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FINITE PRESENTABILITY OF SOME METABELIAN HOPF
ALGEBRAS

DESSISLAVA H. KOCHLOUKOVA

We classify the Hopf algebras U{L)#kQ of homological type FP2 where L is a Lie
algebra and Q an Abelian group such that L has an Abelian ideal A invariant under
the Q-action via conjugation and U(L/A)#kQ is commutative. This generalises the
classification of finitely presented metabelian Lie algebras given by J. Groves and R.
Bryant.

INTRODUCTION

The purpose of this paper is to try to unite some existing methods used in the classi-
fication results of metabelian Lie algebras and metabelian discrete groups of homological
type FP2 via the language of Hopf algebras. This sheds more light on the similarities
between the Lie and group cases and explains partially the differences. Still some of the
results in the group case have homotopical flavour, using methods from covering spaces
to establish that having homological type FP2 imposes strong condition on the first E-
invariant of the group ([4]). These methods do not have a purely algebraic counterpart.
The Lie case was treated in [5, 6] with algebraic methods, and a Lie invariant (with a
valuation flavour) for metabelian Lie algebras was proposed. This plays the same role in
the Lie theory as the Bieri-Strebel E-invariant for metabelian gToups. In this paper we
do not suggest a new invariant but establish that the main result of [5] holds for some
metabelian Hopf algebras. It is interesting to note that in both the Lie and group cases
calculations with the second homology group of Abelian objects (Lie algebras or Abelian
groups) viewed as modules over a commutative ring via the corresponding diagonal ac-
tion was always quite helpful. The definition of the diagonal Lie and group actions can
be united via the comultiplication map of Hopf algebras, and this was the starting point
of our considerations.

We study Hopf algebras H = U(L)#kG over a field k, that is, smash products of
universal enveloping algebras U{L) of Lie algebras L over k by group rings kG, where G
acts via conjugation on L and write X for the category of such Hopf algebras. This cate-
gory is quite important. If char(fc) = 0 it coincides with the category of cocommutative,
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pointed Hopf algebras over k [8, 5.6.4, 5.6.5]. Still in this paper we do not impose any
condition on the characteristic of k.

By the main results of [5, 6] for metabelian Lie algebras the homological property
FP2 is equivalent to finite presentability (in the Lie sense). Finite presentability in the
category X was defined in [7] and is further explained in Section 1. The following theorem
classifies some metabelian Hopf algebras in X and shows that again finite presentability
and the property FP2 coincide. It is well known that the properties FP2 and finite
presentability are not equivalent for general groups ([2]), but the same problem is open
for Lie algebras.

THEOREM 1 . Let H = U(L)#kQ be a Bnitely generated Hopf algebra with

A an Q-invariant (via conjugation) Abelian ideal in the Lie algebra L such that

R = U(L/A)#kQ is commutative. Then the following are equivalent:

1. H is finitely presented in the category X;

2. H as associative ring is of homological type FP2;

3. A f\A is finitely generated right R-module, where R acts on A via the adjoint

action and R acts on A ® A via the comultiplication A : R -* R <g> R;

4. A® A is finitely generated right R-module, where R acts on A <g> A via the
comultiplication A.

The proof of the above theorem will be given by showing that every condition implies
the following and that 4 implies 1. The most difficult part of the proof is 4. implies 1.
and is done in Theorem 4. The proof of Theorem 4 is quite long. It partially follows
the method introduced in [5]. Still our set of relations that will show that H is finitely
presented is much larger than the one considered in [5] (even if we are in the Lie case
Q = 1), but by considering more relations we manage to simplify the argument from [5].
In fact a blind translation of the method of [5] in the Hopf case does not work because
the comultiplication A sends group-like elements g to g ® g, thus increases the length of
elements and a big part of the proofs in [5] is based on induction on length.

Finally we observe that Theorem 1 is an extension of the main results of [5] and [6]
but the main result about metabelian groups of [4] does not follow from Theorem 1. It
will be interesting to find a description of the Hopf algebras H = {/(L)#fcG of type FP2,

where H is a Hopf extension in the category X of two commutative smash products (in
particular this implies that G is metabelian) and find a new invariant that generalises
simultaneously the Bieri-Strebel invariant [4] and the Bieri-Groves invariant [6].
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1. PRELIMINARIES ON T H E CATEGORY X AND FINITE PRESENTABILITY IN X

The category A" is a subcategory of the category of Hopf algebras over A;. An object
of X is a smash product

H = U{L)#kG ~ U{L) <g> kG,

L={aeH\ A(a) = a <g> 1 + 1 <g> a } , G = {g € H \ A(g) = g <2> g}

and A : H —i H ® H is the comultiplication of H.

If not stated otherwise, the tensor products are over the field k. Here U(L) is the universal
enveloping algebra of the Lie algebra L and kG is the group algebra of G with coefficients
in k. The group G acts on L via right conjugation: for o € L, g 6 G we have a9 := g~lag
€ L. The elements of L are called Lie elements and the elements of G group-like elements.

