The following formula for J2(P © Q), where P © Q is the direct sum of Lie algebras
P and Q, is easily derived from Proposition 8.

PROPOSITION 21. For any Lie algebras P and Q there is an isomorphism

J2(P © Q) =h{P)®J2(Q) © (Pa b ® <2ab) © (Qa b ® Pab).

3. Free and projective crossed modules. We now investigate a relationship between
the Lie exterior product and free (and projective) crossed modules.

By the category of crossed P-modules we mean the category whose objects are
crossed modules d:M-+P with P a fixed Lie algebra; in this category the morphisms
from d:M-*P to d':M'—>P are the P-equivariant Lie homomorphisms d:M—*M' such
that d'6-d. A projective object in this category will be called a projective crossed
P-module.

It is readily seen that a projective P-module (in the usual sense) is one example of a
projective crossed P-module. We can obtain more examples by considering "free" objects
in the category of crossed P-modules. In fact there are three distinct notions of "freeness"
to be considered.

In the following definition we say that <5: Q —> P is a P-homomorphism to mean that
Q is a P-module and 8 is a P-module homomorphism with P considered as a left
P-module.

DEFINITION. Let S(A, Q) be a set (A-module, P-module) and let b:S^>P (8:A—*
P, 8.Q—*P) be a set mapping (A-module homomorphism, P-homomorphism). We say
that a crossed P-module 3: M —* P is free on 8 if:

(a) S(A, Q) is a subset (sub A-module, sub P-module) of M;
(b) for any crossed module 3':M'—»P, any set mapping v:S-*M' (A-module

homomorphism V.A-+M', P-homomorphism v:(2—»M') satisfying d'v = 8 extends
uniquely to a morphism v:M—>M' of crossed P-modules.

Clearly a free crossed P-module (in any of the three senses) is uniquely determined
up to isomorphism by 8.

It is readily seen that a crossed P-module is projective if it is free on some set
mapping 8. Also, the free crossed module on a A-module mapping 8:A—*P is a
projective crossed P-module if A is a projective A-module. Note that if A is a field then
every A-module is projective.
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For each of the three notions of freeness we now show how to construct a free
crossed P-module.

CONSTRUCTION 1. Suppose that 6 : Q —* P is a P-homomorphism. Let s&\Q) = Q and
s&k(Q) = 0 ^(Q) 0 s$k-'(Q). Then the module action of P on Q yields a P-module

0</<* mod

structure on Mk(Q): if x <8>y € s£'{Q) <g) Mk~l{Q) and p e P then, inductively, we define
mod

p (x <8> y ) = p x <8> y + x <8> p y ,

and this extends linearly to an action of p on an arbitrary element of Mk(Q). Now let

s&(Q) = © dk(Q)- The action of P on Mk(Q) extends linearly to an action of P on

sd(Q), making s£(Q) into a P-module. The inclusion maps sd'{Q) <g) ,s/*(Q)-».5#y+*(G)
give rise to a non-associative multiplication on M(Q).

Let ^((2) be the two-sided ideal of s£{Q) generated by the elements

xx and x(yz) + y(zx) + z(xy),

where x, y, z e sd{Q). It is easily checked that •${()) is P-invariant. We have a Lie algebra
Z£{Q) = s£{Q)I•${()), which is well-known to be the free Lie algebra on the A-module Q.
The action of P on sd{Q) induces a Lie action of P on ££{Q).

Now the P-homomorphism d:Q—>P induces a unique Lie homomorphism
d:Z£(Q)-*P and, since 6 is P-equivariant, d is P-equivariant. Take -f(Q) to be the ideal
of i£{Q) generated by the elements [x, y] - ^y for x, y e !£{Q). (By analogy with the
group theoretic situation, we shall refer to ^(Q) as the Peiffer ideal.) Since •?(()) is
P-invariant, if we set <€(Q) = i£{Q)IS'{Q), the induced homomorphism 3: C€(Q)-*P is a
crossed module; clearly this is the free crossed module on d : Q—* P. •

