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We investigate both left and right cancellation in the Stone-tech compactiflcation fSS of a discrete semigroup
S, obtaining several results for arbitrary semigroups 5 and others for more restricted semigroups. In particular,
if S is the semigroup of injective functions from a set to itself we determine precisely which pairs x, y and S
have some pefiS with px = py. We also obtain several new results about right cancellation in (/?N, +).
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Introduction

Given a discrete semigroup (S, •) it is well known that one can define an extension of •
to /?S, the Stone-Cech compactiflcation of S, so that (fiS,-) is a left topological
semigroup with S contained in its topological centre. (By "left topological" we mean
that for each pe/SS the function kp defined by kp(q)=p-q is continuous. The
"topological centre" is {pefiS:pp is continuous} where pp(q) = q-p)-

The algebraic structure of pS is of intrinsic interest since fiS is the RMC compactiflca-
tion of S [3]. In addition, the algebraic structure has been often useful in obtaining
results in Ramsey Theory. See for example the survey [13]. We are concerned in this
paper with cancellation in PS.

In [10] a characterization was obtained of the points p of 0S at which left
cancellation holds. (It is condition (b) of Theorem 2.2 below.) Using this characteriza-
tion one was then able to show that there are points in the closure of the smallest ideal
of (0N, +) at which left cancellation holds (while it must fail at all points of the smallest
ideal itself). Specializing to the semigroup (/?N, +), in [4] a long list of conditions
equivalent to left cancellation holding at p were obtained.

In this paper we extend these results in two directions. In Section 2, we deal with
extending the list of conditions characterizing left cancellation in some more or less
arbitrary semigroups. In the process we are led to investigate which points x and y of a
left cancellative semigroup S must have some pefiS with px=py, completely solving this
problem in the case S is the semigroup of injective functions from a set to itself. In
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380 N. HINDMAN AND D. STRAUSS

Section 3 we deal with the question of when "p$p-(PS\S)" can be added to the list of
characterizations.

The general results obtained, as well as all the earlier special results about Q?N, +),
deal with left cancellation. The reason for this is the choice of continuity which we have
made for the operation in /JS. Had we chosen to make pp continuous for each peflS, the
results would speak about right cancellation. The problem of cancellation on the side
opposite to the continuity seems to be a significantly more difficult problem.

At this point, a word is probably in order about the reasons for our choice of
continuity, which is the customary choice for the first author while the choice of right
continuity is the customary choice of the second author. The reason for this choice is
that our examples involving the semigroup of injective functions naturally utilize a left
cancellative semigroup.

In Section 4 we address the problem of right cancellation, obtaining several results for
the semigroup (fiN, +). Included here are examples of the interaction between left and
right cancellation. In Section 5 we apply results involving homomorphic images of fiN,
obtaining in particular some necessary conditions for right cancellation.

We take the points of PS to be the ultrafilters on S, identifying the points of S with
the principal ultrafilters on S. Given /4sS, A = clA = {pe/iS: Aep}. The set {A:AcS} is
a basis for the open sets of /?S. In the semigroup (S,•), given A^S and xeS, one has
A/x = {yeS:yxeA}. Then given p,qeS one has Aep• q*>{xeS:A/xep}eq. (If the
operation is written + we write A-x = {yeS:y + xeA} and have Aep + qo
{xeS:A— xep}eq). See [12] for an elementary derivation of these facts. We take
N = {1,2,3,...}, writings for N u {0}.

We close this introduction with a well known lemma which is very useful in our
discussion of right cancellation. Recall that an F-space is a completely regular Hausdorff
space in which disjoint co-zero sets are completely separated. In case X is compact, this
is equivalent to the assertion that disjoint co-zero sets have disjoint closures, i.e. that X
is an F'-space. It is well known that if X is discrete, then both fiX and X* = jlX\X are
F-spaces. (See [8] for these facts and unfamiliar terminology.)

Lemma 1.1. Let X be a compact Hausdorff space. Then X is an F-space if and only if
whenever A and B are a-compact subsets of X such that A n (cl B) = (clA)r\B = 0, one
has(clA)n{clB) = 0.

Proof. For the sufficiency simply observe that co-zero sts are tr-compact. For the
necessity, write A = \J?=1An and B = {J™=1Bn where each An and each Bn is compact.
Given n, An and clB are disjoint compact sets so pick disjoint co-zero sets Un and Vn

with An^Un and c/J5sKn. Likewise pick disjoint co-zero sets U'n and V'n with clA^U'n
and Bn^V'n. For each n, let Gn=Unn f)J=1 U'k and HB=V'nnf)n

k=i Vk. Then for all n
and m GnnHm = 0, An^Gn, and Bm<=tfra. Thus A^{J?=1Gn and B^{J?=lHn. Since
Un°=i ^« anc* Un°=i " " a r e disjoint co-zero sets, they have disjoint closures. •

2. Left cancellation in fiS and separating points of 5

We begin by stating from [4], [10] and [16] a long list of conditions characterizing
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left cancellation in (PN, +). Recall that two members of pN are type equivalent (pxq) if
and only if there is a permutation f of N such that fp(p) = q, while p precedes q (in the
Rudin-Kiesler order) provided there is a function f:N-*N with ffi(q) = p- We write
p^q if p precedes q and write p<q if p^q and pfiq.

Theorem 2.1. Lef peM*. The following statements are equivalent.

(a) kp is one-to-one on fiN (i.e. left cancellation holds at p);
(b) for each A^M, there exists B^N such that A = {xeN:B —
(c) {p + n: n e N} is discrete;
(d) for each qeN*, p<p + q;
(e) for each qeN*, pfip + q;
(f)
(g)
(h) f/iere is an increasing sequence (xn~)™=l in N such that for each keM, {xn:xn + 1 >

xn + k}ep.
(i) there is a one-to-one function f:N-*pN such that {f(n):nehl} is discrete and for all

(j) there is a function g:N-*N such that for all qe /JN, gfi(p + q) = q;
(k) there is a function h: N->N such that for all qe[}N, hfi(p + q) = p.

Proof. [4, Theorem 2.1], [10, Theorem 4.2], [16, Theorem 2] and the observation
that for n e N, pj=p + n so that (g) implies (/). •

We restrict to pe M* above since for peN, kp is always one-to-one [11, Lemma 2.4].
We now extend portions of Theorem 2.1 to a more general setting. Recall that a

subset D of a topological space A' is strongly discrete if and only if there is a collection
<l / , ) J 6 D of open subsets of X with each xeUx and with Uxn Uy = 0 whenever

Theorem 2.2. Let (S, •) be a discrete semigroup and let pe/lS. Statement (a) implies
statements (b), (c) and (d), which are equivalent. These statements imply statements (e) and
(f) which are equivalent. If S is countable, all statements are equivalent;

(a) kp is one-to-one on S and {p-x:xeS} is strongly discrete;
(b) for each subset A of S there exists B £ 5 such that A = {xeS:B/xep};
(c) Xp is one-to-one on PS;
(d) Xp is one-to-one on PS and {p • x: x e S} is discrete;
(e) kp is one-to-one on S and {p • x: x e S} is discrete;
(f) f o r each x e S and each q e p S \ { x } , p x ^ p q .

