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FINITE PRESENTABILITY OF SOME METABELIAN HOPF
ALGEBRAS

DeEssisLava H. KOCHLOUKOVA

We classify the Hopf algebras U(L)#kQ of homological type FP, where L is a Lie
algebra and @ an Abelian group such that L has an Abelian ideal A invariant under
the Q-action via conjugation and U(L/A)#kQ is commutative. This generalises the
classification of finitely presented metabelian Lie algebras given by J. Groves and R.
Bryant.

INTRODUCTION

The purpose of this paper is to try to unite some existing methods used in the classi-
fication results of metabelian Lie algebras and metabelian discrete groups of homological
type F P, via the language of Hopf algebras. This sheds more light on the similarities
between the Lie and group cases and explains partially the differences. Still some of the
results in the group case have homotopical flavour, using methods from covering spaces
to establish that having homological type F'P, imposes strong condition on the first X-
invariant of the group ([4]). These methods do not have a purely algebraic counterpart.
The Lie case was treated in [5, 6] with algebraic methods, and a Lie invariant (with a
valuation flavour) for metabelian Lie algebras was proposed. This plays the same role in
the Lie theory as the Bieri-Strebel Z-invariant for metabelian groups. In this paper we
do not suggest a new invariant but establish that the main result of [5] holds for some
metabelian Hopf algebras. It is interesting to note that in both the Lie and group cases
calculations with the second homology group of Abelian objects (Lie algebras or Abelian
groups) viewed as modules over a commutative ring via the corresponding diagonal ac-
tion was always quite helpful. The definition of the diagonal Lie and group actions can
be united via the comultiplication map of Hopf algebras, and this was the starting point
of our considerations.

We study Hopf algebras H = U(L)#kG over a field k, that is, smash products of
universal enveloping algebras U(L) of Lie algebras L over k by group rings kG, where G
acts via conjugation on L and write X for the category of such- Hopf algebras. This cate-
gory is quite important. If char(k) = 0 it coincides with the category of cocommutative,
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pointed Hopf algebras over k [8, 5.6.4, 5.6.5]. Still in this paper we do not impose any
condition on the characteristic of k.

By the main results of [5, 6] for metabelian Lie algebras the homological property
FP, is equivalent to finite presentability (in the Lie sense). Finite presentability in the
category X was defined in [7] and is further explained in Section 1. The following theorem
classifies some metabelian Hopf algebras in X and shows that again finite presentability
and the property F'P; coincide. It is well known that the properties FP, and finite
presentability are not equivalent for general groups ([2]), but the same problem is open
for Lie algebras.

THEOREM 1. Let H = U(L)#kQ be a finitely generated Hopf algebra with
A an Q-invariant (via conjugation) Abelian ideal in the Lie algebra L such that
R =U(L/A)#kQ is commutative. Then the following are equivalent:
1. H is finitely presented in the category X;
2. H as associative ring is of homological type FP;;
3. AAA is finitely generated right R-module, where R acts on A via the adjoint
action and R acts on A ® A via the comultiplication A : R -+ R® R;

4. AQ® A is finitely generated right R-module, where R acts on A® A via the
comultiplication A.

The proof of the above theorem will be given by showing that every condition implies
the following and that 4 implies 1. The most difficult part of the proof is 4. implies 1.
and is done in Theorem 4. The proof of Theorem 4 is quite long. It partially follows
the method introduced in [5]. Still our set of relations that will show that H is finitely
presented is much larger than the one considered in [5] (even if we are in the Lie case
Q = 1), but by considering more relations we manage to simplify the argument from [5].
In fact a blind translation of the method of [5] in the Hopf case does not work because
the comultiplication A sends group-like elements g to g ® g, thus increases the length of
elements and a big part of the proofs in [5] is based on induction on length.

Finally we observe that Theorem 1 is an extension of the main results of [5] and [6]
but the main result about metabelian groups of [4] does not follow from Theorem 1. It
will be interesting to find a description of the Hopf algebras H = U(L)#kG of type FP;,,
where H is a Hopf extension in the category X of two commutative smash products (in
particular this implies that G is metabelian) and find a new invariant that generalises
simultaneously the Bieri-Strebel invariant [4] and the Bieri-Groves invariant [6].
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1. PRELIMINARIES ON THE CATEGORY X AND FINITE PRESENTABILITY IN X

The category X is a subcategory of the category of Hopf algebras over k. An object
of X is a smash product

H=U(L)#kG ~U(L) ® kG,
L={aeH|A(e)=a®1+1®a}, G={ge H|A(g) =g ®g}
and A : H - H ® H is the comultiplication of H.

If not stated otherwise, the tensor products are over the field k. Here U(L) is the universal
enveloping algebra of the Lie algebra L and kG is the group algebra of G with coefficients
in k. The group G acts on L via right conjugation: for a € L, g € G we have a? := g~lag
€ L. The elements of L are called Lie elements and the elements of G group-like elements.

Let Z = X UY be a disjoint union of sets, F the free group with basis Y, X; a set
on which the group F acts freely with X,/F ~ X (that is, X is the disjoint union of free
F-orbits |J zF) and L, the free Lie algebra over the field k with basis X. As defined in
{7] z€X

H(X |Y) = U(Lo)#kF,

where the action of F on Ly via right conjugation is induced by the action of F on X,.