Let Z — X U Y be a disjoint union of sets, F the free group with basis Y, Xo a set
on which the group F acts freely with Xo/F ~ X (that is, Xo is the disjoint union of free
F-orbits \J xF) and Lo the free Lie algebra over the field k with basis Xo. As defined in
[7]

H(X | Y) = U{L0)#kF,

where the action of F on LQ via right conjugation is induced by the action of F on Xo.
Let if be a Hopf algebra from the category X. We say that H is finitely generated

if it is finitely generated as an associative fc-algebra. Note this is equivalent to the
existence of a disjoint union X U Y of finite sets and an epimorphism of Hopf algebras
7T: H(X \Y)-> H that is, H{X \ Y) is a Hopf extension of the Hopf kernel Hx of n by
H.

We say that H is finitely presented as a Hopf algebra (or finitely presented in the
category X) if it is finitely generated and there is a finite set X U Y such that for the
Hopf kernel Hi = hker(ir) defined in the previous paragraph there is a finite subset R of
fi(//i) such that the orbits generated by the elements of R via the right adjoint action
of H(X \ Y) on Hi generate Hi as an associative A:-algebra. Here fl(Hx) denotes the
kernel of the counit map Hi —¥ k, the right adjoint action of the group-like elements is
conjugation, and the right adjoint action of the Lie elements is given by the Lie bracket.
The following results can be viewed as a generalisation of the main results of [l] and will
be used later on in the proof of Theorem 4. It shows that being finitely presented in the
category X does not depend on the choice of generators.

THEOREM 2 . [7, Theorem B, Cororollary 2]

(a) An element of X is finiteJy presented in the category X if and only if it is
finitely presented as an associative k-algebra.

(b) Let H be a Hopf algebra in the category X and n : H{X \ Y) -> H be
an epimorphisms of Hopf algebras where X UV is a disjoint union of finite
sets. Then H is finitely presented in the category X if and only if there is

https://doi.org/10.1017/S0004972700034900 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700034900


112 D.H. Kochloukova [4]

a finite subset R of the Hopf kernel Hi of n such that the orbits generated
by the elements of R via the adjoint action of H(X \ Y) generate Hi as
an associative k-algebra and R contains only Lie elements and group-like
elements - 1.

2. TENSOR AND EXTERIOR SQUARES

Let A be a finitely generated module over a commutative Hopf algebra
H = U{Li)#kQ. We view A <g> A and its quotient A A A as right //-modules via the
comultiplication A : H -¥ H <S> H.

THEOREM 3 . The module A ® A is finitely generated over H if and only if A A A
is finitely generated over H.

PROOF: The above theorem is known in the case when Lx = 0 [3, Theorem 4.3] or
Q — 1 [6, Proposition 2.4]. In fact the proof of [6, Proposition 2.4] is for any finitely
generated commutative /c-algebra with unity H that acts on A A A via some homomor-
phism of /c-algebras A : H -¥ H ® H such that for some generating set (as commutative
fe-algebra with unity) Y of H we have A(y) = y <gi 1 + 1 <g> y for every y 6 Y. A close
observation of the proof of [6, Proposition 2.4] shows that in fact it uses only that for
every y G Y the element A(y) is invariant under the action of the symmetric group on two
elements that permutes the factors of H ® H. In particular the proof of [6, Propisition
2.4] holds in our case where Y = Lo U Qo, Lo is a basis of Lx over fc, Qo is a generating
set of the Abelian group Q. D

3. FINITE GENERATION OF TENSOR SQUARES AND FINITE PRESENTABILITY

The purpose of this rather long section is to develop the techniques of the proof of
Theorem 4. The proof of Theorem 4 will be completed in Section 4.

THEOREM 4 . Let H = U(L)#kQ be a finiteiy generated Hopf algebra with
A an Q-invariant (via conjugation) Abelian ideal in the Lie algebra L such that
R = U(L/A)#kQ is commutative. If A® A is finitely generated over R via the co-
multiplication A : R —* R® R, where A is viewed as a rigit R-module via the adjoint
action, then H is finitely presented in X.

3.1. MORE ABOUT GENERATORS AND RELATIONS FOR THE HOPF ALGEBRA OF THE-

OREM 4. Let H = U(L)#kQ be a Hopf algebra with A an Q-invariant (via conjugation)
Abelian ideal in the Lie algebra L, let R = U(L/A)#kQ be commutative, and let H be
finitely generated as an associative /c-algebra. We view A as a right .R-module via the
adjoint action; that is, the elements of Q act by right conjugation, the elements of L act
via the adjoint Lie action. For r € R, a € A we denote by a o r the image of the action
of r on a, hence for a G A

aoq = q~laq where q € Q and a o | = [o,l0] where IQ € L,I = l0 + A £ L/A.
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Under the assumptions of Theorem 4 A ® A is finitely generated over R via the comulti-

plication A.

