
BULL. AUSTRAL. MATH. SOC. 11G30, 11G25

VOL. 66 (2002) [119-124]

DESCENT ON PICARD GROUPS USING FUNCTIONS ON CURVES

SAMIR SIKSEK

Let A; be a perfect field, X a smooth curve over k, and denote by Xc the subset of
closed points of X. We show that for any non-constant element / of the function field
k(X) there exists a natural homomorphism

Picpf) -» k'/Gf(k),

where
Gf(k) := TT

We explain how this generalises the usual results on descents on Jacobians and Picard
groups of curves.

1. INTRODUCTION

Let A; be a perfect field and X a smooth curve over A;, by which we mean a complete,
non-singular and absolutely irreducible curve over k. Denote the function field of X over
k by k(X), the Jacobian by Jx, and the Picard group by Pic(A") (see Section 2 for the
definition of the Picard group). The groups Jx and Pic(X) are often studied (particularly
when A; is a number field) by constructing homomorphisms from either of these groups
to groups of finite exponent. For example:

(1) Descent algorithms on curves are usually concerned with the construction
of homomorphisms from the Jacobian Jx{k) to groups of the form L*/L*q,
for suitably defined finite A;-algebras L, and positive integers q. As observed
by Schaefer ([6]), virtually all such descents utilise functions on the curve
whose divisors are g-divisible.

(2) Let Y be a non-singular projective variety and / a non-constant element
of the function field k(Y) whose divisor is a norm for some finite extension
K/k. Then there is a homomorphism CH0(K) -> fe*/Norm(/£'') (see for
example [1, pp. 447-448]). If Y is our (smooth) curve X then we have a
homomorphism Pic(X) -» k"/"Novm{K').
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In view of this it is natural to ask the following question: given an arbitrary non-constant
function / £ k(X), is there an induced homomorphism of Jx{k) or Pic(X) into some
group of finite exponent as above? In this paper we answer this question affirmatively.
It is our hope that these homomorphisms will find interesting applications in the study
of the arithmetic of curves.

Before stating the main theorem of this paper we set some notation. A closed point
V oi X corresponds to a discrete valuation ring Op of k(X) containing k, with maximal
ideal m-p. The residue field of V is by definition k(V) := O-p/m-p, and is a finite extension
of k. The degree of V is given by \V\ := [k{V) : k]. If g € k(X) is regular at point V,

that is g 6 Op, then the value of g at V, denoted by g{V), is defined to be the image of
g in k(V); it thus makes sense to speak of the Norm(o(P)) € A;. If A" is a finite extension

k(V)/k

of k, and n is an integer then, as usual, we let

Norm(inn := {<*" : a € Norm^' )} .
K/k l K/k '

Clearly Norm(A'*)0 = {1}. For a closed point V e X let ordp : k(X)* -» Z be the
K/k

corresponding valuation. We denote the set of closed points on X by Xc; this of course is
all of X except for the generic point. Now suppose / 6 k(X) is a non-constant function
on the curve, and we let

vex*

The product makes sense since all but finitely many of the terms are {1}, and the result
is clearly a subgroup of k*. Our main theorem defines a homomorphism from the Picard
group Pic(X) to the quotient group k*/Gj(k) (see Section 2 for the definition of the
Picard group). In essence, this means that we are doing descent on the Picard group of
the curve.

THEOREM 1. Let X be a smooth curve over the perfect Held k. Suppose / is a
non-constant element of the function field k(X), and let G/(k) be the subgroup of k*
defined above. Then f induces a unique homomorphism

(2) d>f : Pic(X) -> k*/Gf(k)

satisfying the following property: if%2mjQi 1S a divisor on X whose support is disjoint

from the poles and zeros of f, then the class ] C m i 2 j °^ im's divisor in Pic(vY) is

mapped, by <j>f, to the coset represented by

in the group on the right-hand side.

https://doi.org/10.1017/S0004972700020736 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700020736


[3] Descent on Picard hroups 121

2. P R O O F AND DISCUSSION O F T H E O R E M 1

Throughout this section X denotes a smooth curve over a perfect field k, and k the

separable closure of k.

