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This paper investigates the problem of how to design the distance between a mobile buoy and
the target to derive maximum positioning accuracy with a Moving Long Baseline (MLBL).
To that end, the positioning model and the error sources of MLBL are derived, respectively.
It is assumed that the position measurement of the mobile buoy and the distance measurement
between the mobile buoy and the target are corrupted by white Gaussian noises, and the vari-
ance of the distance measurement is distance-dependent. Using tools from estimation theory,
the Positioning Accuracy Metric (PAM) is designed with the distance error and the position
errors are considered. Based on the PAM, the optimal distance between the mobile buoy
and target is deduced when the mobile buoys are in optimal geometry. Simulation examples
illustrate the results.

KEY WORDS

1. MLBL. 2. Mobile buoy. 3. Optimal distance. 4. Positioning accuracy.

Submitted: 24 April 2014. Accepted: 18 January 2015. First published online: 23 February 2015.

1. INTRODUCTION. There has been increasing interest in the use of underwater
vehicles to explore and exploit the ocean, such as mine-hunting, target or animal track-
ing, disaster response, and oceanographic surveys (Moradi et. al., 2012; Erol-Kantarci
et. al., 2011; Waite, 2002). Precise positioning of underwater vehicles is important for
the safety and effectiveness of all these autonomous missions. However, the underwater
environment is complex and access-constrained, presenting unique challenges to accu-
rate positioning compared with land and air environments. In the underwater environ-
ment, the popular Global Positioning System (GPS) is not feasible due to the strong
attenuation that the electromagnetic field suffers in water (Sukkarieh et. al., 1999;
Yun et. al., 1999). Therefore, acoustic-based positioning systems have been sought
in the past, including systems such as Long Baseline (LBL), Short Baseline (SBL),
and Ultra-Short Baseline (USBL) (Tan et. al., 2011; Olson et. al., 2006; Kinsey
et. al., 2006).
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In LBL, a set of three or more baseline transponders are deployed on the sea floor,
and the positions of the transponders must be determined in advance (Jakuba et. al.,
2008). In SBL, three or more transponders are mounted on a surface vessel and con-
nected to a central control station. In both systems, a trilateration algorithm is used to
estimate the target position (Tan et. al., 2009). In USBL, a set of transponders
assembled in a single device is installed on a support ship, and the target position is
estimated by measuring the relative phases between the signals arriving at the trans-
ponders (Beaujean et. al., 2010; Philips, 2003). All of these systems have their merits
and drawbacks. SBL and USBL require less infrastructure, but the positioning accu-
racy and the operational area are constrained. In comparison with SBL and USBL,
LBL can achieve higher accuracy, but it has several shortcomings, e.g., requiring a
long time for deployment and calibration, and a limited operating region.
Moving Long Baseline (MLBL) is a generalisation of LBL by replacing the pre-cali-

brated arrays of static transponders with self-calibrated and fully mobile transponders
(Caiti et. al., 2005; Alcocer et. al., 2007). The absolute position of the target can be
estimated by the Least Squares (LS) method based on the acoustic and GPS observa-
tions (Vaganay et. al., 2004; Kussat et. al., 2005). In this way, theMLBL overcomes the
shortcomings of LBL. In the past few years, many algorithms for efficient target po-
sition estimation have been proposed in the literature, such as Extended Kalman
Filtering (EKF) (Olson et. al., 2006; Batista et. al., 2014), Particle Filtering (PF)
(Fox et. al., 2000), and Maximum Likelihood Estimation (MLE) (Howard et. al.,
2002).
InMLBL, the absolute position of the target is calculated by using the position mea-