LEMMA 1 . The right R-module A is finitely generated.

P R O O F : Since H is finitely generated there is a free resolution of the trivial right
H-module k

T:...^F1->F0 = H-^yk -*• 0

with Fx finitely generated. Here Zu is the counit map. We use this resolution to calculate
HX{A) = Tor"{A){k,k) ~ A as HX{T ®v(A) k). Note that HX(T ®U(A) k) is a section of
^i ®u(A) k and Fi ®u(A) k is a finitely generated module over H ®u(A) k ~ JR. AS R is
Noetherian we deduce that Hi(A) ~ A is finitely generated over R. The fact that the
action of R on A ~ H\ (T ®u{A) k) induced by right multiplication on T ®u{A) k is the
right adjoint action on A is proved in [7, Theorem C]. D

LEMMA 2 . The Lie algebra L/A is finite dimensional and for every q € Q, I 6 L

we have q~llq — I € A.

PROOF: Note that R = U(L/A)#kQ is a finitely generated commutative ring,
hence L/A is finite dimensional and q~llq - I € Ker(fJ —)•/?) = H£l(U(A)), where
£l(U(A)) = AU(A) is the kernel of the counit map eA : U(A) -+ k. As q~llq-l € L and
L n ff i4E/(i4) = Awe deduce that g"1/? - I € A. D

We observe that in general Q is a finitely generated Abelian group, hence the direct
product of a torsion-free subgroup Qo and a finite subgroup. If Theorem 4 is known in
the case when Q is torsion-free, we can deduce that in the general case, if A <8> A is a
finitely generated .R-module then A <2> A is a finitely generated C/(L)#fcQ0-module, and
hence [7(L)#fcQo is finitely presented in X. As Qo has finite index in Q this implies
easily that U(L)#kQ is finitely presented in X. Then to show Theorem 4 it is sufficient
to consider the case when Q is torsion-free.

From now on we assume that Q is a free Abelian group of rank m with basis
<7i,..., qm. Let i l t . . . , xn be elements of L such that {x\ = Xi + A}i^n is a basis
of L/A as a vector space over k. By Lemma 1 there is a finite set {u;i, . . . ,wz} that
generates A as .R-module, that is,

A = W\oR-\ \-wzo R

By enlarging the set {wi,... ,wz} if necessary we can assume that the following relations

hold in H:

- XjXi = [xi,Xj] - wa(ij) for 1 ^ i < j ^ n,

f - Xi = Wfi(ij<t) for 1 ^ i ^ n, 1

(1) 9t9j = QjQi for 1 < i < j ^ m.

xf - Xi = Wfi(ij<t) for 1 ^ i ^ n, 1 < j s£ m,e = ± 1 ,
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3 . 2 . S O M E N O T A T I O N . L e t X = {Wlt..., W2, Xlt..., X n } a n d Y = {YU..., Ym}. W e
define F as the quotient of H(X | Y) by the two-sided ideal generated by all commutators
YiYjY^Yf1 - 1 for 1 ̂  i < j ^ m. Then H(X \ Y) = U{L0)#kF0, where Fo is the free
group with basis Y and LQ is the free Lie algebra with basis the disjoint union of free
Fo-orbits \J xF° and

F =

where Q ~ F0/[F0, Fo] and L\ is the free Lie algebra with basis the disjoint union of free
Q-orbits (J xQ. Thus F is a Hopf algebra in the category X. We identify the image of Y{

xex
in Q with the element <& defined at the end of section 3.1. Now we consider a surjective

homomorphism of Hopf algebras
•K-.F-+H,

sending Wj to to,, X{ to xt and qt to ft. Denote by R the quotient of F by the associative
two sided ideal generated by all Wi's. Note that R is a Hopf algebra in the category X
and 7T induces a surjective homomorphism of Hopf algebras

p : R -> R.

There is a fc-linear map
•q:R->R

sending xj1 . . . x^q'i ...q)? to A"*1... X^q[l... q%. Note that 77 is not a homomorphism
of fe-algebras. Denote by A : R —>• R®R the comultiplication of R and by A : R -+ R<g>R
the comultiplication of R. As in [5] if not otherwise stated f,g,... denote elements of R
and f,g,--- denote elements of R. We note that by the definitions of it and R

and

R ~ k[xu ...,xn, qi*1,..., qn*1],

where both rings are associative polynomial rings where the variables <?i±1,.. .,qm
±l

commute with each other and the variables xi,...,xn are central elements. We call

t« = *? . . .# ,

where

e, = ±l, tie{X1>...,Xn,qt\...,<£}

(respectively, U e {xu ...,xn, qfl,..., q*1}), monomial on
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(respectively, monomial on {xi,.. ., z n , gf1 , . . . ,q^}) if WJ does not have a subword g^"1

and gf1?,- for some z ^ m. By definition the length \w\ of tu is s. For / 6 R\J i l we define
supp(/) to be the set of all monomials in / and the length | / | of / is

| / | = max{H : w € supp(/)}.