Let H be a Hopf algebra from the category X. We say that H is finitely generated
if it is finitely generated as an associative k-algebra. Note this is equivalent to the
existence of a disjoint union X UY of finite sets and an epimorphism of Hopf algebras
7:H(X |Y) - H that is, H(X | Y) is a Hopf extension of the Hopf kernel H, of 7 by
H. :

We say that H is finitely presented as a Hopf algebra (or finitely presented in the
category X) if it is finitely generated and there is a finite set X UY such that for the
Hopf kernel H, = hker(m) defined in the previous paragraph there is a finite subset R of
Q(H,) such that the orbits generated by the elements of R via the right adjoint action
of H(X | Y) on H; generate H, as an associative k-algebra. Here Q(H,) denotes the
kernel of the counit map H; — k, the right adjoint action of the group-like elements is
conjugation, and the right adjoint action of the Lie elements is given by the Lie bracket.
The following results can be viewed as a generalisation of the main results of [1] and will
be used later on in the proof of Theorem 4. It shows that being finitely presented in the
category X does not depend on the choice of generators.

THEOREM 2. (7, Theorem B, Cororollary 2}

(a) An element of X is finitely presented in the category X if and only if it is
finitely presented as an associative k-algebra. ‘

(b) Let H be a Hopf algebra in the category X and 7 : H(X |Y) — H be
an epimorphisms of Hopf algebras where X UY is a disjoint union of finite
sets. Then H is finitely presented in the category X if and only if there is
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a finite subset R of the Hopf kernel H; of m such that the orbits generated
by the elements of R via the adjoint action of H(X | Y) generate H, as
an associative k-algebra and R contains only Lie elements and gréup—like
elements - 1.

2. TENSOR AND EXTERIOR SQUARES

Let A be a finitely generated module over a commutative Hopf algebra
H = U(L))#kQ. We view A ® A and its quotient A A A as right H-modules via the
comultiplication A : H - H® H.

THEOREM 3. The module A® A is finitely generated over H if and only if AN A
is finitely generated over H.

PROOF: The above theorem is known in the case when L, = 0 [3, Theorem 4.3] or
Q@ = 1 [6, Proposition 2.4]. In fact the proof of [6, Proposition 2.4] is for any finitely
generated commutative k-algebra with unity H that acts on A A A via some homomor-
phism of k-algebras A : H — H ® H such that for some generating set (as commutative
k-algebra with unity) Y of H we have A(y) = y® 1 +1Q® y for every y € Y. A close
observation of the proof of {6, Proposition 2.4] shows that in fact it uses only that for
every ¥ € Y the element A(y) is invariant under the action of the symmetric group on two
elements that permutes the factors of H ® H. In particular the proof of [6, Propisition
2.4] holds in our case where Y = Ly U @, Lo is a basis of L, over k, Qg is a generating
set of the Abelian group Q. ' 0

3. FINITE GENERATION OF TENSOR SQUARES AND FINITE PRESENTABILITY

The purpose of this rather long section is to'develop the techniques of the proof of
Theorem 4. The proof of Theorem 4 will be completed in Section 4.

THEOREM 4. Let H = U(L)#kQ be a finitely generated Hopf algebra with
A an Q-invariant (via conjugation) Abelian ideal in the Lie algebra L such that
R = U(L/A)#kQ is commutative. If A ® A is finitely generated over R via the co-
multiplication A : R -+ R® R, where A is viewed as a right R-module via the adjoint
action, then H is finitely presented in X.

3.1. MORE ABOUT GENERATORS AND RELATIONS FOR THE HOPF ALGEBRA OF THE-
OREM 4. Let H = U(L)#kQ be a Hopf algebra with A an Q-invariant (via conjugation)
Abelian ideal in the Lie algebra L, let R = U(L/A)#kQ be commutative, and let H be
finitely generated as an associative k-algebra. We view A as a right R-module via the
adjoint action; that is, the elements of @ act by right conjugation, the elements of L act
via the adjoint Lie action. For r € R, a € A we denote by a o r the image of the action
of r on q, hencefora € A

aoqg=q 'ag whereg€ Q and ao!l = [a,ly) where [y € L,l =ly+ A€ L/A.

https://doi.org/10.1017/50004972700034900 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700034900

[3] Metabelian Hopf algebras 113

Under the assumptions of Theorem 4 A ® A is finitely generated over R via the comulti-
plication A.

LEMMA 1. The right R-module A is finitely generated.

PROOF: Since H is finitely generated there is a free resolution of the trivial right
H-module k
F:i..oF 5 F=H%k-0

with F) finitely generated. Here £y is the counit map. We use this resolution to calculate
Hi(A) = Tor’(k, k) ~ A as H\(F ®u(a) k). Note that H,(F ®ua k) is a section of
Fy, ®u(a) k and F} Q4 k is a finitely generated module over H ®y(4) k =~ R. As R is
Noetherian we deduce that H;(A) ~ A is finitely generated over R. The fact that the
action of R on A =~ H;(F ®ua) k) induced by right multiplication on F ®U(A)' k is the
right adjoint action on A is proved in [7, Theorem C].