2.1 . PRELIMINARIES . It is worth recalling at the outset the relationship between the
points of X, and the elements of X(k). We started out by saying that a closed point
V of X corresponds to discrete valuation rings O-p of k(X) containing k. Such a point
would simultaneously correspond to an orbit of elements of X(k), say { P i , . . . , Pd}, un-
der the action of Gal(A;/A;). When convenient, we may identify the two by writing V
= {Pi,..., Pd}. Note that the size d of the orbit corresponding to V equals its degree
\V\ — [k(V) : k]. The points Pi,...,Pd in fact correspond to the distinct embeddings of
the residue field k(V) into k. If g € Op then

where as stated before, g{V) is the image of g in k{V) := O-p/m-p, and the g(Pi) have
the usual meaning.

We now come to the definition of the Picard group, Pic(X), which we reproduce here
since there is some discrepancy in the literature. Recall that we have defined Xc to be
the set of closed points of X. The divisor group of X, denoted Div(X), is the free group
on the points of Xc. The subgroup of principal divisors is denoted by Princ(AT), and we
let Pic(X) := Div(X)/Pr inc(X). If X-^ := X xk k, then there is a natural injection

Pic(X) <-+ tf°(Gal (k/k) .Picpfjf)),

that is not always an isomorphism, though it often is. In particular, this natural injection
is known to be an isomorphism in the following cases (see [5, Section 3]):

(i) when A; is a local field and X possesses a A;-rational divisor of degree 1.

(ii) when k is a number field and, for every prime v of k, the corresponding
curve Xv = X xkkv possesses a /^-rational divisor of degree 1.

It follows in these cases that the degree 0 part of the Picard group, Pic°(X), can be
identified with Jx(k), where Jx is the Jacobian of the curve X. Although it is useful to
be aware of this, we do not make any such assumption in this paper.

We now come to discuss the notation and tools needed for the proof of Theorem
1. By the support of a divisor YlmiQj w e mean the set {Qj : rrij ^ 0}. We say that
a divisor is coprime to a set of points 5 if its support is disjoint from S. The support
of a non-constant function h € k{X) is the support of its divisor. If h € k(X) is a
non-constant function, and YlmjQj ls a divisor coprime to the support of h then we
define

https://doi.org/10.1017/S0004972700020736 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700020736


122 S. Siksek [4]

Recall the identification made above between closed points of X and orbits of elements
of X(k) under the action of Gal (A;/A;). One immediately sees that this definition of
hi^mjVj) is in harmony with the usual definition found elsewhere (for example [7, p.
37] or [8, p. 43]). Before proving Theorem 1 we need to recall Weil's reciprocity.

WEIL'S RECIPROCITY. Suppose X is a smooth curve over a perfect field k,

and hi, h2 S k(X) are non-constant functions having disjoint supports. Then

See [7, p. 37], or [8, p. 43].

P R O O F OF THEOREM 1: Let S be the support of / . We let Div(X)s be the

subgroup of Div(X) of divisors coprime to 5. Define a map

(3) Div(X)s^k*/Gf(k)

sending ^ZrrijQj to the coset represented by /(X)mi2j)- Clearly this map is a ho-
momorphism. Now let Princ(X)s be the subgroup of principal divisors coprime to S;
thus

Princ(X)s := Div(X)s n Princpf).

We first show that Princ(X)s is contained in the kernel of the homomorphism (3). Thus
suppose g € k(X) is a non-constant function such that div(g) € Princ(X)s. Clearly / , g
have disjoint support. The map in (3), sends div(g) to the coset represented by /(div(<?))
in k*/G/(k), and hence to show that div(<?) is in the kernel it is sufficient to show that

€ Gf(k). We observe that

/(div(p)) = g(div(/)) (By Weil's reciprocity)