By definition a monomial in R®R is / ® g for some monomials f,g € R and has length
I/I + Iffl- A monomial in i? <8> R is / ® <7 for some monomials / , <jf € R and has length
| / | 4- \g\. If S is a fc-linear subspace of any of the following rings R ® 1, 1 ® fl, R® 1,
1 ® /?, R® R, R® R then 5t denotes the linear subspace of all elements of S of length
at most t.

LEMMA 3 . For non-negative integers s and t we have

&{RS){R ® R)t = '(R® R)A{Rs)

PROOF: Note that R <8> R is a commutative ring. D

3.3. SOME PROPERTIES OF THE MAP p. The following lemma is a generalisation of [5,
Lemma 2.2].

LEMMA 4 . Let t > 2 be a natural number. Then

1. Ker(p)t is generated as a vector space by the elements of R of the form

Vx{XjXi - XiX^pi and

where 1 ^ t, j ' ^ n, 1 ^ k ^ m, e = ± 1 , pi,p2 are monomials in R and

|pi | + N ^t-2.

2. Ker(p ® p)t is generated as a vector space by the elements of R® R of the

form

i - XiXj) ® l )p 2 , ?!

where 1 ̂  i, j ^ n, 1 < fe ̂  m, e = ±1, p"i,P2 are monomials in R®R and
|pi| + | p 2 | < t - 2 .

PROOF: We give a proof of the first part of the lemma following the proof of [5,
Lemma 2.2]. We omit the proof of the second part as it is similar. Let / e R\, then we
can write / in the form / = /i + /2 where /x is a linear combination of monomials of the
form X'1... X^qf ...ql£ and ji is a linear combination of the elements specified in part
1 of the lemma. Note that /2 € Ker(p)f and f\ = v(fi) for some /i € R. If / £ Ker(p)t

then /j G Ker(p) and /i = pv(fi) = p(fi) = 0, hence / = f2. D

The following lemma is an obvious corollary of the definition of Ker(p)t.
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LEMMA 5 . Let p be a monomial in R of length t ^ 1. Thus p is a product oft

elements of X U {qf\..., g*1} and let px be a product of the same t entries in p but

possibly in a different order. Then

3.4. T H E CHOICE OF THE NUMBER e0. Since R is a Noetherian ring there are elements

9n, • • • •. 9rc of R such that

AnnR{wr) = gnR H h grcR.

Since the set of generators {wi,..., wz} of A as a right il-module is finite we may assume
that c is independent of r. As in [5] we have

Annfi8R(u)r(giu;J) = {gTi®\)R®R+ \-{grc®l)R®R+(l®gai)R®R-\ \-(l®gac)R®R.

Note that the A(iZ)-submodule MrjSiA of A® A generated by {(wr®ws)o(xk®l)}i>Q, is a
submodule of the finitely generated A(iZ)-module A® A. Since A(i?) ~ R is Noetherian
there exists I € N such that MT<s,k is generated by the elements (wr ® wa) o (xk ® 1) for
0 ^ i ^ I. We may assume that I is the same for all 1 ̂  r, s ^ z, 1 < k ̂  n. Then there
are elements frak0, fraku ..., /r,fc( € i? such that

i

(2) xl
k
+1 ® 1 + 2 j ( x i ® l)A(fTaki) e AnnHgR^r igi iya).

t=0

Thus there are elements <£r,/ti,...,<j>rakc, Wsti, • • •,iprskc € R® R such that

i c c

for 1 ^ k ^ n and 1 ^ r, s < ^.

Similarly considering the A(it)-submodule of /1®>1 generated by {wr®wa)o(qk®\)

for i ^ 0 we get the existence of T € N, frak0, frakl,..., frski e R, 0 r j A 1 , . . . , <^rstc and

Iprskl ,•••, i>rakc of R® R SUCh that

r

«=0

(4) 9^+1 ® 1 + ^>2(qk ® l)A(fraki) + ^2(gTj ® l)0r»Jt> + 5^(1 ® 9>j)^rskj = 0
t=0 j=l j=l

for 1 ^ A; ^ m and 1 ^ r, s < z.

Similarly considering the A(i?)-submodule of A® A generated by (wr®wa)o(qk®l)

for t ^ O w e get the existence of

I f- JH f f f • t- T> X >A
t t IN / . / • . . . « # t i t (D (D
- ' i-rsJtO'i-r»t(-l) 'ir«t(-D ' I-rs*l' 'ir«*c
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and %l> ,..., t/̂ . of R <g> R such that

»=-{

(5) q?-1 ® 1 + £(q{ ® 1)A(/rjfc.) + £ ( f f r i ® 1)0^. + £ ( 1 ® ff,,-)^. = 0

for 1 ^ A: < m and 1 ^ r, s ^ z.