Proof. To see that (a) implies (b), pick for each xeS some Cxepx such that
CxnCy = 0 whenever x^y. Let A^S be given and let B = \JxeACx. To see that
A = {x 6 S: B/x e p}, let xeA. Then CX£B so Bepx so B/xep. Now let xeS be given
with B/xep, since also (Cx)/xep, pick ae(B/x)n(Cx)/x. Then axeBnCx. Since axeB,
pick ye A with axeCr Since CynCx^0, we have y^x so xeA.
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Then (b) and (c) are equivalent is [10, Theorem 4.2(b)]. (The fact that (b) implies (c) is
routine: Let q and r be distinct members of BS and pick Aeq\r. Pick B such that
A = {x e S: B/x ep}. Then B e(p • q)\(p • r).)

That (d) implies (c) is trivial. To see that (c) implies (d), let xe S and suppose
pxecl{py:yeS\{x}}. Since cl{p • y: y e S\{x}} = p • (BS\{x}) by the continuity of kp we
have px = pq for some <je/?S\{x}, a contradiction.

That (d) implies (e) is trivial. The proof that (f) implies (e) is identical to the proof
that (c) implies (d). To see that (e) implies (f) one simply again utilizes the fact that
cl{p-y:yeS\{x}}=p-(BS\{x}).

Finally it is well known (and an easy exercise) that a countable subset of a regular
space is discrete if and only if it is strongly discrete. Consequently if S is countable we
have (e) implies (a). •

Statements (a) and (e) of Theorem 2.2 lead us to ask when we can guarantee that Xp is
one-to-one on S. It is not hard to see that this must always be true if S is cancellative.
(It is also a consequence of Theorem 2.5 below.) It is perhaps surprising that left
cancellation is not sufficient.

Lemma 2.3. Let S be a semigroup and let x,yeS. There exists p in BS such that
px = py if and only if whenever F is a finite partition of S there is some AeF with
A- x n A- y¥=0. More generally, given any discrete set X and any functions f and g from
X to X; there is some pefiX with ffi(p)=gp(p) if and only if given any finite partition of
X there is some AeF with f\_A~\ ng\_A~] # 0 .

Proof. The first statement is the special case of the second where S = X, f = px, and
g = py so we prove the second statement. Given Aep one has /C^4]e/P(p) and
g\_A~\egf(p) so the necessity is immediate. For the sufficiency assume that for each
peflX, ff(p)¥=gf(p) and pick Up and Vp, disjoint neighbourhoods of J\p) and g\p)
respectively. Pick Apep with flA^^Up and g^A^^V,,. Then {Ap:pefiX} is an open
cover of fiX so pick p(l),p(2),...,p(n) with X = \J"=l Ap(i). Let Bl = ApW and for
ie{2,3,...,n}, let B, = i4p,0\UJ-1

1i4pO). Then the partition {BUB2,..., Bn} of X has
/ [ B J n glBJ = 0 for each j e {1,2,..., r}. •

Corollary 2.4. Let X be discrete and let f.X^X with no fixed points. Then
f:BX-*BX has no fixed points. More generally, if 0 # D £ X and f:D-*X with no fixed
points then ffi:BD-*BX has no fixed points.

Proof. The second statement follows from the first since / may be extended to all of
X by sending X\D to any point of D. To see the first statement observe that by [6,
Lemma 9.1] there exists a three cell partition F of X with - 4 n / [ / l ] = 0 for each AeF.
The result follows from Lemma 2.3 by taking g to be the identity. •

Observe that of course if one hopes to have px=£py whenever x and y are distinct
members of S and p e BS, one must have that S is left cancellative. As a consequence of
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the following theorem, one does obtain that conclusion if S is cancellative. (We add the
left-right switch to the theorem since it causes us no additional work.)

Theorem 2.5. Let (S, •) be a semigroup and let x and y be distinct members of S.

(1) Assume that for all s,teS, if sx^sy, tx^ty, and sx = tx, then sy = ty. Let pe/JS.
Then px=py if and only if pecl{seS:sx = sy}.

(2) Assume that for all s,teS, if xs^ys, xt=£yt, and xs = xt, then ys=yt. Let pefiS.
Then xp = yp if and only ifpecl{seS:xs = ys}.

Proof. (1) Let E = {seS:sx = sy}. The sufficiency is immediate. (Since px and py agree
on E, they agree on clE.) If E = S, the necessity is also trivial so we assume £ # S and
pick aeS\E. Define /:S-»S as follows. For seS\E, let f(sx)=sy. (Our hypothesis
guarantees that this makes sense.) For teS with t$(S\E)-x, let f(t) = ax. Then for all
teS, f(i)^t. Suppose p$clE and pick a net <sa>ae/ in 5\£ which converges to p. Then
for each ael f(sax) = s^y. Since ffi and px and py are continuous we have ffi(sax)
converges to fp(px) while s^y converges to py. That is fp(px) = p- y. By Corollary
2.4, p • x ¥" f\p x)=py, a contradiction.

The proof of (2) is identical, using the continuity of kx and kr •

We only state the corollary corresponding to (1).

Corollary 2.6. Let (S, ) be a semigroup and let x and y be distinct members of S.
Assume that sx^syfor all seS and that for all s and t in S, if sx = tx then sy = ty. Then
for all pef!S,px^py.

Proof. {seS:sx = sy} = 0. •

We shall see later that left cancellation is not sufficient to guarantee that Xp is
one-to-one on S for all pe/?S. We set out to show, in Theorem 2.8, that a left
cancellative semigroup cannot be completely bad in this regard.

We feel that the next result, which is for us a lemma for Theorem 2.8, is interesting in
its own right.

Theorem 2.7. Let S be a left cancellative semigroup and let xeS such that x is not a
left identity for S. Then for all p e 0S, px^p and p • x 2 # p • x .

Proof. Observe that the second conclusion follows from the first (since pxe /?S). For
all xeS, p^^s. (For if sx=s, then for all teS, sxt=st and hence xt = t.) Again
invoking [6, Lemma 9.1] we have some A0,Al,A2 such that S = \Jf=0Aj and Ajf]

= 0 for iG{0,1,2}. Let pepS be given and pick is{0,1,2} with Atep. Then
so p # p x . •
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Theorem 2.8. Let S be a left cancellative semigroup. Then there exist x and y in S
such that for all p e PS, px^py.

Proof. Assume first that some x e S is not a left identity for S. Then by Theorem 2.7
one has for all peps, px^px2. Thus we may assume every element of S is a left
identity, so that S is a "right zero" semigroup. Then given any xeS px is constantly
equal to x on S and hence on PS, since px is continuous and S is dense in PS. Thus for
al l pefiS a n d all x e S , p x = x s o if x # } > a n d p e p s , p x ^ p y . •

We are concerned, given a left cancellative semigroup S, with determining which
points x and y in S can be separated by each Ap. We solve this question completely for
a special class of semigroups—the semigroup of injective functions from a set to itself.
These semigroups hold a special place among left cancellative semigroups since they
contain copies of all civilized left cancellative semigroups. (Here "civilized" means kx # ky

whenever x^y. That is, given x^y some c has xc^yc. In this case the function
<p:S-*{f: f.S i~l>S} defined by <j>(x) = 2.x is one-to-one and a homomorphism.)