LEMMA 2. The Lie algebra L/A is finite dimensional and for every ¢ € Q,l € L
we have g~ llg—- 1 € A.

Proor: Note that R = U(L/A)#kQ is a finitely generated commutative ring,
hence L/A is finite dimensional and ¢ 'lg — | € Ker(H — R) = HQ(U(A)), where
Q(U(A)) = AU(A) is the kernel of the counit map £4 : U(A) —» k. As ¢7'lg~1 € Land
LN HAU(A) = A we deduce that ¢"!lg — | € A. 0

We observe that in general @) is a finitely generated Abelian group, hence the direct
product of a torsion-free subgroup Qg and a finite subgroup. If Theorem 4 is known in
the case when @ is torsion-free, we can deduce that in the general case, if A® Ais a
finitely generated R-module then A ® A is a finitely generated U(L)#kQo-module, and
hence U(L)#kQq is finitely presented in X. As Qo has finite index in @ this implies
easily that U(L)#kQ is finitely presented in X. Then to show Theorem 4 it is sufficient
to consider the case when @ is torsion-free.

From now on we assume that @ is a free Abelian group of rank m with basis
@1,---:gm- Let z1,...,z, be elements of L such that {z; = z; + A}i<i¢a is a basis
of L/A as a vector space over k. By Lemma 1 there is a finite set {wy,...,w,} that
generates A as R-module, that is,

A=wioR+---+w,oR

By enlarging the set {w,,...,w,} if necessary we can assume that the following relations
hold in H:

TiTj — Ti%; = [Zi, Tj] = ey for 1 <4< j<m,

25 — 3= wp e for 1 i <01 <5 < mye =41,

(1 ggi=¢ggiforl<i<j<<m
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3.2. SOME NOTATION. Let X = {Wy,..., W, X;,..., Xp,} and Y = {¥},...,Y,,}. We
define F as the quotient of H(X | Y) by the two-sided ideal generated by all commutators
YY;Y,7'Y —1for 1 <4< j<m. Then H(X |Y) = U(Lo)#kFy, where Fy is the free
group with basis Y and Ly is the free Lie algebra with basis the disjoint union of free
Fy-orbits |J z and
zeX
F = U(L)#kQ,
where Q ~ Fy/[Fy, Fy) and L, is the free Lie algebra with basis the disjoint union of free
Q-orbits |J z9. Thus F is a Hopf algebra in the category X. We identify the image of Y;

z€X
in @ with the element g; defined at the end of section 3.1. Now we consider a surjective
homomorphism of Hopf algebras
m:F—>H,

sending W; to w;, X; to z; and ¢; to g;. Denote by R the quotient of F' by the associative
two sided ideal generated by all W;’s. Note that R is a Hopf algebra in the category X
and 7 induces a surjective homomorphism of Hopf algebras

p: R—> R
There is a k-linear map
7:R—> R
sending z}'...z2mq} .. q:;' to Xi... XZmg}'...¢i». Note that 7 is not a homomorphism

of k-algebras. Denote byA:R— R®R the comultlphcatlon of R and by A:R— R®R
the comultxphcatlon of R. Asin [5] if not otherwise stated f, g, ... denote elements of R
and f g, - - - denote elements of R. We note that by the definitions of Rand R

R k[Xl, .. n)ql ’ "7qmil]

and
R~ k[xly .. ’zn:qlil’ R :Qmil],

where both rings are associative polynomial rings where the variables q;*!,..., ¢,*!

commute with each other and the variables z,, ..., z, are central elements. We call
w=1t.. .t

where
g = %1, tie{Xl,---,Xm‘IiHs aqm}

(respectively, t; € {71, ..., Zn, ¢}, ..., ¢Z!}), monomial on

{Xls"'yxmqlilr )qm }
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(respectively monomial on {z,,...,2,,¢5,...,¢Z'}) if w does not have a subword g;g;™*
and ¢; 'g; for some i < m. By definition the length jw| of w is s. For f € RUR we define
supp(f) to be the set of all monomials in f and the length |f] of f is

|1 = max{lw| : w € supp(f)}.

By definition a monomial in R® R is f ® g for some monomials f ,9 € R and has length
If| +lg]. A monomial in R ® Ris f ® § for some monomials f,§ € R and has length
|71+ [ g If S is a k-linear subspace of any of the following rings R® 1, 1® R, R® 1,
1®R, R®R, R ® R then S, denotes the linear subspace of all elements of S of length
at most £.

LEMMA 3. For non-negative integers s and t we have
A(R,)(R® R); = (R® R).A(R,)
ProOF: Note that R ® R is a commutative ring. 0
3.3. SOME PROPERTIES OF THE MAP p. The following lemma is a generalisation of {5,

Lemma 2.2).
LEMMA 4. Lett > 2 be a natural number. Then

1. Ker(p), is generated as a vector space by the elements of R of the form

Pl(X iXi — XiXj )Pz and p, (X (igf — 5. X:)D2,

where 1 € 4,5 € n,1 € kK € m, € = 1, p1,p2 are monomials in R and
|1~71| + 1521 <t-20

