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Abstract

Implicit Runge–Kutta methods have a special role in the numerical solution of stiff
problems, such as those found by applying the method of lines to the partial differential
equations arising in physical modelling. Of particular interest in this paper are the high-
order methods based on Gaussian quadrature and the efficiently implementable singly
implicit methods.
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1. Introduction

The whole process of solving a scientific problem, including formulation, model
construction and numerical approximation, requires an incredible range of skills and
knowledge. Very few mathematical scientists can expect to be actively involved in all
steps of the process, but Stephen White was such a scientist. Although his primary
interests were in applied mathematical modelling, he took a serious interest in the
computational algorithms that are now an integral part of the problem-solving process.

Crucial to many applied areas is the numerical solution of ordinary or partial
differential equations. For partial differential equations in which diffusion plays a
significant role, the method of lines is often used to replace continuous dependence
on space variables by a discretized approximation by a high-dimensional system of
ordinary differential equations. The initial value problems which result are typically
highly stiff, and this is where implicit Runge–Kutta methods have a natural role.

Although Runge–Kutta methods were invented more than 100 years ago, implicit
Runge–Kutta methods have been known for less than 50 years. Today implicit methods
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have become much more important than explicit methods, even though their
computational costs are far higher. The reason is that implicit methods are less
hampered in their performance by stability restrictions. The aim of this paper is to
give some of the flavour of what is possible with implicit Runge–Kutta methods.

Throughout the paper, we will consider the solution of an autonomous
N -dimensional initial value problem written in the form

y′(t)= f (y(t)), y(t0)= y0, f : RN
→ RN .

The simplest of all methods for the step-by-step solution of this problem is the
(explicit) Euler method. This consists of forming approximations to the solutions at
tn = t0 + nh, n = 1, 2, . . . , where the time-step h is here assumed to be constant, for
the sake of simplicity. The approximations are given by

yn = yn−1 + h f (yn−1), n = 1, 2, . . . . (1.1)

In contrast to this process, in which each quantity is computed explicitly from known
data, we have the implicit Euler method. In this method the term h f (yn−1) in (1.1) is
changed to h f (yn). We then obtain the sequence of approximations given by

yn = yn−1 + h f (yn). (1.2)

The numerical scheme (1.2) requires the solution of a nonlinear algebraic equation
and, for practical problems, this is an overwhelming cost. Problems in which this cost
is worth paying are known as stiff problems.

To set the scene, stiffness is explained using a standard example problem in
Section 2. This is followed in Section 3 by a brief introduction to Runge–Kutta
methods and, in Section 4, to implicit Runge–Kutta methods in particular. The
high-order methods based on Gaussian quadrature are discussed in Section 5 and, in
contrast, the lower-order, but more efficient, DIRK and SIRK methods in Sections 6
and 7, respectively.

2. A classical example of a stiff problem

Consider the two-dimensional diffusion equation with Dirichlet boundary
conditions on the unit square:

∂u

∂t
=∇

2u, u(x, y)= 0, on the boundary of [0, 1] × [0, 1].

The spectrum of the Laplacian is the set{
−π2(m2

+ n2) : m, n = 1, 2, . . .
}
. (2.1)

To solve the problem numerically, discretise with N points in each space direction,
and use the standard five-point approximation to the Laplacian.
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The discretized problem becomes

dU

dt
= MU,

where M is a specific banded N 2
× N 2 matrix. In replacing an unbounded operator by

an approximation represented by a finite-dimensional matrix, we cannot expect a well-
conditioned result. To make this comparison quantitative, we will find the eigenvalues
of M . The spectrum of M is

σ(M)=

{
−4(N + 1)2

(
sin2

(
mπ

2(N + 1)

)
+ sin2

(
nπ

2(N + 1)

))
: m, n = 1, 2, . . . , N

}
.

The members of σ(M) run from about −2π2 to about −8(N + 1)2, compared with
the members of the set (2.1) which lie in {−∞,−2π2

}. For accuracy, 2π2h should be
small and, for stability, in the case of the Euler method, 8(N + 1)2h should be small.
However, for the implicit Euler method there is no such restriction due to stability.

To solve this problem by the Euler method, we need to compute approximations
y1, y2, . . . , yn−1, yn, . . . , using the formula yn = (I + hM)yn−1. However, for
the implicit Euler method, we need to do the more costly computation yn = (I −
hM)−1 yn−1. Costly though this is, it is simple compared with what is required for
non-linear problems, where Newton iterations have to be carried out.

3. Introduction to Runge–Kutta methods

It will be convenient to consider only autonomous initial value problems

y′(t)= f (y(t)), y(t0)= y0, f : RN
→ RN .