Theorem 2.9. Let A be a set and let S = {f:f:A-^*A}. Let g,heS and let
E = {aeA:g(a) = h(a)}. Define 0:g|>4\£]->/i[>l\E] by 9(g{a)) = h(a) for aeA\E. There is
some peps with pg = ph if and only if for some neN, 0" = 0 .

Proof. Sufficiency. If g = h the conclusion is trivial so we assume g^h. We claim
first that A must be infinite in this case. Suppose instead A is finite. Then g is onto A.
We show that range 0£g[/4\£], so that for all n, domain 0"=g[A\£]#0 , a
contradiction. To this end, let a=g(x)eg[A\E~\ =domain 9. Then 6(a) = h(x) = g(y) for
some ye A. If yeA\E we have established our claim so suppose yeE. Then
h(y) = g(y) = h(x) so y = x while xeA\E, a contradiction.

Since A is infinite choose a sequence of disjoint subsets <Bm>m=0 of A with
^ = U™=oB

m
 a n d e a c h |#m| = H- L e t C = ' I [ / 1 \ £ ]V[ ' 4 \ £ ] a n d Pick for e a c h meN s o m e

function (p^C^^B^ Pick 8:A\(h[A\E] <j g[A\E])J^1* Bo. Pick n such that 0" = 0.
Given aeg[A\E] u/i(\4\£], pick the first element /i(a)e{0, l,...,n— 1} such that
0"(<I)(a)£s[/l\£] = domain(0). (If a£g[ / l \£] , then /*(<*) = 0.) The assumption that 0" = 0
says always fj.(a) < n.

Let H = {(m0,m1,...,mn_1)eNn:m0<mi<--<mn_1}. Given x = (mo,m1,...,«!„_!) in
H, define /_, e S by

/,(«) = and i = /

Given aeg[\4\£] u/ i[ / l \£] we have 0M(a)(a)eC so the definition makes sense. To see
that / is one-to-one one only needs to show that 0 is one-to-one. To this end, let
a,beg\_A\E]. Then a=g(x) and b=g(y). Assume 0(a) = 8(b). Then h(x) = h(y) so x = y
and a = b as required.
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We now utilize Lemma 2.3. So let a finite partition F of S be given. Given DeF, let
= {xeH:f_eeD}. Then {F(D):DeF} is a finite partition of H so pick by Ramsey's

Theorem ([15] or [8, page 7]) some DeF and some mo<ml< ••• <mn such that
x=(m,,m2,...,mB)eF(D) and y=(mo,m1,...,mn_1)eF(fl). Then / and f are in D.
We claim that f^°h = frog (so that DhnDg^0 as required).

To this end, let aeA. If aeE, then h(a)$g[A\E] nh[A\E~\ so /_,(/i(a)) = <5(/i(a)) =
= /-(£(a))- Now assume aeA\E and let i = /z(/i(a)). Since h(a) = 6(g(a)) we have
= i+1. Thus /y(ft(a)) = 0m, + 1(^(Ma))) = ^mi+1(0i+1(^a))) = / r ( ^ ) ) as required.

Necessity. We assume essentially without loss of generality that | \ g [ \ ] |
|i4\/i[i4\£]|. (The assertion that some 0" = 0 is equivalent to the assertion that some
(0-»)» = 0 . ) Pick <5:/4\g[/4\E]-^»/4Vi|\4\E] and define r eS by

tea) if a eA\glA\E]
1 ' |fl(

Since 0 is one-to-one, so is T. For each neN, let £>„ = domain 0". Suppose that each
D n # 0 . Define an equivalence relation « on S by / w/c if and only if there exists neN
with f\Dn = k\Dn. Define <£:S/«->S/« by <£([/]) = [ / n ] . We show first that <j> is well
defined. Assume fxk and pick neN such that f\Dn = k\Dn. We claim / ° t | D n + 1 =
kor\D +1. To this end let aeD n + 1 and observe that 0(a) e Dn." Then /(r(a)) = f(9(a)) =

Next we show that for each feS, <£([/]) # [ / ] . (It is here that we utilize our
supposition that each Dn^0.) Indeed suppose we have some n with f °t\Dn. Pick aeDn.
Then r(a) = 0(a) so f(a) = f(6(a)). Now aeg[A\E] so pick xeA\E with a=£(x). Then
6(a) = h{x) so /feW) = /(a) = /(0(a)) = /(^(x)) so g(x) = /i(x) so xeE, a contradiction.

Now by [6, Lemma 9.1] pick a partition {Bo, B,,B2} of S/x such that for each /,
B1n0[B,] = 0 . For each i let C, = uB, so that {C0,Ci,C2} «s a partition of S. By
Lemma 2.3 pick i such that C jgnC, / i#0 and pick /,/ceC, with foh = kog. We show
that kxfoT so that <£([/]) = [£] and hence B,n </>[B,] = 0 , a contradiction. To see this
we show &|o, = / ° T | D I . Let aeDx and pick xe / l \ £ such that a=g(x). Then /(r(a)) =
f(9(a)) = /(fl(g(x))) = /(/J(X)) = *(g(x)) = fe(a). D

We see now that half of the characterization of Theorem 2.9 is valid in any left
cancellative semigroup.

Corollary 2.10. Let (S,) be a left cancellative semigroup, let x,yeS and let E =
{aeS:xa = ya}. Define 0:x{S\E)->y(S\E) by 6(xa)=ya for aeS\E. If there exists p
in PS such that px = py, then for some neN, 6" = 0.

Proof. If E = S, then 0 = 0 so we can presume E #S. Let M = {/: / : S-^» S}. Define
<}>:S->M by <f>(z) = X2 for all zeS. Then $ is a homomorphism of S to M so <£ extends to
a homomorphism (j>fi-.pS->PM. Observe that E = {aeS:AJ.a) = XJJ(a)}. Observe further
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that 0:Ax[S\£]-aj,[S\£r| and is defined so that d(X^a)) = k^a) for aeS\E. Since
<p\p)Xx = <i>p(p-x) = <p\py) = (pe(p)ky we have by Theorem 2.9 that for some neN,
0" = 0. •

Corollary 2.11. Let (S,•) be a left cancellative semigroup and let x,yeS such that
xy = yx but x/>>. Then for all pe^S, px^py.

Proof. Let E and 9 be as in Corollary 2.10. Note that for each n and k in W,
ykx"$E. Indeed if x/x" = yykx", then ykx"x = ykx"y so that x = y. Further 6(ykx") =
/ + 1 x n " ' . Consequently, for each neN, x"+1 edomain(0"). •

Corollary 2.12. Let (S, •) be a left cancellative semigroup and let x,yeS. Assume there is
some B s S such that yB^xB and there is some seB with ys&x-s. Then for all pefiS,
pxjtpy.