2. Ker(p® p): is generated as a vector space by the elements of R® R of the
form

2((X;Xi — X:X;) ® 1)Pa, p1(1® (X;Xi — XiX;))P2,
Pr((Xigf — £ X)) ® )72, 1 (1 ® (Xugf — ¢5.X4)) Do,

wherel € 1,j < n,1 <k €m,e==%l, pr,pr are monomials in R®R and

51| + |2 <t -2
PRrROOF: We give a proof of the first part of the lemma following the proof of [5,
Lemma 2. 2] We omit the proof of the second part as it is similar. Let f € R, then we
can write f in the form f= f1 + f2 where fl is a linear combination of monomials of the
form X7'... X2 q i, ..gi» and f;, is a linear combination of the elements speciﬁed in part
1 of the lemma Note that f, € Ker(p); and fi = n(fl) for some f € R. If f € Ker(p):
then f; € Ker(p) and f = pn(f1) = p(f1) = 0, hence f=F 0

The following lemma is an obvious corollary of the definition of Ker(p),.
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LEMMA 5. Let § be a monomial in R of length t > 1. Thus 7 is a product of t
elements of X U {¢f',...,q%'} and let p; be a product of the same t entries in 7 but
possibly in a different order. Then

P — b € Ker(p),-

3.4. THE CHOICE OF THE NUMBER ep. Since R is a Noetherian ring there are elements
Gr1, - - - » Grc Of R such that

Anmng(w,) =gn R+ + gr.R.

Since the set of generators {w,,...,w,} of A as a right R-module is finite we may assume
that c is independent of 7. As in [5] we have

Annger(w,®w;) = (grn1®1)ROR+: - -+ (::®1) ROR+(1Q951)R®R+- - -+ (1®gsc) RS R.

‘Note that the A(R)-submodule M, of A® A generated by {(w, ®w,)o (zi@l)}'}o, isa
submodule of the finitely generated A(R)-module A® A. Since A(R) ~ R is Noetherian
there exists | € N such that M., is generated by the elements (w, ® w,) o (zi ® 1) for
0 < i < 1. We may assume that [ is the same for all 1 < r,s < 2,1 € k € n. Then there
are elements f,sk0, froki, - - - » frskt € R such that

@) el + Z T}, ® 1)A(frki) € Annpgr(w, ® w,).
=0

Thus there are elements ¢rsk1, - - -, Prake, Yrskis - - - » Yrske € R ® R such that

3 ='el+ Z(zk ® )A(frots) + Z(g,, ® 1)bras; +Z (1® gu)¥rers = O
=0
fori1<k<nandl<grs<z
Similarly considering the A(R)-submodule of A® A generated by (w, ®w,)o(gi ®1)
for i > 0 we get the existence of | € N, f,.x0, frsk1s-- -, A,,k,- € R, brokt, ..., Prokc and
{[;r.skl: < Yrske of R ® R such that

e+ Zj gk ® 1)A(fraks) € Annggr(w: ® w,),

i=0

(4) H'l ®1+ Z qk ® l)A(f,-,k, + Z 9r; ® 1)¢rsk] + Z 1 ® 95 w”"] =0
i=0 =1 i=1
fori<k<mandl<<rs<z=z

Similarly considering the A(R)-submodule of A® A generated by (w, ®w,)o (g ®1)
for 1 < 0 we get the existence of

LeN, frno Loy Lo p € B Srpprr 28

https://doi.org/10.1017/50004972700034900 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700034900

(9] Metabelian Hopf algebras 117

and u”kl, ¥ e of R® R such that

8,

. .
T@1+ Y (G ®DA(S,,.) € Annpgr(w, ® w,),
i=—{

[4
(5) ® 1+ Z(qk @ I)A rskt + Z Grj ® l)érskj + Z(l ® gsj)ﬂrakj =0
i=—{ =1 .
fori<k<mandlgrs<z
Furthermore as [+1, 7+1 and {+1 correspond to the cardinality of the corresponding
finite generating sets of A(R)-modules we can assume that ! = =[. Finally we define

(6) e = max {tn+m) + 1,215l

OighIgr 82, 1<7<e,1<kSm,I<tgn

2 ﬁski

b

2 -'-f-rsk(-i)l ’ |(grj ® 1)¢rstj|1 |(grj ® l)arskjL I(grj ® 1)¢ 3I:jl’
|(1 ® gs])"/)ratjl I (1® Gsj 'd)rale I(l ® gs_;)w”k]|}

Now we make a simple but important remark. We have defined e, as depending on a
choice of a generating set w,...,w, of A as R-module. We show that if we extend
this generating set to wy, ..., w,,...,w, then we still can keep the value of ey the same
provided the newly added generators are of the type w; o A for some old generator w;
and some A € R. Note that Annggr(w, ® w,) C Annmn((w, oA ) ® (w, oA )) for
Ar, As € R and by (2),(4), (5) we can use the values of I, f,f .9, o, &, %, b, ¥ for the
old generators w;’s and not introduce new ones for the new generator w; o A\. That is,
for we = w, 0 A, and wg = w, o A, with both r and s at most z, @ or 8 (or both) in
{z+1,...,b}, furthermore if @ < z assume that & =7, A\, = 1 and if § < z assume that
As =1, B = s we define

fapti = fratiy ﬁxﬂki = };aki:_f_aﬂki = fooki forl1<t g mlsksmlsich
Jaj = Grj» 9Bj = s forl<s<e