The simple Euler method,

yn = yn−1 + h f (yn−1), h = tn − tn−1,

can be made more accurate by using either the mid-point or the trapezoidal rule
quadrature formula:

yn = yn−1 + h f

(
yn−1 +

1
2

h f (yn−1)

)
,

yn = yn−1 +
1
2

h f (yn−1)+
1
2

h f (yn−1 + h f (yn−1)).

These methods, from Runge’s 1895 paper [9], are “second-order” because the error in
a single step behaves like O(h3). At a specific output point the error is O(h2). A few
years later, Heun [7] gave a full explanation of third-order methods and Kutta [8] gave
a detailed analysis of fourth-order methods.
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In the early days of Runge–Kutta methods, the aim was to find explicit methods of
higher and higher order. However, more recently an important aim has been to find
methods suitable for the solution of stiff problems.

In carrying out a step of a Runge–Kutta method, we evaluate s stage values
Y1, Y2, . . . , Ys and s stage derivatives F1, F2, . . . , Fs , using the formula Fi = f (Yi ).

Each Yi is found as a linear combination of the F j added on to y0,

Yi = y0 + h
s∑

j=1

ai j F j ≈ y(t0 + ci h),

and the approximation at t1 = t0 + h is found from

y1 = y0 + h
s∑

i=1

bi Fi ≈ y(t0 + h).

We represent the method by a tableau and introduce the matrix A and the vectors bT

and c:

c A

bT
=

c1 a11 a12 · · · a1s

c2 a21 a22 · · · a2s
...

...
...

...

cs as1 as2 · · · ass

b1 b2 · · · bs

where ci =
∑s

j=1 ai j , i = 1, 2, . . . , s. If the method is explicit, so that c1 = 0 and ai j
is zero unless i > j , a simplified tableau can be used in which the diagonal and upper
triangular parts of A are omitted.

In the two examples of methods made famous by Runge [9], the corresponding
tableaux are

0
1
2

1
2

0 1

and
0
1 1

1
2

1
2

Third- and fourth-order methods require three and four stages, respectively. Examples
of these can be found in the papers by Heun [7] and Kutta [8] and in [2] and [5].

The pattern that has emerged, that order s can be attained with an s-stage explicit
method, is an illusion; order five requires six stages, order six requires seven stages
and order seven requires nine stages. It is also known that for p ≥ 8, s ≥ p + 3 stages
are needed. This bound is tight for p = 8 but, above this order, little more is known.

For details of the order conditions and the derivation of particular methods of
various orders, see [2].
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4. Implicit Runge–Kutta methods

If A is a full matrix, one step of the method consists of the evaluation of
Y1, Y2, . . . , Ys which satisfy

Yi = y0 + h
s∑

j=1

ai j f (Y j ).

Write this in the form
Y = 1⊗ y0 + h(A ⊗ IN )F,

where Y and F are s N -dimensional vectors, for an N -dimensional problem and 1 ∈ Rs

has every component equal to 1.
For N large, this problem is very difficult to solve without excessive cost and usually

a simplified form of Newton is used. Let J denote the Jacobian matrix for f computed
“recently”, so that the Newton corrections

Yi → Yi − Di , i = 1, 2, . . . , s,

satisfy

Yi − Di = y0 + h
s∑

j=1

ai j (F j − J D j ). (4.1)

Write (4.1) in the compact form

(I ⊗ IN − h A ⊗ J )D = Y − 1⊗ y0 − h(A ⊗ IN )F (4.2)

and assess the cost of the numerical process. This is in two parts: first the costs
associated with an occasional recomputation and factorization, and secondly the costs
involved in an actual iteration.

The “occasional” costs are the evaluation of J followed by the factorization of the
(s N )× (s N )matrix I ⊗ IN − h A ⊗ J at a cost of s3 N 3 multiplied by a small number.

The costs per iteration consist of the evaluation of the s values of f , the evaluation
of Y − 1⊗ y0 − h(A ⊗ IN )F , and finally the solution of a pre-factored (s N )× (s N )
linear system (4.2) at a cost of s2 N 2 multiplied by a small constant. The factors
N 3 and N 2 seem to be intrinsic requirements in implementing a multistage method.
In contrast, the challenge in developing efficient methods is to lower the s3 and s2

coefficients.
In addition to the order and the implementation costs, a third vital question

about implicit Runge–Kutta methods is their stability behaviour with stiff problems.
Associated with each method is a stability function R(z). This is defined in terms
of a linear problem y′ = qy, for which R(hq) is the growth factor. That is yn =

R(hq)yn−1. Write z = hq and substitute hF = zY so that (I − z A)Y = y01, y1 =

zbT Y + y0. Eliminate Y and we find R(z)= y1/y0 = 1+ zbT (I − z A)−11.
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We want stable behaviour for the exact solution, which corresponds to Re(z)≤ 0, to
imply stable behaviour of the computed solution. This means that for z in the left half-
plane, |R(z)| ≤ 1. This property is referred to as A-stability. Some methods have the
additional property that R(∞)= 0. A-stable methods, which possess this additional
requirement, are said to be L-stable, and for many problems this is a desirable property.
For a discussion of the advantages of L-stability over simple A-stability, see [6].