CONSTRUCTION 2. Suppose that d:A^>P is a A-module homomorphism. Let Q =
Pe & A, where Pe is the universal enveloping algebra of P. Thus Q is a P-module, and

mod

there is a P-homomorphism 6':Q-*P, xQa^x. (da); here xePe, aeA and we are
using the fact that P is a Pe-module. Construction 1 now provides us with the free crossed
P-module <€(Q)—*P on 6', which is clearly also the free crossed P-module on 6. •

CONSTRUCTION 3. Suppose that 6 :5-» P is a set map. Let A be the free A-module on
5, and let 6":A—*P be the A-module homomorphism induced by 6. Using Construction
2 we get the free crossed module <#(£>)—• P on 6", where Q = Pe (g) A; this is clearly the

mod

free crossed module on <5. •

THEOREM 22. Suppose that A is a field. Let d:M—*P be a projective crossed
P-module. Denote the image of d by M. Then the restricted homomorphism d:M—>Misa
projective crossed M-module.

Proof. Standard arguments show that a crossed P-module d:M^>P is projective if
and only if there is some free crossed P-module d:c€(S)^ P on a set mapping 5—*P
together with a pair of crossed P-module morphisms ^^(S)—»M, a:M^c€(S) such
that <t>a is the identity. Thus we need only prove that for any such crossed P-module

https://doi.org/10.1017/S0017089500008107 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500008107


112 GRAHAM J. ELLIS

d:(€(S)—*P, the restricted crossed M-module 3:^(5)^^M is free on some set mapping
p-.R-^-M.

So suppose that 3: ^(5) —* P is a free crossed module on a set mapping 8:S-*P, and
that M is the image of 3. Since A is a field we can consider Pe as a free M-module with
basis B say (see for example [22, Chapter VII, Corollary 1.4]). Let R = B x 5 and define
p : 7? -» M by p(fe, s) = 6. (&) for b e B, s € S, where we are considering the ideal M of P
as a left Pe-module. If A is the vector space over A with basis 5, then Pe ® A is the free

mod

M-module on the set R. Hence p induces an M-module homomorphism p' :Pe ® A^*M
mod

which, in fact, is P-equivariant. Now p' induces an M-equivariant Lie algebra
homomorphism p":£(Pe <g> A)-*M. By Construction 1, <g(S) = <£{Pe <g> A)I$(S)

mod mod

where ^(5) is the ideal generated by the elements [x, y] - ^'"y for x, y e !£{Pe <g) A).
mod

Let 3 ' :M'-^M be any crossed M-module. Any set map v:R-*M' satisfying d'v = p
induces a unique M-module homomorphism v' :Pe (g) A—*M' satisfying d'v' = p'. The

mod

map v' induces an M-equivariant homomorphism i£(Pe 0 A)—*M' which, since
mod

M'^M is a crossed module, in turn induces a homomorphism v": <&{S)—*M'; clearly v"
is a morphism of crossed M-modules. This proves that 3 : ^ ( 5 ) ^ M is free on the set
map p. •

PROPOSITION 23. Lef d:M-*P be a projective crossed P-module with Im(3) = M say.
Then

(i) tfje idea/ [M, M] o/ M « uniquely determined, up to isomorphism, by the Lie
algebras M and P;

(ii) there is a surjective Lie homomorphism £:M A M—»[M, M].

Proof, (i) Suppose that d':M'-*P is another projective crossed P-module with
lm(d') = M. Let M x P M ' = { (m ,m ' ) eMxM' :3m = 3'm'}. We have a homomor-
phism MXpM'—*P, (m, m')>-* dm, which we shall consider as a set mapping.
Let ^ ( M x P M ' ) - » P be the free crossed P-module on this set mapping. The projection
MxPM' -»Af is surjective and induces a surjective morphism of crossed P-modules
v:(€(MXPM')-»M. It is readily checked that v is a crossed M-module with M
acting on ^(MXpM') via P; hence ker(v) is in the centre of ^(MXpM'). Since M
is projective there is a crossed P-module morphism o:M^*c€(MxPM') such that vo
is the identity. Therefore ^ (Mx P M' ) = M v ) © W , and consequently [^(Mx^M'),
^(Mx P M') ] = [M, M]. Similarly [(€(MxPM'),<€(MxPM')]s[M',M']. Thus we
have [M, M] s [M', At'].