Papti = Brstis Papri = arski,fagk.' =&, forlciselstsnlsksm,

Vapti = Yrati {'/';aﬂk‘ Draki, ¥ Yopri = Yroni fori<ig<elg<i<nl<ksm,

Gasti = bapki = o = Yapti = Paprs = Lo =0 forc+1<i<anl<t<ml<h

where ¢; is the new value for the old parameter c¢. Note that by enlarging the set
of generators {w,...,w;} to {wy,...,w,,..., wp} the value of ¢ changes to some new
natural number c¢; > ¢. This new number ¢; can be much larger than ¢ but it is not used
in the definition of e5. We do not specify the elements g,;, gs; for c+1 < j < ¢; as we
shall not use them.
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3.5. FIXING A FINITE GENERATING SET OF A. Let {w;,...,w,} be a generating set
of A as a right R-module satisfying (1) and # : F — H be the projection defined in
subsection 3.2. We define a finite subset Ey of the Hopf kernel hker(w) as the set

{[XnXJ] - a(:,])«;x - X Wﬂ(rk

")}1<i<z‘<ml<r<n.l<k<m,e=il’
where [X;, X;] = X;X; — X;X;. By reordering {w,...,w,} if necessary we can assume
that

{a(i’j)’ﬂ(r’k’E)}1si<jsn,1sr<n.1<k<m,e=il ={1,2,..., 2%} for some z < z.

For any subset B of F and f,, f> € F we write f; =p f, if f; — f2 belongs to the associative
two-sided ideal of F' generated by B. We use o to denote the adjoint action in F, that is,
ao f is the image of a under the adjoint action of f. By definition Risa quotient of F and
R can be identified with the subalgebra of F generated by {X1,.. ., Xa, g, g2}

LEMMA 6. Let f be a monomial in R. Then there exist monomials

n 42 n {2
ti,i.k’ ik Jigkr igk

in R such that for 1 < ,7€n

FXiX; ~ X;X:) =g, E(iWB(tg,k) ° tm k)gf,lj),
k

and fore==%1,1<:<n,1<j<m
FIXigf = g5X0) =py 3 (EWaiigmy © )90
k
where all 0(3, 5, k), u(i,j,k) € {1,...,20} and
(1) (1) (2) (2) r
masc{ [£01e], o2l (€3] = 1,105%] - 1} < |7

PROOF: (1) We induct on the length |f| of f, the case when |f| =0 thatis, f=1
being obvious since X; X; — X;X; =g, Wa(y) for i < j.

Let |f| >1and f =Gfo where@ € {Xi,..., Xn,q%,...,¢%'} and fo € R has length
|f| — 1. By the inductive hypothesis

fo(XiX; - X;X:) =k, Z EWatiih) © L) 955k

where all 0(z, j, k) < 2, and ma.x{]tf’?k| |gf‘lj),‘|} < lﬁ,| Then

JOXXs = X3X) =g 38 Wasan 1500000
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Note that if @ € {q, ..., ¢!}

a(Waiim 0 30090k = 8(Wagi s 0 t5)8 ™ 80\ s = (Wagizm o (8,8

max{ |0, Jagll } <1 Fol +1=17).

)Egt(,lj)k’

IfaE {X],...,Xn}
- ) 1
a(w'r@(ldy k) o t‘l,] k)gt(,] k= [a' Wo(h] k) S,J k] gl,] k + (Wo('J k) ° tt,] k)ags,;:)k
i 1
= = (Watism © (6048)) 9ok + (Wagiz © 18, )ag s,

max{ |03, [agll, 160, ol b < 1ol +1 = |1,

(2) We induct on the length [fl of f, the case when lﬂ =0 thatis, f=1 being
obvious since
Xig; — 6;Xi =5 G Waiise) = Waiie © 65745
for i < j. .
Let |f] > 1 and f =@fo where @ € {X1,..., Xn, ¢F,...,¢%'} and fy € R has length
l f| | - 1. By the inductive hypothesis

folXig; ~ ¢;X:) =g, Z(iWo(m R

where all 8(, j, k) < 2z and max{[tmkl [gf?k } < Iﬁ)l + 1. Then

ry 2
f(Xig; — 65X) =k, z a(EWe(igx) © t,,, Ic)gz(,]),

and we can continue as in the first case. ' 0

Now we are ready to discuss the choice of a generating set of A as a right R-module.
First we start with any generating set {w,...,w.} of A over R and use it to calculate
the numbers ¢g, zp and ¢ from Sections 3.4 and 3.5. Then we enlarge the generating set
to

A={w,...,w,}U{wioA|1< i< 2,Ais amonomial in Re} = {ws,..., Wy},

for some rg > z. Thus for 7 € 2y and a monomial A € R, there is some natural number
v(i, A) < 7o such that
Wi O A = Wy(i ).