Furthermore as l + l, l + l and i + 1 correspond to the cardinality of the corresponding
finite generating sets of A(i?)-modules we can assume that I = I — /. Finally we define

(6) e0 = max \l(n + m)+ 1,2 \frsti\,

2 , 2 , \{9rj

<8> 9,j)iprstj |,

Now we make a simple but important remark. We have denned e0 as depending on a
choice of a generating set wi,...,wt of A as .R-module. We show that if we extend
this generating set to w i , . . . , w z , . . . , u^ then we still can keep the value of eo the same
provided the newly added generators are of the type tu* o A for some old generator u>i
and some X € R. Note that AnnR^R(wr ® wa) C AnnR®/j((it;r o Ar) <g> (ws o A,)) for
Ar,As € R and by (2),(4), (5) we can use the values of l,f, f,f_, <j>, <j>,<f>,ip, ip,i£ for the
old generators Wi's and not introduce new ones for the new generator Wi o A. That is,
for wa = wr o Ar and wg = ws o As with both r and s at most z, a or /3 (or both) in
{z+l,...,b}, furthermore if a < z assume that a — r, Ar = 1 and if /3 < z assume that
Aa = 1, p = s we define

faflti = /r.tt, /a^fci = /r.fci, ̂ ^ = /rsfci for 1 ^ t ^ n, 1 ^ fc ^ m, 1 < I < /,

5a j = 9TJ, 9{)j = 9sj fo r l^j^c,

<PaPli = <t>rsti, <t>affki = ^"ifci. ^ w = £ . s f c i for U K C,U K 1,1 <fc ^"l,

•Oapti = A,ti, dapki = Aski, ^ f c i = V[rsti for 1 ^ i ^ c, 1 ^ t ^ n, 1 s$ k ^ m,

<t>affti = 4>a0ki = ^a^ = 1paf)ti = Ipcpki = ^ ^ = 0 for C + 1 ^ i ^ Cu 1 5$ t ^ n, 1 < k ^ m,

where ci is the new value for the old parameter c. Note that by enlarging the set

of generators {wu ..., wz) to {wi,..., wz,..., wb} the value of c changes to some new

natural number cj ^ c. This new number C\ can be much larger than c but it is not used

in the definition of e0. We do not specify the elements gaj,9pj for c + 1 < j ^ Ci as we

shall not use them.
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3.5. FIXING A FINITE GENERATING SET OF A. Let {wi,...,wz} be a generating set
of A as a right R-module satisfying (1) and TT : F —> H be the projection defined in
subsection 3.2. We define a finite subset EQ of the Hopf kernel hker(-K) as the set

E0 = {[XuXj] - Wa(ij),*r'* ~XT-

where [Xt,Xj] = XtXj — XjXi. By reordering {w\,...,wz} if necessary we can assume
that

{a(t,j) ,^(r,A1e)}K i < i < B i U r < n i l < J t < m > e = ± 1 = {1,2,... ,2b} for some zQ ^ z.

For any subset B of F and / i , / 2 € F w e write f\ =B h if h~h belongs to the associative
two-sided ideal of F generated by B. We use o to denote the adjoint action in F, that is,
aof is the image of a under the adjoint action of / . By definition R is a quotient of F and
R can be identified with the subalgebra of F generated by {X\,...,Xn, q*1,..., g*1}.

LEMMA 6 . Let f be a monomial in R. Then there exist monomials

M tW d) W

in i? suci tiat for 1 ^ i, j ^ n

fax, - x^) =Eo

a n d for e — ± 1 , l ^ i ^ n , l < j ^ m

wiere aii tf (i, j , A;), ^x(i, j , fc) G { 1 , . . . , z0} and

PROOF: (1) We induct on the length | / | of / , the case when | / | = 0 that is, / = 1
being obvious since X{Xj — XjXi =E0 Wa(ij) f°r i < j .

Let \j\ ^ 1 and / = a/o where a e {Xu ..., Xn, qf1,..., q*1} and f0 G R has length
| / | — 1. By the inductive hypothesis

where all 0(i, j , *) ^ z<> and max{|*gjt|, | 5 g j } ^ |/o|- Then
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Note that if a 6 {q?1, •. •, q*1}

a (WW> o t^g^ = [a, We{iJ,k) o t g j ^

(2) We induct on the length | / | of / , the case when | / | = 0 that is, / = 1 being

obvious since
^iQj ~ QjXi =Bo ^WjS(ij» = (W/jjjj^) o q~£)qej

for i < j .