surements of the mobile buoys and the distance measurements between the target and
the mobile buoys. The positioning error may arise from three factors, i.e., the position
error of the mobile buoy relative to the earth reference frame, the traveling time error
and the deviation of actual sound speed from the assumed sound speed (Moradi et. al.,
2012; Kinsey et. al., 2006; Isik and Akan, 2009; Liu et. al., 2010; Kaplan and Hegarty,
2005; Teymorian et. al., 2009). The distance between the mobile buoy and the target is
calculated by the sound speed and the One-Way Travel Time (OWTT). Hence the posi-
tioning accuracy of the target is mainly affected by the position error of the mobile
buoy and the distance error between the mobile buoy and the target. Considering
that the positioning accuracy is only affected by the distance error, some researchers
have found that the accuracy of the position estimates can be computed through the
Cramer-Rao bound (CRB) and Fisher Information Matrix (FIM). Then the
optimal geometry by minimizing the CRB or maximizing the FIM is provided (Van
Trees, 2004; Savvides et. al., 2005; Alcocer et. al., 2006; Moreno-Salinas et. al.,
2011; MartíNez and Bullo, 2006; Moreno-Salinas et. al., 2012; Purvis et. al., 2008;
Oshman and Davidson, 1999; Xu and Choi, 2011). However, the position error of
the mobile buoy is ignored. This work differs from the aforementioned approaches
by considering that the positioning accuracy is affected by the distance error and
the position error of the mobile buoy. According to the estimation theory, we
propose a Positioning Accuracy Metric (PAM) to measure the positioning accuracy
with the distance error and the position errors are also considered. We find that the
positioning accuracy is related to the distance between the mobile buoy and the
target. The optimal distance is determined by the depth of the target and the parameter
of the distance error.
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The remainder of the paper is organised as follows. Section 2 presents the mathemat-
ical model of MLBL. The PAM with the distance error and the position error con-
sidered is proposed in Section 3. Section 4 presents the optimal geometry and the
optimal distance. Section 5 illustrates the simulation results. Finally, we conclude
our work in Section 6.

2. MATHEMATICAL MODEL OF MLBL. As shown in Figure 1, the mobile
buoys on the water surface are equipped with transponders, Differential GPS
(DGPS), wireless communications, and the target is equipped with transponders.
The position of the target is determined by the position measurements of the mobile
buoys and the distance measurements between the target and each mobile buoy.

2.1. Kinematics model. As shown in Figure 2, consider an earth fixed reference
frame {O}: = {x0, y0, z0} with z= 0 on the water surface, and the z-axis pointing down-
ward from the water surface. The coordinate of the target at stamp k is (xk, yk, zk).
The kinematics model of the target is described as

xkþ1 ¼ xk þ Tsvxk ¼ xk þ Tsvk cosψk cos θk;
ykþ1 ¼ yk þ Tsvyk ¼ yk þ Tsvk sinψk cos θk;
zkþ1 ¼ zk þ Tsvzk ¼ zk þ Tsvk sin θk;

8<
: ð1Þ

where Ts is the sampling period, vk is the velocity, ψk is the yaw, θk is the pitch.
Suppose there are m mobile buoys on the water surface, their coordinates at stamp k
are (xi,k, yi,k, zi,k), with zi,k= 0. The kinematics model of each mobile buoy is
described as

xi;kþ1 ¼ xi;k þ Tsvi;k cosψi;k;
yi;kþ1 ¼ yi;k þ Tsvi;k sinψi;k;

i ¼ 1; :::;m
�

; ð2Þ

where vi,k is the velocity, ψi,k is the yaw.
2.2. Positioning model. Assuming that the positions of the mobile buoys and the

distances between the target and each mobile buoy are known, the estimated position

Figure 1. MLBL positioning system consists of four mobile buoys.
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of the target (xk, yk, zk) should satisfy

xk � xi;k
� �2þ yk � yi;k

� �2þ zk � zi;k
� �2¼ r2i;k; i ¼ 1; :::;m: ð3Þ

As mentioned before, the mobile buoys are on the water surface with zi,k= 0, then
we have

2 xi;k � x j;k
� �

xk þ 2 yi;k � y j;k
� �

yk ¼ �r2i;k þ r2j;k þ x2i;k þ y2i;k � x2j;k � y2j;k ð4Þ

where i≠ j, xk and yk are unknown variables to be estimated. The positioning model
can be expressed as

AX ¼ B; ð5Þ

where

A ¼

2 x1;k � x2;k
� �

2 y1;k � y2;k
� �

2 x2;k � x3;k
� �

2 y2;k � y3;k
� �

..