Define F' with respect to this generating set A that is,

F is the quotient of H(X | Y) modulo the associative two-sided ideal generated by
{}/i)/j)/i_l)/j_l - 1}l<i<anh where X = {Wla RN Wro: Xl) s 1Xn}; Y= {)/11 fevy Ym}
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Now we define a subset E; of F using the subset Ey of F defined at the beginning of
Section 3.5

E =EU {W, of ~ Wy(i‘pu)) 11 < 29, f monomial in éeo},
where p: R — R is the homomorphism of k-algebras sending X; to z; and ¢f to q;-
COROLLARY 1. Let f be a monomial in R. Then there exist monomials
1)
£, € Rmax{ofi-eo}s tei € Bmax{olfi=cor1) G5k € Rj.9%, € Ry,

such that for 1 < i#j<n
f(X:X; - X;X:) =g, Z(iWG’(i,j,k) ° J,c)g,(:,),
k
and fore=+1,1<i€<n,1<j<m

f(XtQ_; - qJX ) =6 z(iwﬂ ! (i,k) © tlg,k)gu,k’

where /(4 j, k), 0'(i, 5, k) € {1,...,m0}.

PROOF: 1. By Lemma 6 there exist monomials £t ti; k,@szk in R such that

FOXX; ~ X;X) S5 D (E Wik © teak) B sk
k

mas{ [5], [5%] } < |7] and all 6(i,5, ) < 2

Let h(l’,c be the beginning of k of length min{eo, |~(l) } and hfi)k be the rest of ¢ ~$‘1])k

that is h( +.4.x is obtained from t; ) . after deleting the beginning RY.. Then

1.5.k°

Wi © 71§,1,-),k =g W,

v(8(i.dk).o(R{) L))
hence
(Watsim °‘t~5.1.1)k)§:(:1),k =E (WV(G(:J,k),p(h(l) ) °© hu), )8 ,J).k'
Note that

(VR 1.3, 1,5,k

[R5e] = 0] = R34 < max{o, B3] = eo} < max{0,17] - o

2. By Lemma 6 there exist monomials % tiJ k,_?jf?,k in R such that

f(X,qj X) =g Z(iwﬂ(tg,k) °t k)gf:),ka

max{[80,, [/} < |7] + 1 and all 6(i, 5, k) < 20
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be the rest of 1, ,J k

Let 71(1) be the beginning of ‘(2),: of length min{eo, IZS J)k } and hf J) *

that is h( ) jx is obtained from T, J k after deleting the beginning h' k- Then
Wg-‘k OTI(-l-) =g W ey
(k) © Mgk =Ev YV p0(1,5,k),0(R) )
hence
~2)

(We(ln],k) ° tzg,k)gzgk =E (Wu(o(u k), p(hu),‘)) hi;], )g’,J,

Note that |h(2)k| = lﬂ?k

[h(l)kl max{O ﬁfz}k‘ - eo} < max{O, [ﬂ —eg + 1}. 0
Finally we define

E=EU {W ° n(gfi)}1<z<r0,1<_1<c

U {Wio fi, Wjo f;] | 1 €4, < ro, fi, f; monomials in R such that |f;| + |f;l < e},
where 7: R — R is the k-linear map defined in Section 3.2. Thus

FE= {[Xiv Xj] - Wa(i,j%ng - X - Wﬂ("’kvf)}1gi<jgn,lgr<n.lgkgm,e=:kl

U {W,- of =Wy | i < zo,f monomial in Eeo} U {W~ on gij)}1<:<ro,l<j<c
U {[mofileofj] I 1 < "'D:fnf] monomla‘ls lnR If:l'*"’f} 30}

Note that in the definition of E we use the old value of ¢ obtained before enlargmg the
generating set of A.

3.6. SOME COMMUTATOR CALCULATIONS. Qur main theorem easily follows from the
following Theorem 5. The proof is split in several small lemmas. We remind the reader
that we use o to denote the adjoint action in F, that is, a o f is the image of a under the
adjoint action of f.

THEOREM 5. Foranyl <4, j <1y and f;, f; monomials in R we have
Wio fi,Wjo fi} =g 0.
An induction on e > g will be used to show that
(7) [W; o fi,Wj o f;] =g 0 for monomials with |fi| + |f;| < e
We assume (7) holds for some fixed value of e and aim to show that
[Wio fi,Wjo fi] =& 0for |fil +|f;l=e+1

LEMMA 7. W;of=g0 foralli<rg, f € Ker(p)es2-

https://doi.org/10.1017/50004972700034900 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700034900

122 D.H. Kochloukova [14]

PROOF: By Lemma 4(1) Ker(p)..» is generated as a vector space by the elements
of R of the form
p1(X; X, — X, X;)P2 and p1(Xqx — 4 X;)P2,

where 1< j<r<n,1<k<m,e==1,p,p; are monomials in R and |p1| + |p2|
Then we can assume that either f P (X; X, — X, X;)p2 or

f = (X6 — ¢cX;)p2-
If f = 5y (X; X, — X, X;)P2 using that |5| < e
W;o f =W, o (Bu(X;X. — X, X;)B2) =& [Wio 1, Wagip)] o P2 =5 005, = 0.
If f = 5u(X;05 ~ 65 X;)P2
Wio f=Wo (51 (Xjg5 — i X;)P2) = Wio (Br(X; - X;;!)QZ@) =E
[Wio B, —Wa(ik,—e)] © (gP2) =k 00 (g5P2) = 0. 0
Let W be the associative two-sided ideal of F generated by Wy,..., W, and
xX:WeW - [W,W]

be the homomorphlsm of right A(R)-modules sending m ®may to [my,m,). We view W
as a right R-module via the adjoint action, W, W] is a R-submodule of W and W @ W
is a right A(R)-module via the comultiplication R—R®R Abusing the notations we
write o for both the right adjoint action in F and in F ® F.