Let | / | > 1 and / = af0 where a £ {Xu ..., Xn, qf1,..., q*1} and f0 € R has length

| / | - 1. By the inductive hypothesis

where all 6(i,j,k) ^ z0 and max||i[^fc|, \g\%\} < \fo\ + 1. Then

Jiq] - q'Xj ^
k

and we can continue as in the first case. D

Now we are ready to discuss the choice of a generating set of A as a right .R-module.
First we start with any generating set {w\,... ,wz} of A over R and use it to calculate
the numbers eo, zo and c from Sections 3.4 and 3.5. Then we enlarge the generating set
to

A = {wj , . . . , wz} U {u>i o A | 1 ̂  i ^ z0, A is a monomial in Reo} = {w\,..., wro],

for some TQ ^ z. Thus for i ^ 2o and a monomial A S i?eo there is some natural number
v{i, A) ^ TQ such that

Define F with respect to this generating set A that is,

F is the quotient of H(X \ Y) modulo the associative two-sided ideal generated by

{YiYjYr'Yr1 - l } i < K « m , where X = {Wu.. .,Wro,Xu..., Xn}, Y~{Ylt..., Ym}.
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Now we define a subset E\ of F using the subset Eo of F defined at the beginning of
Section 3.5

i = Eo U {Wi o / - Wu(iM)) :i^zo,f monomial in Reo},

where p : R -¥ R is the homomorphism of fc-algebras sending X{ to xt and q^ to q].

COROLLARY 1 . Let f be a monomial in R. Then there exist monomials

such that for 1 ^ i # j < n

and for e — ±1 ,

4) =Bl

P R O O F : 1. By Lemma 6 there exist monomials Tjj[k, g\j,k m ^ s u c n t n a t

and all

Let /î ?fc b e t n e beginning of tj^,* o f length min|e0, \^jtk\\ and V?Jk be the rest o

that is hfjk is obtained from t^J'k after deleting the beginning hyjk. Then

hence

Note that

0, |7| - eo}.

2. By Lemma 6 there exist monomials 7?Jk,g[jk in ft such that

a n d
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Let / i^ f c be the beginning of i^f c of length min |e0 ) | ^ | } and 7if]k be the rest of ?^fc

that is hf?Jk is obtained from iVy>Jt after deleting the beginning hyj,.. Then

=El

hence

Note that |/^fc| = |tfj|fc| - |h|Jit| ^ maxjo, \^k\ - e0} ^ max{o, |/| - e0 + l } . D
Finally we define

U {[Wt o / j , W, o fj] | 1 < i, j < r0, / j , / j monomials in ft such that \ft\ + \fj\ ^ e0},

where T]: R -* Ris the A;-linear map defined in Section 3.2. Thus

E = {[Xi,Xj] - Wa{ijj),X
q

r
k -Xr- ^ ( r , t , e ) } 1 ^ < ^ n ] 1 ^ r <

U {Wi o / - Wv{iAf)) \i^zo,f monomial in k\0} U {M^ O v{9ij)} ^ ^

U {[Wi o / j , Wj o / ^ | 1 ̂  i, j < r0, / j , / j monomials in R, \fi\ + \fj\ ^ e0}.

Note that in the definition of E we use the old value of c obtained before enlarging the

generating set of A.

3.6. SOME COMMUTATOR CALCULATIONS. Our main theorem easily follows from the
following Theorem 5. The proof is split in several small lemmas. We remind the reader
that we use o to denote the adjoint action in F, that is, BO / is the image of a under the
adjoint action of / .

THEOREM 5 . For any 1 ̂  i, j ^ r0 and fr, fj monomials in R we have

An induction on e ̂  eo will be used to show that

(7) [Wi o fu Wj o fj] =E 0 for monomials with | / j | + | / , | < e.

We assume (7) holds for some fixed value of e and aim to show that

[Wi o fit Wj o ft] =E 0 for \U\ + \fj\=e + \.

LEMMA 7 . W{ o j =E 0 for all i ^ r0, J € Ker(/3)e+2.
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P R O O F : By Lemma 4(1) Ker(p)e+2 is generated as a vector space by the elements

of R of the form

Pi(XjXr - XrXj)p2 and ft(X,-gJ

where 1 < j < r ^ n, 1 ̂  k ^ m, e = ± 1 , Pi,p2 are monomials in R and \pi\ -t- jpT2j ^ e.
Then we can assume that either / = pi{XjXT — XTXj)p2 or

f=Pi{Xj<fk-<fkXi)p2.

If / = ft(.Y,-Xr - XTXj)p~2 using that |p~i| ^ e

W< O / = Wi O &{XjXr - XrXjfa) =B [Wi O ft, WoW,r)] O P2 = £ 0 O p2 = 0.

i o / = Wi o (ft (^gg

[Wi oft, -WWi*,_0] o (9^p2) = £ 0 o (g«ft) = 0.

Let W be the associative two-sided ideal of F generated by W i , . . . , WTQ and

X : W ® VF -> [W, W]

be the homomorphism of right A(R.)-modules sending mi ®m2 to [mi,m2]. We view W
as a right R-module via the adjoint action, [W, W] is a fi-submodule of W and W ® W
is a right A(R)-module via the comultiplication R—¥R®R. Abusing the notations we
write o for both the right adjoint action in F and in F ® F.