. ..
.

2 xm�1;k � xm;k
� �

2 ym�1;k � ym;k
� �

2 xm;k � x1;k
� �

2 ym;k � y1;k
� �

2
666664

3
777775;X ¼ xk; yk½ �T ; ð6Þ

and

B ¼

�r21;k þ r22;k þ x21;k þ y21;k � x22;k � y22;k
�r22;k þ r23;k þ x22;k þ y22;k � x23;k � y23;k

..

.

�r2m�1;k þ r2m;k þ x2m�1;k þ y2m�1;k � x2m;k � y2m;k

�r2m;k þ r21;k þ x2m;k þ y2m;k � x21;k � y21;k

2
66666664

3
77777775
: ð7Þ

Figure 2. The kinematics model of the target.
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3. POSITIONING ACCURACY METRIC (PAM). In this Section, we find that
the positioning accuracy is related to the position error of the mobile buoy and the dis-
tance error between the mobile buoy and the target via the Partial Differential
Equation (PDE). On this basis, we will design the PAM to measure the positioning
accuracy.

3.1. Analysis of error sources. The differential form of Equation (4) is written as

xi;k � x j;k
� �

dxk þ yi;k � y j;k
� �

dyk þ xkdxi;k � xkdx j;k þ ykdyi;k � ykdy j;k

¼ �ri;kdri;k þ r j;kdr j;k þ xi;kdxi;k þ yi;kdyi;k � x j;kdx j;k � y j;kdy j;k:
ð8Þ

In a compact form,

CdX ¼ dDstation þ dDdistance; ð9Þ
where

C ¼

x1;k � x2;k
� �

y1;k � y2;k
� �

x2;k � x3;k
� �

y2;k � y3;k
� �

..

. ..
.

xm�1;k � xm;k
� �

ym�1;k � ym;k
� �

xm;k � x1;k
� �

ym;k � y1;k
� �

2
666664

3
777775; ð10Þ

dX ¼ dxk; dyk½ �T ; ð11Þ
dDstation

¼

x1;k � xk
� �

dx1;k þ y1;k � yk
� �

dy1;k � x2;k � xk
� �

dx2;k � y2;k � yk
� �

dy2;k
x2;k � xk
� �

dx2;k þ y2;k � yk
� �

dy2;k � x3;k � xk
� �

dx3;k � y3;k � yk
� �

dy3;k

..

.

xm�1;k � xk
� �

dxm�1;kþ ym�1;k � yk
� �

dym�1;k� xm;k � xk
� �

dxm;k� ym;k�yk
� �

dym;k

xm;k � xk
� �

dxm;k þ ym;k � yk
� �

dym;k � x1;k � xk
� �

dx1;k � y1;k � yk
� �

dy1;k

2
66666664

3
77777775
;

ð12Þ
and

dDdistance ¼

�r1;kdr1;k þ r2;kdr2;k
�r2;kdr2;k þ r3;kdr3;k

..

.

�rm�1;kdrm�1;k þ rm;kdrm;k

�rm;kdrm;k þ r1;kdr1;k

2
666664

3
777775: ð13Þ

According to the LS algorithm, we have

dX ¼ ðCTCÞ�1CTðdDstation þ dDdistanceÞ: ð14Þ
From Equation (14), it can be seen that the positioning error of the target dX is related
to the distance error dDdistance and the position error of the mobile buoy dDstation.