Proof. Let E and 6 be as in Corollary 2.10. Let y = 0\x.mE). We show that range
yS domain y so that for all neN, yn¥=0 (and hence 0"#0) . Indeed let a e range y and
pick be(B\E) such that a = y(xb) = yb. Then a=ybey-B^x-B. Suppose aex-E.
Then yb = xc for some ceE so yb = x-c = yc so b = c, a contradiction. Thus
aex-(B\£) as required. •

Theorem 2.9 provides us with plentiful examples of left cancellative semigroups S and
points x¥=y in S such that px = py for some pe/3S. These examples are all large
however, having at least 2m elements. Especially in view of the special role of countable
semigroups in Theorem 2.2, it is reasonable to ask whether one can find such examples
with S countable.

Theorem 2.13. There exist a countable left cancellative semigroup S and distinct
elements g and h in S and pef}S such that pg = ph.

Proof. Let S = {f:f:N-*N and / is one-to-one and there exist m and r in N such
that Vn^m, f(n) = 2r n). Observe that S is indeed countable and is a semigroup under
composition. Define g and h in S as follows: If n^.2, g(n) = h(ri) = 2n, while g(l)=l and

Now let F be a finite partition of S. By Lemma 2.3 it suffices to show that some AeF
has AgnAh*0. Let £ = {/eS:/( l) and /(2) are odd and / ( l )</(2) and for all n^3 ,
/(n) = 2n}. For AeF, let A = {( / ( l ) , / (2) ) : /£En A}. Given odd integers a<b there is a
unique member of E with (/(l),/(2))' = (a,b) so {(a,b): a and b are odd and a<b} =
\JAeFA. Pick by Ramsey's Theorem [15] some AeF and some odd integers a,b,c with
a<b<c and {(a,b),(a,c),(b,c)}^A. Pick k and / in £ n / l with (a,b)=(k(l),k(2)) and
(6,c) = (/(l),/(2)). Then f(g{l)) = f(l) = b = k(2) = k(h(l)) and for n^2,

) = f(2n) = 4n = fc(2«) = /c(fc(«)). Thus AgnAh*0. •

3. The condition p$p- S*

One of the most useful characterizations of the left cancellability of p in (fiN, +) is the
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requirement that p$p + N*. We investigate in this section conditions under which
pip-S* (or "p$p-S* and Ap is one-to-one on S") can be added to the characterizations
of left cancellability of p in PS. The reason for working with S* rather than with j?S is
that if a is any right identity of S, then for all p e PS, p = pa.

Theorem 3.1. Let (S,) be a semigroup and for each xeS let Fx = {yeS:y x = x}. If
there is some finite GsS such that f)xeGFx is finite and if peps is such that Xp is
one-to-one on PS, then p$p-S*.

Proof. Suppose one has some qeS* such that p = pq. Since f]xeGFx is finite, pick
some x e G such that Fx $ q. Then x # q • x while p • (q • x), is a contradiction. •

We observe that even in a left cancellative semigroup, lp being one-to-one on PS need
not imply p£p-S*. Indeed let S be any infinite right zero semigroup (wherein x-y = y
for all x and y). Then PS is also right zero so for any peS*, Xp is one-to-one while
p = ppep-S*.

Theorem 3.2. Let (S, •) be a right cancellative semigroup, let p e S*. Assume that for all
qeS* and all aeS, if pa=pq, then for all Aeq, A/a is infinite. If p£p-S* and Ap is
one-to-one on S, then {p-x:xeS} is discrete (and kp is one-to-one on S).

Proof. Let aeS and suppose p-aecl{p-x:xeS\{a}}=p-cl{x:xeS\{a}}. Pick qe
cl{x:xeS\{a}} such that pa = pq. Since lp is one-to-one on S, q$S so qeS*. Consider
si = {A/a: Aeq}. By our assumption (and the fact that (A n B)/a = {A/a)n(B/a)) one has
that any finite subfamily of stf has infinite intersection. Consequently we may pick some
reS* with j / S r .

We claim p=pr. To this end let Bep. Then Baepa = pq so Aeq where
A = {xeS:{B-a)/xep}. Then A/aer. We show that A/ac{xeS:B/xep} and hence that
Bepr as required. Let xeA/a. Then xaeA so (B• a)/(x• a)ep. Since S is right
cancellative (B • a)/(x • a) £ B/x so that B/x e p as required. •

Corollary 3.3. Let (S,) be a countable group and let peS*. Then Xp is one-to-one on
PS if and only ifp£p-S*.

Proof. Necessity. For each xeS, {yeS:y x = x} has only one element so Theorem
3.1 applies.

Sufficiency. Given qeS* and Aeq, A is infinite so for all aeS, A/a is infinite. By
Theorem 2.5 kp is one-to-one on S so by Theorem 3.2, {p + x: xeS} is discrete. Thus
Theorem 2.2 applies. •

Corollary 3.4. Consider the semigroup (M,-). Let peM*. Then kp is one-to-one on PH
if and only if p£p-N*.

Proof. Necessity. Given xeN, {yeN: yx = x} = {l} so Theorem 3.1 applies.
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Sufficiency. By Theorem 2.5 kp is one-to-one on N so it suffices to show that the
assumption of Theorem 3.2 is valid. (Then Theorem 2.2 applies.) To this end let qeH*,
let aeN, assume pa=pq, and let Aeq. Suppose that A/a is finite. Then Na$q. (For
otherwise one has that A o Na is infinite and consequently A/a is infinite.) In particular
a # l . Write a = Y\T=iC where each r, is prime and r^r; for i # j . Now Ma = f)^=1 Nrf
and consequently we may pick i such that Nr?'$q. Define (p-.N-^co by <£(x) = j if and
only if rf divides x and rj+l does not divide x. Pick je{0, l,...,a,} such that
B = {x:<f>(x) = jmod(a,-l-l)}ep. Then B-aep-a-p-q so {xeM:(B-a)/xep}eg. Pick
xeN\Nrf' such that (B-a)/xep. Pick y e B n (B • a)/x. Now yeB so <f>(y) = jmod(<xi + l)
while yxeB-a so <£()/) +</>(x) = <£(>>• x) = / +a, mod(af + 1). Thus ^(x)sa,mod(a, + l)
while $(x) e {0,1,..., a, — 1}, a contradiction. D

We utilize Corollary 3.3 to produce a simple characterization of left cancellability in
(/?Z, +). Here we pretend that /Ws/JZ and brush over the distinction between an
ultrafilter on N and an ultrafilter on Z with N as a member. Given a point p in
clpz( — N) one has left cancellation holds at p in /?Z if and only if it holds at
—p={ — A:Aep}. Consequently Corollary 3.6 provides a complete characterization of
left cancellability in /?Z.

Lemma 3.5. Let S be a semigroup and let peS*. Let EcS. Then p^p-clE if and only
if there is some Aep such that A/a$p for all ae E.