L E M M A 8 . L e t C e K e r ( p ® p)e+e0- T h e n f o r l ^ r , s ^ r0

PROOF: By Lemma 4(2) Ker(p® p)e+eo is spanned by

?! ({XjXi - XiXj) 9 1)ft., Mi (1 ® (A,-Xj - ^iX,-))Ma, ft ((^gj - (fiX.) ® l)ft,

and

where pti>M2 are monomials in R ® fl with |/Ti| + |/T2| ^ e -I- eo - 2 and e = ± 1 . As the

problem is symmetric with respect to swapping the components in W ® W it is sufficient

to consider only the cases C = Pi((XjX{ — XiXj)®i)1i2 and ( = ^({Xiq^-q^Xi)®!)^.

We write £i = Pi ® 9i, £2 = P~2 ® 92, where ft,ft. g"i, 92 are monomials in .R.

First we consider the case C = pti((X,Xj - AjXj) ® l)/i2- Note that by Corollary 1

<i) =E
k
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where £*, P~3,* are monomials in R with \tk\ ^ max j |pi j — e0,0 V < max{e — 2,0} < e and

\p3,k\ <\pi\- Then

r ® W.) o ft

=E I WT O f 52(±WV(ij» O Ft)P3,fcP2) , W. O (gift)j

T, ±Wgl{ij,k)otk] O (ftjkftj.lV, o (gift)j = E 0.

The latest equivalence holds since |tjt| ^ e and then [Wr, iWlj/jjj,*) o tk] =E 0.

Now we consider the case C, = to{(Xi<fj ~ QjXi) ® l)^2- Using again Corollary 1

where tt,P3,* are monomials in R with |tfc| ^ max< |p"i| - e0 + 1,0 \ ^ max{e — 1,0} ^ e

and |p3ijt| ^ |p"i| + 1. Then

= [VKr o ( p ! ( ^ - qXifa^W. o (gift)]

(ij,fc) o Ffc)p3,tp2) , W, o (gift)l

=E E 0 O (p3,JtP2), Ŵ s O (gift) = 0.
1 * J D

LEMMA 9. If for every monomial f in R of length e + l we have [Wj o / , Wj] =E 0
tien for all monomials fit fj in R with \fi\ + \fj\ —e + l we have [Wt o ft, Wj o / ,] =E 0.

PROOF: We use induction on |/,-|. If |/y| ^ 1 then fj = gXt or fj = Tjqfc for some
e = ± 1 , |flf| = \Jj\ - 1. In the first case as Xt is a Lie element

i o /i, W, o /I] = [W4 o ̂ , VK, o (gXt)]

= [Wioju Wj o j ] o X r [Wi o (^X(), Ŵ  o j ] = B - [W{ o (/|Xt), WO o j

where the last equivalence follows from the fact that | / j | + |<?| = e, hence

[WiOfi,WjOg]=E0.
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In the second case

[Wt o Jit Wj o fj] = [Wi o Ju Wi o {gql)\ = [Wt ° (fa?), Wj o g] o qf,

hence [W{ o J{, Wj o Jj] =E 0 if and only if [Wt o Jtq^e, Wj o g] =E 0. This completes the
inductive step. D

THEOREM 6 . Let f be a monomial in R such that | / | = e + 1. Then for
1 ^ r, s ^ r0

[ ^ r O / , ^ 5 ] = £ 0 .

PROOF: By Lemma 5 if /i is obtained from / by reordering of the entries then
7 - 7i = Ai e Ker(p)e+1. By Lemma 7 [Wr o XltWs] =E 0. Hence

[WT o 7 VV5] = £ 0 if and only if [Wr o / j , W.] = B 0.

Let Zi be the number of entries of Xt in / and m* be the sum of all possible e = ±1 such
that gf is a subword of / . Since eo ^ l(n + m) + 1 either there is some

or there is some

or there is a reordering /i of / such that a cancelation qlq~e occurs in / i , hence

m<\i\-
In the last case we have | / i | ^ e, hence [WT o / l t Wa] =E 0 and we are done. Then we
can assume that we are in one of the first two cases and consider some reordering fi of
/ such that

for some monomial h £ Im(r)) C R that does not start with 6"1, where

be{X1,...,Xn,qt\...,q±1}.

We write h for p(h) and b for p(b). Note that ft € Re-i, hence h e -Re_j- Following [5]
we multiply (3) or (4) or (5) depending on the value of 6 with h ® 1 and obtain for the
fixed r,s e {1,. . . ,r0}

(8) (6l+1/i) ® 1 + a + J2(9rj ® l)&.jy + J ^ ( l ® 9,j)lr,kj = 0,
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where

) ( / r f W ) ( ) , frskj tr,kj{),jrskj = ^rlkj(h® 1) or

i

b = qk,a = Y^(bi ® X)Mfrski)(h® 1),/3r3fcj = 0rsfcj(/i® 1),7r5fcj = $rs;y (h ® 1) or
t=0

0

6 = q;\ a = £ ( & • ® l)A(/r5fc.)(/i ® 1), (lTakj = ^ f c .(/i ® 1), lrskj = ±rskj(h ® 1).