(ii) Lemma 10 applied to the central extension M^*M yields a surjection M® M^»
[M, At], which in turn induces a surjection M A M -»[M, At]. •

We now give several characterizations of projective crossed modules.

THEOREM 24. Let d:M-*P be a crossed P-module. Let M = Im(3) and P = P/M.
The following statements are equivalent if A is a field or if M = P.

(i) 3: At-* P is a projective crossed P-module.
(ii) Mab with the induced action of P is a projective P-module, and §: M A M ^»

[At, At] is an isomorphism.
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(iii) Mab is a projective P-module and H2(M) = ker(d) n [M, M].
(iv) Mab is a projective P-module and the induced homomorphism 3*: H2{M) —>

H2(M) is trivial.

Proof. To prove (i) implies (ii), suppose that d:M—>P is projective. Then we can
find a free crossed P-module ^(S) —*P on some set mapping S—»P for which there is a
split crossed P-module epimorphism cf>: ^(S)—* M. It is easily checked that 0 : <#(£)—» M
is a crossed M-module with M acting on ^(5) via P. Thus ker((/>) is in the centre of ^(S)
and so there is a P-equivariant Lie isomorphism *#(£) = ker($) © M. Note that ker(</>) is
a P-module. It is readily seen that <#(S)ab = Pe (g) A where A is the free A-module on 5.

mod

Thus <g(5)ab is a free P-module. But <€(S)ab = ker(<£) © Mab. It follows that Mab is a
projective P-module.

The restricted crossed Af-module 3: M —*• M is projective if M = P (clearly) or if A is
a field (by Theorem 22). Now choose a presentation R >-> F -»M of the Lie algebra M,
with F the free Lie algebra on some set 5. It is easily checked that the induced central
extension F/[F, /?]-»M is the free crossed M-module on the set mapping S—>M. Hence
by Proposition 23(i) we have an isomorphism [F/[F, R], FJ[F, R]] = [M, M]. But
[F/[F, R], F/[F, R]] = [F, F]/[F, R ] S M A M . This proves that M A M = [M, M].

The isomorphism H2(M) = ker(Af A M—*M) shows that (ii) implies (iii).
Now (iii) implies (iv) because the five term exact homology sequence (see [22] or

Theorems 34, 35 below) arising from the central extension ker(3)>-*Af-»M is

H2(M) - ^ H2(M) -> ker(a) ±* HX{M) -»• Ht(M) -^ 0,

and ker(i) = ker(3) n [M, M].
To prove that (iv) implies (i) suppose that Mab is a projective P-module and that 3*

is trivial. Let d' :E—*P be any crossed P-module. By standard arguments we see that M
is a projective crossed P-module if any surjective morphism of crossed P-modules
e.E-»M splits. Certainly the induced morphism e:iTab—*A/ab yields an isomorphism
Eab = ker(e) © Mab, and consequently a surjection £—•£ab-»ker(£). The projection
£->Ea b induces a surjection ;r:ker(£)-»ker(£). We shall show that n is injective, and
the resulting surjection E—»£ab—»ker(§) s ker(e) will give the desired splitting of e.
Note that the central extensions ker(9')>-»£-»M and ker(3)>->M-»M give rise to a
commutative diagram

£a b ® ker(3') * H2(E) > H2{M) * ker(3') > Eab * M * 0
mod

I - 1' II I -
Mab ® ker(3) * H2(M) -2-> H2(M) * ker(3) * Mab >M > 0

dmod

in which the rows are exact and are due to [15, Section 3, Remark (i)]. (See also
Propositions 34 and 35 below.) In this diagram e' and e are surjective, and it follows that
£ is surjective. The injectivity of n follows from the exact sequence

H2(E) ^H2(M)^ ke r ( £ ) ^ £ a b ^ M a b ^ 0 . •
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Recall that a Lie algebra M is superperfect if H^M) = H2(M) = 0. From Theorem 24
we see that if M is a superperfect ideal in some Lie algebra P, then the inclusion M <-* P is
a projective crossed P-module. One example of such an ideal is sl(A), the ideal of
matrices with zero trace in the Lie algebra gl(A) of matrices over A (see [26]).