P r o o f . p$pclE

op$cl{p-E)

othere exists Asp such that A n(p• E) = 0

•*>there exists A e p such that A/a $ p for all a e E. •

Corollary 3.6. Let peN*. Then Xp is one-to-one on fiZ if and only if there is an
increasing sequence <xn>"=1 in N such that for each keN, {xn:xn+l>xn + k and

Proof. Note that {aeZ:p#p + a} = Z\{0}. Since p£p + (Z\{0}) (an easy fact, or see
[11, Lemma 2.4]) we have by Lemma 3.5 that p^p + Z* if and only if there is some
Aep such that A — a$p for all aeZ\{0}. Consequently by Corollary 3.3, it suffices to
show that there is an increasing sequence <xn>"=1 in ÎJ such that for each keN,
{xn:xn+1 >xn + k and xn>xn_1 +k}ep if and only if there exists A in p such that
A-a$p for all aeZ\{0}.

Sufficiency. We may assume .4£lU Enumerate A in increasing order as {xn:/ief^}.
Suppose that for some keH {xn:xn+l^xn + k or xn^xn-l + k}ep. Then
[ja=i({xn:xn+l^xn + a}'u{xn:xn = xn^1+a}ep). Pick a such that {xn:xn + l=xn + a}ep
or {xn:xn = xn_1+a}ep. In the first case A — aep. In the second case A—( — a)ep. In
either case we have a contradiction.
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Necessity. Let 4 = {xn:neN}. If for some aeZ\{0} one has A — aep then {xn:xn+l =
xn + a}ep (if a>0) or {xn:xn = xn_, +(-a)}ep (if a<0). D

Condition (h) of Theorem 2.1 and the condition of Corollary 3.6 certainly appear to
be different. It is not however obvious that they are not equivalent. We see now that
they are not.

Theorem 3.7. There is a point peN* such that Xp is one-to-one on pH but Xp is not
one-to-one on /?Z.

Proof. Let M = FS«22n>^°=1) and pick an indempotent qeM. (The set
C\m=i ^«22">"=m) is a compact subsemigroup which therefore has idempotents by [7,
Corollary 2.10].) Let p = q + ( — q) where — q = { — A:Aeq}. Then — q is an idempotent of
PZ so p + (-q) = q + (-q)+(-q) = q+( — q) = p so pep + Z* so by Corollary 3.3 Xp is
not one-to-one on PZ.

Now let A = {YineF22n—Xn6C22n:F and G are finite nonempty subsets of to and
maxG<minF}. Then Aep. Notice further that for xeN, xeA if and only if there exist
even integers a<b such that the binary expansion of x has (1) only O's to the right of a
(and not at a), (2) O's only in even positions between a and b, and (3) l's only in even
positions to the left of b (but not at b). That is, if x = £n £ H2n one has minH = a, b$H,
{a,a + l,...,b}\H^N2, and H\{l,2,...,b}^N2. We now claim that for all keN,
A — k$p so that by Lemma 3.5, p$p + fiN and hence by Theorem 2.1 Xp is one-to-one
on PH. To see this suppose instead we have some k = YjneH2" with A — kep = q + (—q).
Now B = {£n6G — 22n:G is a finite nonempty subset of N and minG>max/ /+ l}e — q
so pick y=YjneG-22n in Bn{y:(A-k)-yeq}. Then C = (£neF22":F is a finite
nonempty subset of N and min F > max G} e g so pick z = Xn e f2

2 n in C n ((A — k) - y).
Then z+3' + fc = ^( i e F22"—^n e C22" + J]n6H2n. A brief consideration of the resulting
binary expansions shows that z+y + k^A, a contradiction. •

The hypothesis of Theorem 3.2 seems a bit strong. We see now that some reasonably
strong assumption is needed.

Theorem 3.8. There is a countable cancellative commutative semigroup (S, +) such
that Xp is one-to-one on Sfor all pefiS and there exists peS* such that p$p + S* but kp is
not one-to-one on f}S.

Proof. Let S = NxN with ordinary addition. By Theorem 2.4 we have Xp is
one-to-one on S for all p e PS.

We now show that there is a homomorphism /:/?NxN->/?S such that / is the
identity onNxM and / [N* x W]sS». Given neN, consider gj(m) = (m,n). Then gn has
a continuous extension g%-.pN->ps and if peN*, g%(p)eS*. For pePN and neN we
define f(p,n)=g*(p). Observe that given qePN, neM, and A^S one has that Aef(q,n)
if and only if there exists Beq with Bx{n}^A. Using this observation one easily
establishes that / is a homomorphism and /[^J* x N]sS*.

Now pick some peN* with pep + N*. For example, we may pick by [7,
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Corollary 2.10] some peN* with p = p + p. Then f(p, 1)+(1,1) =
/(p,l) + / ( U ) = /(p+l,2) = /(p + p+l)2) = /(p)l) + / (p+l , l ) . Since /(p+l, l)eS* we
have A/(p 1( is not one-to-one on pS.

To conclude the proof we show that f(p,l)4PS + pS, so in particular
/(p, l)£/(p, 1) + S*. To this end, suppose that f(p, \) = q + r for some q and r in /?S.
Now Nx{l}e/(p, 1) so {(x,y):{Nx{l})-(x,y)eq}er so pick (x,y) with
(Nx{l})-(x,y)e«. Pick (w,z)e(Mx}l})-(x,):). Then z.yeN while z + y=\, a
contradiction. •

4. Right cancellation in (/?f̂ J, + )

We specialize now to the semigroup {fiN, + ), obtaining several sufficient conditions
for right cancellation to hold at a point p of (0N, +).

Theorem 4.1. Let peN*. The following statements are equivalent:

(a) pp is one-to-one on fiM;
(b) pp is one-to-one on (~)™=i cl(Nn);
(c) There exist a first countable topological group (G, +) and a continuous homomor-

phism h:f}N-*G such that pp is one-to-one on ker(/i).

Proof. That (a) implies (b) is trivial. To see that (b) implies (c), let G = (X)™= x Zn and
define h:N-+G so that for all m and n in N, h{m){n) = m(modn). Denote by h9 the
continuous extension to fiN, where G is given the product topology and each Zn is
discrete. The G is a first countable topological group. It is well known that as the
continuous extension of a homomorphism, hfi is a homomorphism on 0N [14, Corollary
2.3].

We now show that (c) implies (a) so let such G and h be given. Let q,re/}N and
assume that q+p = r + p. Then h(q + p) = h[r + p) so h(q) + h(p) = h(r) + h(p) so h(q) — h(r).
Let a = h(r). We claim that we can find seN* such that ks is one-to-one an 0N and
h(2)= —a. This will suffice for s + q and s + r are in ker(/i) and s + q + p = s + r + p so that
s + q = s + r and hence q = r.