Note that the choice of eo together with Lemma 3 imply
(9) a E (R ® fl),A(i?eo/2)(fl (8> fl)e_, = (fl ® fi)eA(i?e,/2) C (fl ® R)e+eo,

(flr> ® l)i3r5Jfei, (1 ® ffSj)7r5ti € (ft ® R)e0+e-l Q(R® R)e+eo.

We lift (8) in R ® ft to find f e f l ® f l such that

(10) T = £ ® 1 + 5 + 5 (̂T?(ffri) ® l)A..*j + 53(1 ® r,(gsj))jTSkj,
i

where J3rskj = {r]® T?)(^rsfcj), j r a k j = (77® »7)(7rSfci) and by (9) we can choose

ae(R®R)eA(Reo/2) C (ft®fl)e+eo,

such that (p ® p) (a) = a. Note that

(V(9n) ® 1)^.«, (1 ® »?(ff.i))7«/y e (ft ® ft)e+eo.

Then

T eKer(/j®p)e+eo.

Note that

[WWLWJSSO

is equivalent to

Then by (10) it is sufficient to show that

X((Wr ® Wa) o C) =E 0 for C G { T , 5, (i?(sr,-) ® l)Kskj, (1 ® */(s.i))7r.ti} •

These are covered by the following 3 cases:

1. C € Ker(p ® p)e+eo for C = r;

2. C€ (ft®ft)eA(ft) forC = a;
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3- C e (v(9rj) ®l)R®R or (1 ® r](gsj)) (R ® R) for C e {(v(grj) ® 1)A-.*,-,

Case 1 follows from Lemma 8. Case 2 follows by (7) and the fact that x is a

homomorphism of right A (/?)-modules. Case 3 follows from the fact that WTQT)(grj) e E,

hence WroT)(grj) =B 0. Similarly W, 077(5^) =E 0. This completes the proof of Theorem
6. D

Note that Lemma 9 and Theorem 6 complete the proof of Theorem 5.

4. P R O O F S OF THEOREM 4 AND THEOREM 1

4 .1 . P R O O F OF T H E O R E M 4. We remind the reader that by Theorem 5 there is a finite
subset E of F = U(Li)#kQ such that

for all i, j ^ TQ and all monomials fi, fj in R. Let Hi be the associative ring quotient of F

modulo the two-sided ideal of F generated by E. Note that the elements of E are in fact
Lie elements of F, that is, for the comultiplication A F of F we have AF(r) = r<g)l + l ® r
for r € E. Then Hi is a Hopf algebra in the category X that is, Hi ~ U(L0)#kQ, where
Lo is a Lie algebra quotient of Lt.

Let Bo be the Lie subalgebra of Lo such that Bo is generated as a Lie algebra by the
Hi -orbits of all images of {M/i}1^j^ro in Hi, where Hi acts via the right adjoint action.
Then by Theorem 5 Bo is an Abelian Lie algebra. Furthermore note that Hi is a Hopf
extension of the universal enveloping algebra U(Bo) by R, that is, there is a short exact
sequence of Hopf algebras U(B0) -> H1 -t R sending the image of Xt in Hi to i j 6 R

and the image of q? in Hi to gj € R for e = ± 1 . Since i ^ acts on Bo via the right adjoint
action and Bo is Abelian, Bo acts trivially. This induces an action of R on Bo. Then
there is a homomorphism of right iZ-modules

•K : Bo —• A

sending the image of W{ in BQ to IUJ 6 A, where iZ acts on A via the right adjoint action
induced from the short exact sequence of Hopf algebras U(A) -> H —> R . Since R is
Noetherian Ker ir is finitely generated as an .R-module. Then there exists a finite subset
E of Li such that the associative ring that is the quotient of F modulo the associative
two-sided ideal generated by E U E is isomorphic to H. Then by the definition of F and
Theorem 2(b) H is finitely presented in the category X.

4.2. P R O O F OF T H E O R E M 1. By [7, Proposition 2] every finitely presented Hopf alge-

bra in the category X is of homological type FP2, thus 1. implies 2. By [7, Corollary 3]

if H is a Hopf algebra in X of type FPm such that H is a Hopf extension of H\ — U(Li)

by a Hopf algebra H2 in X, Li is an Abelian Lie algebra and H2 is right Noetherian as
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an associative fc-algebra then the mth homology Hm(Li) ~ f\mL\ of the Lie algebra L\

is finitely generated as a right #2-niodule via the iterated comultiplication H2 -> <8>mH2..

where we view L\ as a right H2-module via the adjoint action. Applying this result for

m = 2, L\ — A and H2 = R we get that 2. implies 3. Finally 3. implies 4. follows

from Theorem 3 and 4. implies 1 follows from Theorem 4.
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