However, Norm^T7)) is in Norm^T7)*), and it immediately follows that /(div((?)) is
k(V)/k k\P)/k

in Gf(k) := f] Norm(A;CP)*)ord'>(/), and so div{g) is in the kernel of the map (3). We

thus obtain an induced homomorphism

Div(JSOs/Princ(*)s -> k'/Gf(k),

sending the class of a divisor £Z mi Qj ^&t is coprime to S to the coset on the right-

hand side represented by f(YlmjQj) = II Norm(/(Qj))mj. The proof of Theorem 1 is
k{Qj)/k

complete upon observing that the obvious injection

) s «-> Pic(X)
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is indeed an isomorphism. This follows from the fact, proven by Lang, that any divisor
class containing a ^-rational divisor also contains a /:-rational divisor whose support is
disjoint from a given finite set (see [3, p. 166]). [This is in fact an easy consequence of
the weak approximation theorem for function fields. To see this suppose that J^mjQj is
a divisor and that we want to find an equivalent divisor avoiding the finite set S. By the
weak approximation theorem (see [9, p. 11]) there exists a function h € k(X) such that
ordQj(/i) = m,j for all j and ordg(/i) = 0 for any Q € S that is not one of the Qj. Then
-div(/i) + J2mjQj avoids 5 and is equivalent to X)mjQi-l ^

2.2. A DISCUSSION OF T H E O R E M 1. It is appropriate to make some remarks regarding
the proof of Theorem 1.

(1) The proof of Theorem 1 is similar to Schaefer's proof of his [6, Lemma 2.1];
the main difference is the replacement of q-th powers by norms.

(2) Moving the divisor in its class so as to avoid the 'bad set' is a standard
device in algebraic geometry; compare the above proof to the construction
of the intersection pairing Pic(X) x Pic(X) -» Z for a surface (see [2,
p. 357]), and to the construction of the pairing Pic(X) x BT(X) —> Br(fc)
for a curve (see [4]). As far as we are aware, Schaefer was the first to apply
this to the construction of descent maps. The older approach used patching
arguments, and extending these to work in our situation would have been
infinitely troublesome, if not outright impossible!

(3) We have taken the domain of our map <f>k to be Pic(X) where as in descent
maps the domain is usually Jx(k) (after making suitable assumptions to
identify this with Pic°(X); see page 121).

2.3. A N E X A M P L E It is a good idea to give an example to show how Theorem 1 extends
descent maps even when we restrict the domain to Pic°pQ. Let X be the elliptic curve
(over Q) given by the Weierstrass equation

X : y2 - x3 + ax + b.

We denote the point at infinity by O, and take f = x. Theorem 1 defines a homomorphism
4>x : Pic(X) -> Q*/GI(Q). Now the map X(Q) -*• Pic°(X) given by P >-> [P - O) is an
isomorphism (where A"(Q) has the usual group law). Thus composing with (j>x we obtain
a homomorphism

i/> : X(Q) -> Q7G«(Q)

given by

iP{P) = x(P)Gx(Q)

for P ^ O and x{P) ^ 0 (it is not hard to show that <j>x([O\) - 1 • Gx(<Qi)). It remains to
compute GX(Q), and there are three cases:
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C A S E 1. 6 = 0. The divisor of x is just 2(0,0) — 20. Both points in the support of the
divisor have residue field <Q>. Hence GX(Q) = <Q>*2, and the map ip : X(Q) -> Q*/Q*2 is
the usual one arising from the descent via 2-isogeny.

C A S E 2. b ^ 0, b € Q*2, say b = c2. The divisor of x is (0, c) + (0, - c ) - 20 . The residue
fields are all Q again, but this time GX(Q) - Q* and so the map ip = I.

C A S E 3. b # 0, 6 i Q*2. The divisor of x is (0, Vb) + (0, -\/b) - 20. We find that

GX(Q) = Norm(Q(\/6)*)Q*~2 = Norm(Q(v/6)*). Hence we obtain a homomorphism

xp : X(Q) -> Q7Norm(Q(\/6)*)

given by

S x(p) Norm(Q(V6)') HP±O,
\ 1 • Norm(Q(v/6)*) if P = O.
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