It is well known from compact semigroup theory that /J [^M] is a group since it is the
compact closure of a commutative subsemigroup of G. (An argument is presented in the
introduction to [1]. An even simpler argument establishes that any compact cancellative
semitopological semigroup S is a group: Any idempotent will be an identity since ee = e
implies that for any x eex = ex and hence ex = x. Thus there is a unique idempotent
which must be minimal [3]. Therefore S = eSe is a group.) Then /i[M*] is a compact
subsemigroup of h[f}N~\ which therefore contains c/{a,a + a,a + a + a,...}. This latter set
is a homomorphic image of 0N which we again conclude is a group and must therefore
contain —a. Pick teN* such that h(t)= —a. Let <l/n>™=1 be a neighbourhood basis for
—a in G with Un+1^Un for each n. For each n let An = {xeN:h{x)eUn}. Then each
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Anet so each An is infinite. Pick xneAn for each n with xn+l>xn + n. Pick s e N * with
{xn:neN} es. By Theorem 2.1 ks is one-to-one on PS. Since h{s)= —a, we are done. •

Note that in the following theorem we make no assumptions about a relationship
between the operation on S and its topology, beyond the ability to support a
continuous homomorphism from flN.

Theorem 4.2. Let (S, +) be a cancellative semigroup with a topology and let h.pN-*S be
a continuous function such that for all qefiN and all ref)™=l Nn,h(r + q) = h(r) + h(q). Let
<bn>™=i be a sequence in PN such that pbn is one-to-one for each neN, h(bn)^h(bm)for
n^m, and {h(bn):neN} is discrete. If p is a limit point of {bn:neN}, then pp is
one-to-one.

Proof. By Theorem 4.1 it suffices to let q,ref)™=lNn with q + p = r + p and show
that q = r. Then {q + cl{bn:neN})n(r + cl{bn:neN})^0 so by Lemma 1.1 we may
without loss of generality pick neN and tecl{bn:neN} such that q + bn = r+t. Now
h(q) + h(p) = h{q+p) = h(r+p) = h(r + p) = h(r) + h{p) so by right cancellation in S,
h(q) = h(r). Since also h(q) + h(b^ = h(r) + h(t) we have by left cancellation in S that
h(bn) = h(t). Since {h(bm):meN} is discrete, pick a neighbourhood V of h(bn) which misses
{/i(fcm):mefoJ\{n}} and pick a member B of t such that h[B~\^ V. Given any meM such
that bmeB, one has /i(6m)eK so m = n. That is we must have t = bn. Then q + bn = r+bn

so by right cancellation at bn, q = r. •

We remark that functions as in the hypothesis of Theorem 4.2 are easy to come by.
Indeed let S be the non-negative reals and let <cB>"= t be any sequence of positive reals
such that £"=icn converges. Given x = £ n e f 2", define /i(x) = ^ n e F c n . Since h is bounded
by Y,T= I cn» ^ n a s a continuous extension to fiN which is easily seen to satisfy the
hypothesis.

Some applications of Theorem 4.2 yield easily described sufficient conditions for right
cancellation.

Corollary 4.3. Let (bny™=l be a one-to-one sequence in N and assume there is a
sequence <an>™=i such that for each neN, {meN:an divides bm—bn} is finite. If
pecl{bn:neN} then pp is one-to-one.

Proof. If p = bn for some n, the conclusion is immediate so we assume peN*. Let
G = (x)"=1 Zn and let kpN->G be the natural homomorphism (as described in the proof
of Theorem 4.1). One easily sees that h and <£>„>"= i satisfy all hypotheses of Theorem
4.2 except possibly the requirement that {h(bj:neN} is discrete. (Since each baeN one
has each pbn is one-to-one.) To see this let neN and let V = {ueG:u(an) = h(bn)(aa)}.
Then V is a basic neighbourhood of h(bj in G. If h(bje V then an divides bm—bn so V
contains only finitely many members of {h(bm):me N}. •

Corollary 4.4. Let <6n>™=i be a one-to-one sequence in N. If either
(a) for all n<m in N, bn divides bm; or
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(b) for all n<m in N, bn does not divide bm

then for each pecl{bn:neN}, pp is one-to-one.

Proof. If hypothesis (a) holds let an = bn+i for each n. If hypothesis (b) holds let
an = ba for each n. In either case the hypotheses of Corollary 4.3 are satisfied. •

Corollary 4.5. The set D = {peN*: kp and pp are one-to-one on flN) has dense interior
in N*.

Proof. Let qeN* and let Aeq. We show that 4 n i n t N . D # 0 . Pick a sequence
<*«>"= i m A. such that for each n, xn + 1>xn + n. By Theorem 2.1 (h) if {xn:neN}ep,
then lp is one-to-one on fiN. Now let B={{xn,xm}:n<m and xn divides xm} and let
C = {{xn,xm}:n<m and xn does not divide xm}. Pick by Ramsey's Theorem [15] an
increasing subsequence <fen>"=1 of <xn>"=1 such that either (a) {{bn,bm}:n<m}^B or
(b) {{bn,bm}:n<m}^C. In either case, by Corollary 4.4. we have that pp is one-to-one
whenever pe(cl{bn:be N})n M*. •

Of course, if p is in the smallest ideal K(f}N, +) of (fiN, +) then both kp and pp fail to
be one-to-one. (For then R = p + f}N and L = fiN+p are minimal right and left ideals
respectively [3, Theorem 1.3.11]. Then R=p + R and L = L+p so for any qe0N\K(PN)
then there exist reR and leL such that p + q = p + r and q + p = l+p.) The closure of
K(fiN, +) consists of all ultrafilters p for which each Aep is piecewise syndetic [10,
Theorem 3.8]. (The set A^N is piecewise syndetic if and only if there is some keN with
d*((J*=1 A —1) = \ where d*(B) = sup{cceU: there are increasing sequences <zn>™=i and
<O"=i such that for all neN, \Bn {zn-f l,zn + 2,...,zn + tn}\^atn}.) It is known [10,
Theorem 4.6] that there exist points p in clK(fiN, +) for which Xp is one-to-one. The
next result shows that we can get at least reasonably close to K(fiN, +) with points at
which pp is one-to-one.

Theorem 4.6. Let e>0 be given. There exists XsN with d*(X)> 1 — e such that pp is
one-to-one for each peX,

Proof. Pick an increasing sequence </(«)>"= i such that £"=1(l/(/(«))!)<£. Let
Xt = N and let bl=minX1. Inductively given Xn, let bn = min(Xn\{bl,b2>.• • ,bn-,}). Let
k(n)={max{l(n),bn,k(n-l) + l} and let Xn+l=Xn\{N k{n)\ + bn). Let
X = f)»=, Xn = {bn:neN}. Observe that if m<n then (N• k{n)\ + bn) n(N• k{m)\ + fej = 0 .
(For if ak{n)\ + bn = bk(m)\ + bm, then fen = (fc-((afc(n)!)//c(m)!)fe(m)! + bm so

l^Xn.) Consequently, given n and a^((k(n + l)\)/k(ri)), we have that

m=i\ k(m)\

so that
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\Xn{l,2,...,a-k(n)\}\/(a-k(n)\) = £ Lk(n))\ £
m=ik(m)\

Consequently one concludes in fact that

1-00 t m=ik(m)\

Now given neN, let an=(ri)\. If m>n then an does not divide bm — bn, since bmeXn+l.
Thus Corollary 4.3 applies to show that pp is one-to-one for each p e X. •

We now present two specialized sufficient conditions for right cancellation. Recall that
a point q of N* is a p-point of N* if and only if the intersection of any countable
collection of neighbourhoods of q is again a neighbourhood of q (in H*). Their existence
is known to be independent of the axioms of ZFC. (See [5].)