Our task is now to explore various families of implicit methods and ask, for each
family, to what extent we can achieve the three desirable properties of high order, good
stability, and moderate implementation costs.

5. Methods based on Gaussian quadrature

It is remarkable that associated with each Gaussian quadrature formula on [0, 1]
there exists a Runge–Kutta method the same order 2s as the quadrature formula itself.
These methods are simply constructed. First, the ci are chosen as the zeros of the
polynomial Ps(2x − 1) to give orthogonality on [0, 1], where Ps is the Legendre
polynomial of degree s. The bi are then chosen so that the quadrature formula∫ 1

0
φ(x) dx ≈

s∑
i=1

biφ(ci ), (5.1)

is exact whenever φ is a polynomial of degree not exceeding s − 1. The orthogonality
property then implies that (5.1) actually holds up to degree 2s − 1. By substituting

` j (x)=
∏
j 6=i

x − xi

x j − xi
, j = 1, 2, . . . , s,

as in Lagrange interpolation, we find

b j =

∫ 1

0
` j (x) dx .

The elements of A are also related to quadrature formulae, but on intervals [0, ci ].
Specifically,

ai j =

∫ ci

0
` j (x) dx .

Methods defined in this way are always A-stable. Although they are not also
L-stable, closely related methods exist with this additional property, such as the Radau
IIA methods; see [6]. Even though the order of Gauss methods is 2s, in practice it is not
usually possible to observe rapid convergence of approximations, as h→ 0, because
the stage order is only s. Methods based on Gaussian quadrature have been discovered
to have an important role in the solution of problems in Hamiltonian mechanics [4],
but their effectiveness for stiff problems is limited by their high implementation costs.
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We present the single example, with s = 2:

1
2 −

√
3

6
1
4

1
4 −

√
3

6
1
2 +

√
3

6
1
4 +

√
3

6
1
4

1
2

1
2

6. Diagonally implicit methods

If A is lower triangular, with constant diagonals, we get the diagonally implicit
Runge–Kutta (DIRK) methods of Alexander [1]. The following method illustrates
what is possible for DIRK methods:

λ λ
1
2 (1+ λ)

1
2 (1− λ) λ

1 1
4 (−6λ2

+ 16λ− 1) 1
4 (6λ

2
− 20λ+ 5) λ

1
4 (−6λ2

+ 16λ− 1) 1
4 (6λ

2
− 20λ+ 5) λ

where λ≈ 0.435 866 521 5 satisfies 1/6− (3/2)λ+ 3λ2
− λ3

= 0.
This method has order 3 and the stability function is

R(z)=
1+ (1− 3λ)z +

(
1
2 − 3λ+ 3λ2

)
z2

(1− λz)3
.

Because the numerator has degree only 2, R(∞)= 0. Because |R(z)| ≤ 1 when
Re(z)≤ 0, it is A-stable, and therefore also L-stable.

For a general implicit method with s = 3, the two components of the cost would
be (27N 3, 9N 2). But in this case, because of the special structure they are now only
(N 3, 3N 2). This is a major step forward, but low stage order still bedevils us. We
attempt to overcome this handicap using singly implicit methods.

7. Singly implicit Runge–Kutta methods

A singly implicit Runge–Kutta (SIRK) method is characterized by the equation
σ(A)= {λ}. That is, A has a one-point spectrum. While DIRK methods are a special
case, they seem to possess advantages that are not possessed by the whole family. That
is, for DIRK methods the stages can be computed independently and sequentially from
equations of the form Yi − hλ f (Yi )= a known quantity. Each stage requires the same
factorized matrix IN − hλJ to permit solution by a modified Newton iteration process
(where J ≈ ∂ f/∂y).

Our aim is to extend this advantage to SIRK methods in general. The secret lies in
the inclusion of a transformation to Jordan canonical form into the computation.
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Suppose the matrix T transforms A to canonical form by the formula T−1 AT = A,
where

A = λ


1 0 · · · 0 0
−1 1 · · · 0 0
...

...
...

...

0 0 · · · 1 0
0 0 · · · −1 1

 .

We will consider a single Newton iteration, simplified by the use of the same
approximate Jacobian J for each stage.