LEMMA 8. Let(e Ker(p ® p)ete,- Then for1 < r,s < 1o
x((W, ®W,) o) =5 0.
PRroOF: By Lemma 4(2) Ker(p ® p)e+e, is spanned by
B ((X5X: — XiX5) ® D2, 1 (1@ (XX — XiX;)) b, Jia ((Xigf — ¢5.X:) ® 1) iz

and
B (1® (Xigi — g5 X)) fia,
where [I,, I are monomials in R ® R with |[Il| + ][Izl Se+e—2and e =+£1. As the
problem is symmetric with respect to swapping the components in W ® W it is sufficient
to consider only the cases ¢ = fi ((X; Xi — X:X;) ®1)fiz and ¢ = fir ((Xiq§ - g X)) ®1) .
We write fi; = P, ® §1, fi2 = D2 ® g2, where Py, D2, 1, ¢2 are monomials in R.
First we consider the case ¢ = fi; ((X;X; — X:X;) ® 1)fi,. Note that by Corollary 1

n(XiX; — X;X;) =g Z(iWo'(i.j,k) o tx)Pak
%
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where ¥y, P3 x are monomials in R with ]fk[ < max{lﬁ,l — e, 0} < max{e—2,0} < eand
|Ps k| < |p1|- Then
X((Wr ® W) o i ((XiX; ~ X;X:) ® l)ﬁz)
= [Wr o (1(XiX; — X;Xi)p2), W, 0 (3132)]

=g [Wr o (Z(iWo'(i,j,k) o ﬁ)‘ﬁs,k@) ,Wso (5151'2)]
%

= [Z (Wi, £Weii k) © t] © (PaxB2), Ws o (5152)} =g 0.
%

The latest equivalence holds since |t| < e and then [W,, W ;i) o k] =& 0.
Now we consider the case { = i, ((Xiq5 — ¢ X:i) ® 1)Jio. Using again Corollary 1

p(Xig; — 65 Xi) =k Z(iwu'(i,j,k) o te)Pa
*

where #;, s x are monomials in R with l?k| < ma.x{|51| —ep+ 1,0} < max{e—1,0}<e
and '53,,:‘ < l'p';[ + 1. Then
x((W, @ W.) o iy ((Xuaf - 45X0) © 1)z)
= [We 0 (ilXig; - G X0B2). We o (@i2)

=E [Wr o (Z(iwu’(i,j,k) ° ?k)53.k52> Wi o (31‘72)]
k

= [Z [W,, +(Wurijx) © {k)] o (Paxp2), W, 0 (6132)]

k

=g [Zoo R (a@,)] =0.
k D

LEMMA 9. If for every monomial fin R of length e+1 we have [Wi of, W_,-] =0
then for all monomials f;, f; in R with |f;| +|f;| = e+ 1 we have (W;0 f;, W;o f;] =g 0.

PROOF: We use induction on |E| If |f;| 2 1 then f; =gX,; or f, = gq; for some
e ==+1, [Z]’I = {fjl — 1. In the first case as X; is a Lie element

[Wio FuWyo F)= [Wio FiWy o (30
= [W,- o E,Wj o'j] o X; - [Wi o (EX,),WJ- o§] =g —[W.- o (_EX,), Wi o_?j],
where the last equivalence follows from the fact that |f~,| + |§| = e, hence

[Wio fi,Wjog] =g 0.
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In the second case

[Wio JuWjo ] = [Wio Fi Wy 0 (365)| = [Wio (Fai®), W; 03] o,
hence [W of,, W; of]J =g 0 if and only if fW of,q, £, W; og] =g 0. This completes the
inductive step. 0

THEOREM 6. Let f be a monomial in R such that |f| = e+ 1. Then for
1 < T, 8 S To
[Wr o f, Ws] =g 0.

Proor: By Lemma 5 if fl is obtained from f by reordering of the entries then
f— fl =\ € Ker(p)et1. By Lemma 7 [W, o /\1,W,] =g 0. Hence

[W, o f,W,) =g 0 if and only if [W, o fi,W,] =z 0.

Let 2; be the number of entries of X; in f and m; be the sum of all possible ¢ = £1 such
that ¢f is a subword of f Since €p > I(n +m) + 1 either there is some

z2l+1

or there is some
imi| 2 1+1

or there is a reordering f; of fsuch that a cancelation g{g;* occurs in ﬁ, hence
JANFiE

In the last case we have l f1| e, hence [W o fl, W] =g 0 and we are done. Then we
can assume that we are in one of the first two cases and consider some reordering fi of
fsuch that

fx =g

for some monomial % € I m(n) C R that does not start with 5-!, where
‘56 {Xl:"-’Xn’qf:17 . ,qm }

We write h for p(iz) and b for p(l;) Note that h € R,_;, hence h € R,_;. Following (5]
we multiply (3) or (4) or (5) depending on the value of b with A ® 1 and obtain for the
fixed 7,5 € {1,...,70}