4. Non-abelian derived functors. Let SF-.j^e^iue be the endofunctor on the
category of Lie algebras which sends a Lie algebra P to the free Lie algebra on the
underlying set of P. We set &° = id:&-+Z:e, &1 = 3P and &" = &&"~l for n >2. For
l < i < n let e":&fnP^3'n~lP denote the Lie homomorphism obtained by applying ^I'~1

to the canonical "augmentation map" ^{^n-iP)^9^n~i{P). Then

is a simplicial Lie algebra (in which we have not made explicit the degeneracy maps as
they will not be needed).

Let ST:SAe^>2te be any endofunctor. Applying 3~ dimension-wise to SF*P yields a
simplicial Lie algebra:

The nth homotopy group of 3~&*(-) is called the nth derived functor of 3~ and in this
article it is denoted Sf5"n(-). To be more explicit, recall that the homotopy groups of

are the homology groups of the Moore complex

0,

M,V0(P) = T®P, M&n{P) = f l ker(ST£,), and dn is the restriction of &eTX\
Hence

n s 0.

where M,V0(P) = °T®XP, M&n{P) = f l ker(ST£,"+1), and dn is the restriction of &eTHX\.
l

For more information on simplical Lie algebras see [8]. See [3] and [25] for more
information on derived functors.

We denote the nth homology of a Lie algebra P with coefficients in A by Hn(P). This
homology can be described in terms of the derived functors of the endofunctor

5 L i &
THEOREM 25 (Barr-Beck [3]). There is a natural isomorphism

Hn+1(P)^3)(-Kb{P)
for n > 0.

Proof. As pointed out in [29, Chapter II, Section 5], the cotriple description of
group cohomology given in [2] carries over to the case of Lie algebra cohomology. Hence
the proof of the cotriple description of group homology given in [3] carries over to the
description of Lie algebra homology given in the theorem. •
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Consider the endofunctor A2:i&—»<2/« which sends a Lie algebra M to the exterior
product square M A M.

PROPOSITION 26. There are natural isomorphisms

2)A2(P) = //n+2(P) forn>\,

2>AI(P) = P A P.

Proof. Since there is a simplicical isomorphism [^*P, 3i*P\ = A2^*P, we have a
short exact sequence

of simplical Lie algebras. This gives rise to a long exact homotopy sequence

from which the first isomorphism can be deduced.
Let %P be the kernel of EI:SF2P^> &XP. By the exterior analogue of Proposition 9

we see that the kernel of the homomorphism E\ A E\:&2P A ^2P-> &lP A &XP is
generated by the elements x A k with x e &2P and k e JKP. It follows that the image of the
homomorphism dx:JCP—* 3FlP A ^ ' P (where dx is the restriction of e2 A E2) is generated
by the elements x Ak where x e 9XP and k e EI(3KP). NOW ^PIslpCP) = P. It follows
from the exterior analogue of Proposition 9 that 3l Ao(P) = coker(d,: 3ifP-» JF'P A
&*P) = P A P. •

We shall now prove a generalized version of Theorem 18. To do this we define Lie
algebras Jn(P) and Tn(P) for n >2.

Let (E>2:S/c—»2?e be the endofunctor which maps M to the tensor square M®M.
We write Jn+2(P) - 3>®2

n{P) for n^O. Note that, analogous to the second isomorphism
in Proposition 26, there is an isomorphism 2) <£>o (P) = P ® P.

Let Pb :S?«^SJe the endofunctor which maps M to T(Mab). We write Tn+2(P) =
Srj|b(P) for rt>0. Analogous to the second isomorphism in Proposition 26, there is an
isomorphism 2Ta,b(P)sr(Pab).

THEOREM 27. For any Lie algebra P there is a natural long exact sequence

-»UP) -> y3(p) -> //3(p) -»r(Pa b) ^ /2(P) -> H2(P) -H. o,

w/tere t/; is injective if Pab w o /ree A-module.

Proof. By Proposition 17 we have a short exact sequence of simplicial Lie algebras

the long exact homotopy sequence of which is, by Theorem 25 and Proposition 26, the
required sequence. •

We know (by virtue of identity (iv) of the Lie tensor product) that if P is a perfect
Lie algebra then P®P = PAP and hence that J2(P) = H2(P). We can extend this
isomorphism to higher dimensions so as to get a sort of "Hurewicz theorem".
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THEOREM 28. Let n s 2 and let P be a Lie algebra such that
(i) Hi(P) = 0for2<i<n-l,
(ii) H1(P) = 0ifn=2or3,

(iii) Hi(P) is free abelian {possibly HX(P) = 0)ifn>4.
Then the canonical maps Jn(P)=* Hn(P), Jn+1(P)-**Hn+1(P) are respectively an iso-
morphism and a surjection.