Assume that the incoming approximation is y0, and that we are attempting to
evaluate

y1 = y0 + h(bT
⊗ IN )F,

where we recall that Y and F are made up from the s subvectors Yi and Fi = f (Yi ),
respectively.

The implicit equations to be solved are

Y = 1⊗ y0 + h(A ⊗ IN )F,

where we recall that 1 is the vector in Rs with every component equal to 1. The Newton
process consists of solving the linear system

(I ⊗ IN − h A ⊗ J )D = Y − 1⊗ y0 − h(A ⊗ IN )F,

and then updating
Y → Y − D.

To benefit from the SIRK property, write

Y = (T−1
⊗ IN )Y, F = (T−1

⊗ IN )F, D = (T−1
⊗ IN )D,

so that
(I ⊗ IN − h A ⊗ J )D = Y − 1⊗ y0 − h(A ⊗ IN )F .

If we are doing the back-substitutions using the transformed matrix A, the cost
components are reduced from (s3 N 3, s2 N 2) to (N 3, s N 2), just as for a DIRK
method. There are extra costs associated with the transformations, but these consist
of a moderate number multiplied by s2 N . For large problems, these N terms are
completely swamped by the N 2 and N 3 terms and they can be regarded as a small
overhead.

To obtain practical methods in the SIRK family, we will seek methods with high
stage order. In fact, we will aim to achieve order at least s together with stage order s.
Stage order s means that

s∑
j=1

ai jφ(ci )=

∫ ci

0
φ(t) dt,
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for φ any polynomial of degree s − 1. This implies that

Ack−1
=

1
k

ck, k = 1, 2, . . . , s,

where the vector powers are interpreted component by component. This is equivalent
to

Akc0
=

1
k!

ck, k = 1, 2, . . . , s.

From the Cayley–Hamilton theorem,

(A − λI )sc0
= 0,

which can be expanded in the form

s∑
i=0

(
s

i

)
(−λ)s−i Ai c0

= 0.

Hence, each component of c satisfies

s∑
i=0

1
i !

(
s

i

)(
−

x

λ

)i

= 0,

so that

Ls

(
x

λ

)
= 0,

where Ls denotes the Laguerre polynomial of degree s.
Let ξ1, ξ2, . . . , ξs denote the zeros of Ls , so that

ci = λξi , i = 1, 2, . . . , s.

Before discussing the choice of λ, we remark that it is possible to give an explicit
expression for the transformation matrix. It is in fact equal to the generalized
Vandermonde matrix

T =


L0(ξ1) L1(ξ1) · · · Ls−1(ξ1)

L0(ξ2) L1(ξ2) · · · Ls−1(ξ2)
...

...
...

L0(ξs) L1(ξs) · · · Ls−1(ξs)

 .
The choice of λ should be made taking stability into account. A convenient option

is λ= ξ−1
k , for some k. This will mean that ck = 1 and that the stability function is

zero at infinity. For s as high as eight (with the exception of seven) this leads to an
L-stable method.

However, for s > 2, k has to be chosen less than s. This means that
ck+1, ck+2, . . . , cs are all greater than 1. Furthermore, as s increases, the amount
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by which some abscissae exceed 1 steadily increases. This has to be reckoned as a
severe disadvantage of the method.

Fortunately, this apparent barrier to accurate and stable numerical modelling using
singly implicit methods is not insuperable. It is possible to pull the abscissae back
into [0, 1], in fact to any set of distinct points that one chooses, without losing
any numerical property that really matters; see [3]. The trick is to replace “order”
by “effective order”. For most applications of effective order, complicated starting,
finishing and step-changing schemes have to be added to the method, but in this case
there are no significant overheads arising from a variable stepsize implementation.

Assuming that singly implicit methods are implemented as efficiently as possible,
using techniques such as those discussed in this section, it must be asked how
competitive they are likely to be when faced with demanding and large-scale stiff
problems. While tests with a range of problems have shown singly implicit methods
to give accurate and reliable results, they need to be compared in rigorous tests against
well-known successful codes such as those based on Radau quadrature [6], but there
are reasons to expect that they will exhibit their own specific advantages. They have
high stage order and no order reduction should be anticipated, but this is at the cost,
compared with Radau methods, of lower order per stage. However, the most significant
advantage of the new methods is that the singly implicit methods scale up in an
excellent manner for high-dimensional problems, simply because a single factorized
matrix can be used for all the transformed stages. Furthermore, the cost of the back-
substitutions is the same per stage as for the BDF (backward difference formulae)
methods and less than for Radau methods. The transformations which seem to be an
additional overhead for high-order singly implicit methods, are relatively insignificant
for very large problems.
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