Theorem 4.7. Let peN*. If either p is a p-point of N* or there is an increasing
sequence <k(n)>™=l in N such that peintN.((")*=1 Nk(ri)), then pp is one-to-one.

Proof. If p is a p-point of N* let k(ri) = n for each n. Given neN, let qn be the natural
homomorphism from 0N onto Z^,,,. We show that under either hypothesis there is some
Aep such that for all neN and all reA\N, qj(r) = qn{p). If peintN.(f]^=l Nk(n)), pick
Aep with /4\NP)£LjNfc(n). Then for each neN and each reA\N, qn(r) = 0 = <jn(p).
Assume then that p is a p-point of N*. For each neN pick Anep such that

= {<?n(p)}. Pick /4ep such that /4\-4n is finite for each n. If reA\N, then for each

By Theorem 4.1 it suffices to let_r,seQ™=1 Nn and show that if r+p = s + p, then r = s.
Assume then we have r,seP)"=1Nn with r + p = s + p. For each n let Bn = A\{\,2,...,«}.
Then each Bnep so r + per + B = cl(r + Bn) and s + pGs + 5n = c/(s + Bn). Since c/(r + Bn)n

n)^t0 we have by Lemma 1.1 that either cl(r + Bn) n (s + BJ # 0 or (r + Bn)n
n)^0. Pick tneclBn and a,eB, such that either r + tn = s + an or r+an = s + £n. If

tneN we conclude that r = s. (Assume tneN. Pick m>max{tn,an} and assume say
r+tn = s + an. Then Nm + tner + tn and Nm+fl,es+fl, so (Mwj + fn)n(Nm-l-an)#0 so
tn = an so r = s.) Thus we assume tneBn\N.

Without loss of generality we have for infinitely many values of n that r + tn = s+an.
Pick one such n and pick m>an such that r + tm = s + am. Then ameBm so am>an. Pick /
such that k([)>am. Now q^) + flK) = qfc + "„) = <lij + tn) = qfc) + qfan) = qfc) + q{p) =
qfj) + q^tm) = q^r + tm) = q^s + am) = q^s) + ql(am). Then q/taa) = q£aj while /c(O>am>an so
q/(an)=an and q/(am) = am. This contradiction completes the proof. •

Note that the following theorem does not include any topological assumptions
about S.
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Theorem 4.8. Let (S, +) be a cancellative semigroup_and let h:fiN-*S be such that h is
one-to-one on N and for all qefiN and all re 0«°= i ^n> Kr + 4) — Hr) + Hq)- F°r ea^h n
let K(n) = {qeN*:h(q) = h(n)}. If peN* and pp is not one-to-one on fiN, then
pecl(\J?=lbdyN.K(n)).

Proof. By Theorem 4.1, pick q# r in f°)"=1Î M such that q + p = r + p. Suppose that
p^cl(\J^=1bdyN.K(n)) and pick some Aep such that Ar\(\J?=i bdyN.K(n)) = 0. For
each neN, let Un = A n K(ri). We show each Un is clopen in N*. Indeed we have
A n (K(n)\intN. K(n)) = 0 so U „ = A n iniN. K(n) so U(n) is open in ftJ*. Also An
(clK(n)\K(n)) = 0 so Un = A n cl K(n) so Un is closed in N*.

We claim ped((J"= 1 [/„). Let Be p. Since q+p = r + p, we have (q + cl(AnB))n
(r + cl(A n B ) ) # 0 so without loss of generality, by Lemma 1.1, we can pick neAnB
and secl(AnB) with q + n = r + s. Again, since q, re(")"=1Mn and q#r we cannot have
set^J. Since h(q) + h(p) = h(r) + h(p) we have by right cancellation that h(q) = h(r). Thus by
left cancellation we get h(n) = h(s). Thus s e K(n) and hence s e U{n) n B as required.

Thus q + p = r + p is in (.q + cl([J?=1 t/n))n(r + c/((Jn°°=1 Un)). Again by Lemma 1.1 we
may without loss of generality pick some n e M and some u e [/„ and some
i>ec/(Un°°=1l/n) with q + u = r + v. Now i;6c/((J^=1 t/n)£X and /i(q) + /i(u) = Ji('-) + '>M so
/I(D) = /i(u) = h(n) so ueK(«) so t)Gl/n. Since u and i; are in Un which is open in N*, pick
C6M and Dev with C\N£C/n and D\Nc[/„. We may presume n$C<uD. (Just delete it
if it is.) Now (q + clC) n(r + cl D)^0 so again by Lemma 1.1 pick without loss of
generality some keC and some weclD with q + k = r4-w. Again we cannot have weN
since g # r and <j, ref)™=i Nm. Thus weC/n. But we have then by left cancellation
h(k) = h(w) while h(w) = h(ri). But this contradicts the fact that h is one-to-one on M. •

The following corollary is of special interest because bdyN. T is a subsemigroup of
, +) which includes all of the idempotents.

Corollary 4.9. Let T=f)™=lNn. Let peN* such that pp is not one-to-one on /!N.
Then pecl\J™=l(bdyN.{T+ ri)), which is a nowhere dense set.

Proof. Let S = (x)^°=2Zn and let h be the natural homomorphism from fiN to S. It is
easy to see that h satisfies the hypotheses of Theorem 5.5. Now pn is a homeomorphism
of N* onto M* so we need only observe that T + n = K(n) in order to conclude that
bdyN.(T + n) = bdyN. K(n). Finally we see that cl\J™=1(bdyN.(T + n)) has empty interior
because in N* the union of countably many nowhere dense sets is again nowhere dense.

•
5. Left and right cancellation in {pN, +)

We deal here with the interaction of left and right cancellation in (fiN, +). Recall
from Corollary 4.5 that the set of points at which both left and right cancellation holds
has dense interior in N*.

Lemma 5.1. Let pefiM. If p. is one-to-one on M*, then pp is one-to-one on fiN.
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Proof. Assume q,reBM and q+p = r + p. Pick se N* such that As is one-to-one on
BN. Then s+q+p=s+r+p and s + q and s+r are in M* so s + q = s + r and hence q = r.

•
We remark that half of the characterization of Section 3 remains valid (trivially) for

right cancellation. That is, if peBN + p, then pp is not one-to-one on BN. (Indeed if
p = q + p then 1 +p= 1 +q+p.) We do not know if the other half of the characterization
is valid.

The following is a lemma for Theorem 5.3, but we feel it is interesting in its own
right. By FS«xn>"=J we mean {XnEfx,,:F is a finite nonempty subset of N and

}

Theorem 5.2. Let peFS«2^>n°°= x) and let qe{2M*l:ne\}\N. Then pq+p is one-to-
one on BN.

Proof. Let A = {YjneF2a:maxFeN2 + l and F\{max F} c |\|2}. We show first that
Aeq + p. Indeed we simply observe that FS((22n}™=l)^{xeN:A-xeq}. (For given
* = I ™ F 2 2 " one has {22n + 1:n>maxF}eg and {22n+1:n>maxF}ci4-x.)