Proof. We see that the free simplical A-module (^*P)ab obtained from &*P by
abelianizing dimension-wise has ith homotopy group equal to Hi+1(P). Thus by modifying
(<^*P)ab

 o n | v m dimensions greater than or equal to n we can convert it into a free
simplicial A-module resolution of H^P). Now the simplicial module obtained from
(<^*P)ab by applying r ( - ) dimension-wise has ith homotopy group equal to ri+2(P).
Hence I\,(P) = Fn _!(/>) = 0. Thus Theorem 27 implies the required isomorphism and
surjection. •

One immediate consequence of Theorem 28 is that the universal central extension
P ® P of a perfect Lie algebra P is such that r3(P <8> P) = 0 and /3(P <8> P) = H3(P <g> P).

5. Relative derived functors. Suppose given a short exact sequence

of Lie algebras. Then for any endofunctor 5":<2<«-»,2«! the homomorphism <p induces a
surjective simplical Lie homomorphism (f>*:9~!P*P^>&~!P*Q. We define relative derived
functors

Since a short exact sequence of simplicial Lie algebras gives rise to a long exact homotopy
sequence, we have immediately

LEMMA 29. There is a natural long exact sequence

-> 3>ern+1(Q)^ 3)3-n(P; M)^ ®Vn{P)^ %^(Q)-*.. .-+ 2>MQ)~*0.

Now suppose given another short exact sequence of Lie algebras

Then <j> induces a surjection </>':R—>P/(M + N), which in turn induces a simplicial
surjection <I>*:9'&*R-»9'&*(P/(M + N)). The homomorphism V induces a simplicial
surjection %I>1: ker <f>t -» ker <p'%. We define the double relative derived functors as

Note that 23~n(P; M, N) = 9>?Fn(P; N, M). The long exact homotopy sequence gives us

LEMMA 30. There is a natural long exact sequence

; M + N/N)-» mn(P; M, N)-+ 2Jn(P; M)

;M + N/N)-^...->2)%(P/N;M + N/N)-+0.

The exact sequences of Lemmas 29 and 30 can be spliced together (compare [16,
Proposition 3]) to give
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LEMMA 31. / / 2>5"n(P/(A/ + TV)) = 0 for all n > 0 then there is a natural long exact
sequence

0 ®Srn+,(P/N)-* ®9-n(P; M, tf)-> ® W ) - »
-»• ®9~n(P/M) e 3>3-n(P/N)^. . . -* 3)%{PIM) 0

We shall now give computational descriptions of S%(P; M) and 2>2T0{P; M, N).
Consider the diagram

where y\ denotes a semi-direct product; the action of P on M is pm = [p, m]; the action
of P on M ® M is p(m, m') = ([p, m], [p, m'\); the homomorphisms are p1(m,p) =
m+p, p2{m,p)=p, q1(m',m,p) = (m'-m,m+p), q2(m', m, p) = (m', p) and
q3(m', m, p) = (w, p).

Applying 2)^"0 to the above diagram we get the diagram

0 M) XI P) = t ®Sro{M X P) =
91.92.43 pi

where we have written qt and p, instead of 3)3'0{qi) and S5"0(p,). With this notation we
have

LEMMA 32. 77tere is an isomorphism

; M) = {kerp2}/{q1(ker q2 n ker q3)}.