(8) (bl+lh) ®l+a+ Z(grj ® l)ﬁrakj + Z(l ® gsj)')'rskj =0,

j=1 i=1
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where

{
b=1y,a= Z(bt ® I)A(frski)(h ® 1); ﬁrskj = d’rskj(h ® 1)) Trskj = 'd)rskj(h ® 1) or
=0
l . - ~ -
b= qk, @ = Z(bi ® I)A(frski)(h' ® 1)1 ﬁrskj = ¢rskj(h' ® 1):7rskj = ¢rskj(h %Y 1) or

1=0

0
b=g;l,a= Z(bi O DAL, Jh® 1), Brarj = ¢, (h® 1), Yrakj =%, (h®1).

t=—1

Note that the choice of ey together with Lemma 3 imply

(9) ac (R ® R)lA(Reo/Z)(R ® R)e—l = (R® R)eA(Reoﬂ) c (R ® R)e+em
(grj ® 1)ﬂrskj7 (1 ® gsj)7rakj € (R ® R)eo+g—l Q (R ® R)e+eo-

We lift (8) in R® R to find 7 € R ® R such that

(10) T = fi ®1+ a + Z(n(grj) ® 1)Erskj + Z(l ® "(gs]'))ﬁrskj,
J J

where Brak; = (7® 1) (Brokj), Frsk; = (1 ® 1) (rsk;) and by (9) we can choose
ae (RoR) AR, C (RO R),,,,
such that (p ® p)(&) = a. Note that

(7(grj) ® DBrats, (1 ®1(gs))Feuts € (RO R) ..

Then
T € Ker(p ® p)eteo-

Note that ~
[Wr o fly Wa] =E 0

is equivalent to 5
x(W. @ W,)o (fi@1)) =s0.

Then by (10) it is sufficient to show that
x((W, ®W,) 00) =£ 0 for { € {7,& (n(9.5) ® Dhrass (1© n(gu-))%k,-}-'

These are covered by the following 3 cases:
1. Ce Ker(p ® p)e+te, for E: 7,
2. EG (ﬁ ® E)CZS(E) for E= Q;
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3. C€ (n(g-) ® )R ® R or (1®1(8,5)) (R ® R) for { € {(n(9r) ® 1)Brats;

1e n(gSj)"?rakj}- '
Case 1 follows from Lemma 8. Case 2 follows by (7) and the fact that x is a
homomorphism of right A (R)-modules. Case 3 follows from the fact that W, on(g,;) € E,

hence W, o7(gr;) =g 0. Similarly W,07(g,;) =g 0. This completes the proof of Theorem
6. 0

Note that Lemma 9 and Theorem 6 complete the proof of Theorem 5.

4. PROOFS OF THEOREM 4 AND THEOREM 1

4.1. PrROOF OF THEOREM 4. We remind the reader that by Theorem 5 there is a finite
subset E of F = U(L,)#kQ such that

Wio fi,Wjo f;]=£0

for all 4, j < 7o and all monomials f;, f; in R Let H 1 be the associative ring quotient of F
modulo the two-sided ideal of F generated by E. Note that the elements of E are in fact
Lie elements of F', that is, for the comultiplication Ar of F we have Ap(r) =r®1+1Qr
for r € E. Then H, is a Hopf algebra in the category X that is, H; ~ U{(Ly)#kQ, where
Lg is a Lie algebra quotient of L;.

Let By be the Lie subalgebra of Ly such that By is generated as a Lie algebra by the
H,-orbits of all images of {W;}1<icr, in Hy, where H; acts via the right adjoint action.
Then by Theorem 5 By is an Abelian Lie algebra. Furthermore note that H; is a Hopf
extension of the universal enveloping algebra U(By) by R, that is, there is a short exact
sequence of Hopf algebras U(B,) — H; — R sending the image of X; in H, to z; € R
and the image of ¢§ in H, to g; € R for € = 1. Since H, acts on By via the right adjoint
action and By is Abelian, By acts trivially. This induces an action of R on By. Then
there is a homomorphism of right R-modules

m:By— A

sending the image of W; in By to w; € A, where R acts on A via the right adjoint action
induced from the short exact sequence of Hopf algebras U(4) - H — R . Since R is
Noetherian Ker 7 is finitely generated as an R-module. Then there exists a finite subset
E of L, such that the associative ring that is the quotient of F modulo the associative
two-sided ideal generated by EU Eis isomorphic to H. Then by the definition of F and
Theorem 2(b) H is finitely presented in the category X.

4.2. PROOF OF THEOREM 1. By (7, Proposition 2] every finitely presented Hopf alge-
bra in the category X is of homological type F'P;, thus 1. implies 2. By [7, Corollary 3]
if H is a Hopf algebra in X of type F Pn such that H is a Hopf extension of H; = U(L,)
by a Hopf algebra H, in X, L, is an Abelian Lie algebra and H, is right Noetherian as
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an associative k-algebra then the mth homology Hp(Li) =~ A™L; of the Lie algebra L,
is finitely generated as a right H,—module via the iterated comultiplication Hy — ®™H,,
where we view L, as a right Hy-module via the adjoint action. Applying this result for
m =2, L, = A and Hy = R we get that 2. implies 3. Finally 3. implies 4. follows
from Theorem 3 and 4. implies 1 follows from Theorem 4.

(1]

2
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