Enumerate /I in order as <&„>"= x. For each n pick Fn such that fcn = X,eFnz' where
maxFn is odd and FB\{maxFjcM2. Let <r(«) = maxFn+l and note that if n<m, then
o(«)go-(m). For «eN define <j>{n) = 2a(n\ We show that for n<m, (p(n) does not divide
bm — bn, so that Theorem 4.1 applies. To this end, let n<m be given. Suppose that
bm — bn = a-<f>(n). Then X<eFmz' = a'2"<'I) + Z»eFn

z(- 8v the uniqueness of binary expan-
sions Fm = F n uG where a-2Mn) = YjeG^ (and minG^<j(n)). But then maxFneFm and
max Fn < max Fm so max Fn is even, a contradiction. •

Theorem 5.3. There exists some peN* such that pp is one-to-one on fiN but Xp is not
one-to-one on BN.

Proof. Consider M = f)m=i fS«22">*=m). It is well known and^easy to see that M is
a subsemigroup of f}N which is in fact isomorphic to f]«=i n
The smallest ideal of 0^=1^2" is contained in K(BN, + ) n f)m=i^2™ (which is a
proper subset of f\%= i N2m). Consequently, the smallest ideal of M is a proper subset of
M and hence we may pick a point peM such that kp is not one-to-one on M, and
hence not on BH. Pick qe{22n+l:nsN}\N.

By Theorem 5.2 pq+p is one-to-one on fifcl. On the other hand, given r^s such that
r = p + s, one has (q + p) + r = (q + p) + s. •

Theorem 5.4. T/iere exists some peN* such that kp is one-to-one on BN but pp is not
one-to-one on BN.

Proof. Again consider M = f)%=1 FS«22n>™=J. Again utilizing the fact that M is
isomorphic to Q^= 1 N2m we get that there is some idempotent reM such that r is not
an element of the smallest ideal of M. Then by [1, Lemma 3.2] we may pick an
idempotent p^r in M with p = p + r=r+p. Pick any <je{22"+1:neM}\N and consider
p + q. Now r+p + q=p + p + q=p + q so pp+q is not one-to-one. We show that
q + BN (so by Theorem 2.1 Xp+q is one-to-one on
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Let /l = {£neF2":minF is odd and F\{minF}sN2}. Then as before we easily see that
Aep + q. Now suppose p+q=p+q+s for some seflN. Then Aep + q + s so pick xeN
such that A-xep + q. Pick F such that x=£n e F2". Let r = maxF. Then N2'+lep and
N2' + 1 eg so N2'+lep + q. Pick ye A n(A-x) n N2'+1. Pick G such that y = XneG2n.
Then min G is odd so (F u G)\min(FKJG)£N2 so y + x$A, a contradiction. •

We conclude by lengthening the list of characterizations of left cancellation in

Theorem 5.5. Let peN*. The following statements are equivalent.
(a) Ap is one-to-one on 0N;
(b) Xp is one-to-one on H"=i cl(Nm);
(c) there exist a first countable topological group (G,+) and a continuous homomor-

phism h:pN->G such that kp is one-to-one on ker(/i);
(d) p+N* is not separable;
(e) there exists A in p such that for each keN, A — k$p.

Proof. The equivalence of (a), (b), and (c) is established in a fashion nearly identical
to the proof of Theorem 4.1 (one uses however Corollary 4.5 to obtain sePd* with
{xn:ne N} e s and with ps one-to-one.)

We now show that (a) and (d) are equivalent. To see that (a) implies (d) assume Xp is
one-to-one. Then kf is a homeomorphism from M* onto p + N*. Since M* is not
separable (see [8]) neither is p+N*. To see that (d) implies (a) suppose that kp is
not one-to-one. Then by Theorem 2.1 we have pep+H* and hence
p + N £ p + M* + ^ £ p + ^J* so that cl(p+N) = p+N*.

The equivalence of (a) and (e) follows from Theorem 2.1 and Lemma 3.5. •

REFERENCES

1. J. BAKER, N. HINDMAN, and J. PYM, Elements of finite order in Stone-Cech compactifica-
tions, Proc. Edinburgh Math. Soc. 36, (1992), 49-54.

2. V. BERGELSON and N. HINDMAN, Nonmetrizable topological dynamics and Ramsey Theory,
Trans. Amer. Math. Soc. 320 (1990), 293-320.

3. J. BERGLUND, H. JUNGHENN, and P. MILNES, Analysis on Semigroups (Wiley, New York,
1989).

4. A. BLASS and N. HINDMAN, Sums of ultrafilters and the Rudin-Keisler and Rudin-Frolik
orders, in General Topology and Applications (R. Shortt ed., Lectures Notes in Pure and Applied
Math. 123, 1990), 59-70.

5. W. COMFORT, Ultrafilters—some old and some new results, Bull. Amer. Math. Soc. 83
(1977), 417-455.

6. W. COMFORT and S. NEGREPONTIS, The theory of ultrafilters (Springer-Verlag, Berlin, 1974).

7. R. ELLIS, Lectures on topological dynamics (Benjamin, New York, 1969).

8. L. GILLMAN and M. JERISON, Rings of continuous functions (Van Nostrand, Princeton, 1960).

9. R. GRAHAM, B. ROTHSCHILD, and J. SPENCER, Ramsey Theory (Wiley, New York, 1990).

https://doi.org/10.1017/S0013091500018861 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500018861


STONE-CECH COMPACTIFICATION OF A DISCRETE SEMIGROUP 397

10. N. HINDMAN, Minimal ideals and cancellation in /JN, Semigroup Forum 25 (1982), 291-310.

11. N. HINDMAN, Sums equal to products in fSN, Semigroup Forum 21 (1980), 221-255.

12. N. HINDMAN, The ideal structure of the space of ic-uniform ultrafilters on a discrete
semigroup, Rocky Mountain J. Math. 16 (1986), 685-701.

13. N. HINDMAN, The semigroup fiN and its applications to number theory, in The Analytical
and Topological Theory of Semigroups—Trends and Developments (K. Hofmann, J. Lawson, and
J. Pym eds., de Gruyer Expositions in Math. 1, 1990), 347-360.

14. P. MILNES, Compactifications of topological semigroups, J. Australian Math. Soc. 15
(1973), 488-503.

15. F. RAMSEY, On a problem of formal logic, Proc. London Math. Soc. 30 (1930), 264-286.

16. D. STRAUSS, A proof that f̂ J* does not contain an algebraic and topological copy of /?N, J.
London Math. Soc. (2) 46 (1992), 463-470.

17. D. STRAUSS, Semigroup structures on fiN, Semigroup Forum 44 (1992), 238-244.

DEPARTMENT OF MATHEMATICS DEPARTMENT OF PURE MATHEMATICS
HOWARD UNIVERSITY UNIVERSITY OF HULL
WASHINGTON D.C. 20059 COTTINGHAM ROAD

U.S.A. HULL HU6 7RX

https://doi.org/10.1017/S0013091500018861 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500018861