Proof. This isomorphism is (a special case of the) Lie algebra version of [16, Lemma 9]
(also compare [25, Theorem 9]). It is clear that we can replace "group" by "Lie algebra"
throughout the proof of [16, Lemma 9]. •

Now the diagram

P2

9l.42.43

induces a diagram

2W0((N © N) X] P; (M D N) 0 (Af n AO X M) = =
9l.92.93

P*2

Pi

and we have

LEMMA 33. There is an isomorphism

2>5o(P; M, N) = {kerp2}/{q[(keT q2 n ker ^3)}.
Proof. Let 5^^« be the category whose objects are surjective Lie homomorphisms

and whose morphisms are commutative squares of Lie homomorphisms. Let
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S&e be the functor defined by ^(P-^Q) = ker(STP^> FQ). Then %Wn{P;M) can
be considered as the rcth derived functor of 3~r (compare [16, Section 2]). Hence
the isomorphism of the proposition follows from the Lie algebra version of [16,
Lemma 9]. •

DEFINITION. For ideals M, N of P we define the relative and double relative
homology groups with coefficients in A to be

for n > 1.

Proposition 26 with Lemmas 29, 30, and 31 gives us

THEOREM 34. For any ideals M, N of a Lie algebra P there are natural long exact
sequences

^Hn+l(P/M)->Hn(P;M)^Hn(P)^Hn(P/M)-».. .->//,(P/M)->0
and

->Hn+1(P/N;M + N/N)^Hn(P; M, N)^Hn(P; M)^Hn(P/N; M + N/N)

- » . . . - * HX{PIN; M + N/N)->0.

If moreover H^P/M + N) = 0 for i > 1, then there is also a natural exact sequence

-> Hn(P/M) 0 Hn(P/N)~* • • • -* H0(P/M) © Ha

The following descriptions of HX{P; M), //,(P; M, N) and H2(P; M) turn these exact
sequences into computational tools.

THEOREM 35. For any ideals M, N of a Lie algebra P there are isomorphisms
(i) H1(P;M)^P/[P,M],

(ii) H^P; M, N) = {Mn M}/{[P, AfnJV] + [M, N]},
(hi) H2(P;M)

Proof. Proposition 26 and Lemma 32 give us an isomorphism

HX(P; M) = ker{(M X P ) a b - ^ Pab},

since for ?,:((M®M) XP)ab-+(M XlP)ab we clearly have ker q2 n ker q3 = 0.
Isomorphism (i) follows.

Isomorphism (i) and Lemma 33 give us an isomorphism

//,(P; M, N) = ker{((M n A0 XI M)I[N XIP, (M n N) X M] - ^ M/[P, M]}

since for the appropriate q\ we have ker q'2 D kerq'3 = 0. From this we get isomorphism
(ii).

Consider the functor A2:2<«—*S£ie. We have an isomorphism

H2(P; M) = ker(2i A ^ ( P ; M)^>P).
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So to obtain isomorphism (iii) we need to show that there is an isomorphism
2)AI(P;M) = PAM. Let qt:{M XI M X) P) A (Af XI M XI P)->(M XI P) A (Af XI P) and

Pi:: (M XI P) A (Af XI P)-> P A P be the homomorphisms of Lemma 32. By the exterior
analogue of Proposition 9 there is an exact sequence

M A (Af © Af XI P ) - * (Af © Af XI P) A (Af © M XI P) -^-» (Af XI P) A (Af XI P)-> 0

for / = 2, 3; hence ker^2 is generated by the elements (m, 0, 0) A (m', m", p), and ker q3

is generated by the elements (0, m, 0) A (m(, m", p) . Thus k e r g 2 n kerg 3 is generated by
elements of the form {m, 0, 0) A (0, m', 0). It follows that (?i(ker q2 D ker g3) is generated
by elements of the form (m, 0) A (—m', m'). By Proposition 13 we see that kerp2 =
(Af XI0) A (Af XI P). From the exterior analogue of Proposition 9 and Lemma 32 we get

2) A « ( P ; M) = {kerp2}/{<7,(ker(72nker<73)} = M A P = P A M. •

A routine proof (analogous to the proof of [4, Theorem 1]) using the first two
sequences of Theorem 34 and isomorphisms (i) and (ii) of Theorem 35 gives the following
result.

THEOREM 36. Let F be free Lie algebra with ideals R, S such that Hj(F/R) =
Hj(F/S) = 0 for i = 2, 3. Then there is an isomorphism

Rnsn[F,F]
[F, R fl 5] + [R, S]'

This isomorphism is a generalization of the well-known Hopf formula for the second
homology of a Lie algebra. (See for example [22, Chapter VII, Exercise 3.2]).
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