3.2. Derivation of PAM. In the water, the distance error is caused by variable
sound speed, physical propagation barriers, ambient noise, and degrading signal-to-
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noise ratio as the distance between the two objects increases. It is commonly assumed
that the distance measurement can be captured by white Gaussian noise, the variance
of which is distance-dependent (Moreno-Salinas et. al., 2011; Jourdan and Roy, 2008).
The distance error at stamp k is established,

εr;k ¼ I þ ηrkð Þεr; ð15Þ
where εr,k= diag{ε1,k, ε2,k,…, εm,k} and rk= diag{r1,k, r2,k,…, rm,k}. εi,k is a Gaussian
stochastic process with εi,k∼N(0, σri,k

2 ), εr is a Gaussian stochastic process with εr∼N
(0, σr

2I), and η is the parameter for the distance-dependent error component. The dis-
tance error should satisfy

σ2ri;k ¼ 1þ ηri;k
� �2

σ2r : ð16Þ

The mobile buoys are on the water surface, and they are positioned by GPS. The po-
sition error of the mobile buoy can be captured by Gaussian zero mean additive noises
with constant covariance. The position error of the mobile buoy (xi,k, yi,k) is described
as (εxi,k

, εyi,k), and (εxi,k, εyi,k) is a zero mean Gaussian process with εxi,k ∼N(0, σxi,k
2 ),

εyi,k ∼N(0, σyi,k
2 ). It is commonly assumed that

σ2s ¼ σ2xi;k ¼ σ2yi;k ¼ σ2x j;k
¼ σ2y j;k

ð17Þ

The distance error and the position error are uncorrelated, then the covariance matrix
of dX is obtained as

Q ¼ E dXdXT� � ¼ GFGT ; ð18Þ
where

G ¼ ðCTCÞ�1CT ; ð19Þ
F ¼ E dDstationdDT

station

� �þ E dDdistancedDT
distance

� �
: ð20Þ

The covariance matrix of dDstation is written as

E dDstationdDT
station

� � ¼
σ2X1

þ σ2X2
� � � �

� σ2X2
þ σ2X3

� � �

� � . .
. � �

� � � σ2Xm�1
þ σ2Xm

�
� � � � σ2Xm

þ σ2X1

2
66666664

3
77777775
ð21Þ

where

σ2Xi
¼ xi;k � xk

� �2
σ2xi;k þ yi;k � yk

� �2
σ2yi;k : ð22Þ

Define ri,k
2 = zk

2 +Ri,k
2 , then we have

σ2Xi
¼ R2

i;kσ
2
s : ð23Þ
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It follows that

E dDstationdDT
station

� �

¼

R2
1;k þ R2

2;k

� �
σ2s � � � �

� R2
2;k þ R2

3;k

� �
σ2s � � �

� � . .
. � �

� � � R2
m�1;k þ R2

m;k

� �
σ2s �

� � � � R2
m;k þ R2

1;k

� �
σ2s

2
66666666664

3
77777777775

ð24Þ
The covariance matrix of dDdistance is written as

E dDdistancedDT
distance

� �

¼

r21;kσ
2
r1;k þ r22;kσ

2
r2;k � � � �

� r22;kσ
2
r2;k þ r23;kσ

2
r3;k � � �

� � . .
. � �

� � � r2m�1;kσ
2
rm�1;k

þ r2m;kσ
2
rm;k

�
� � � � r2m;kσ

2
rm;k

þ r21;kσ
2
r1;k

2
666666664

3
777777775

ð25Þ
The optimal positioning accuracy can be determined by minimizing the trace of the
covariance matrix with respect to the exteroceptive measurements (Lütkepohl,
1996). As a result, we have

tr Qð Þ¼ tr GFGT� �¼ tr FGTG
� �� tr Fð Þtr GTG

� �
; ð26Þ

where

tr Fð Þ¼ 2σ2s
Xm
i¼1

R2
i;kþ2σ2r

Xm
i¼1

1þηri;k
� �2

r2i;k

¼ 2σ2s
Xm
i¼1

r2i;k�z2k
� �

þ2σ2r
Xm
i¼1

1þηri;k
� �2

r2i;k; ð27Þ

tr GTG
� �¼ tr CTC

� ��1
� �

: ð28Þ

According to Equation (10), we have

CTC ¼

Pm
i¼1

a2i;k
Pm
i¼1

ai;kbi;k

Pm
i¼1

ai;kbi;k
Pm
i¼1

b2i;k

2
664

3
775; ð29Þ
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and

ai;k ¼xi;k�xiþ1;k;
am;k ¼xm;k�x1;k;
bi;k ¼ yi;k�yiþ1;k;
bm;k ¼ ym;k�y1;k;

i¼ 1; :::;m�1:

8>><
>>: ð30Þ

It follows that

tr CTC
� ��1

� �
¼

Pm
i¼1

a2i;kþ
Pm
i¼1

b2i;k

Pm
i¼1

a2i;k

	 
 Pm
i¼1

b2i;k

	 

� Pm

i¼1
ai;kbi;k

	 
2 : ð31Þ

Then the PAM function J can be described as

J¼ tr Fð Þtr GTG
� �¼ tr Fð Þtr CTC

� ��1
� �

¼ 2σ2s
Xm
i¼1

r2i;k�z2k
� �

þ2σ2r
Xm
i¼1

1þηri;k
� �2

r2i;k

" #
�

Pm
i¼1

a2i;kþ
Pm
i¼1

b2i;k

Pm
i¼1

a2i;k

	 
 Pm
i¼1

b2i;k

	 

� Pm

i¼1
ai;kbi;k

	 
2 :

ð32Þ

4. OPTIMAL DISTANCE. In this Section, we will derive the optimal distance by
minimizing the J that was established in Section 3.2. We find that the positioning ac-
curacy is related to the geometry of the mobile buoys and the distances between the
target and each mobile buoy.

4.1. Derivation of optimal geometry. The PAM J is composed of two parts: tr(F)
and tr((CTC)−1). From Equation (27), it can be seen that tr(F) is irrelevant to
the geometry of the mobile buoys. So our work is to minimize tr((CTC)−1). By

defining p1 ¼
Pm
i¼1

a2i;k, p2 ¼
Pm
i¼1

b2i;k, p3 ¼
Pm
i¼1

ai;kbi;k and P(p1, p2, p3) = tr((CTC)−1),

Equation (31) can be written as

Pð p1; p2; p3Þ ¼ p1 þ p2
p1p2 � p23

: ð33Þ

According to the Lagrange multiplier method (Bertsekas, 1982), we know that the P
(p1, p2, p3) reaches the minimum value when p1, p2 and p3 satisfy

∂Pð p1; p2; p3Þ
∂p1

¼ 0;

∂Pð p1; p2; p3Þ
∂p2

¼ 0;

∂Pð p1; p2; p3Þ
∂p3

¼ 0:

8>>>>>>><
>>>>>>>:

ð34Þ
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Thus, we have

p1 ¼ p2;
p3 ¼ 0:

�
ð35Þ

This means that the tr((CTC)−1) reaches the minimum value whenPm
i¼1

a2i;k ¼ Pm
i¼1

b2i;k;

Pm
i¼1

ai;kbi;k ¼ 0:

8>><
>>: ð36Þ

From Equation (30), it can be seen that ai,k and bi,k are determined by the positions of
the mobile buoys, and Equation (36) can be reached by adjusting the positions of
mobile buoys. Here, we use Figure 3 to illustrate how to reach Equation (36). As
shown in Figure 3, a 2-dimensional (2D) Cartesian is established. O is the projection
of the target to the horizontal plane, (x1,k, y1,k) is in the axis of abscissas, αi,k is the
angular distance between
(xi,k, yi,k) and (xi+1,k, yi+1,k) measured from (xk, yk). Define α0,k= 0, then we have

ai;k ¼ Ri;k cos
Pi�1

n¼0
αn;k

	 

� Riþ1;k cos

Pi
n¼0

αn;k

	 

;

am;k ¼ Rm;k cos
Pm�1

n¼0
αn;k

	 

� R1;k cos

Pm
n¼0

αn;k

	 

;

bi;k ¼ Ri;k sin
Pi�1

n¼0
αn;k

	 

� Riþ1;k sin

Pi
n¼0

αn;k

	 

;

bm;k ¼ Rm;k sin
Pm�1

n¼0
αn;k

	 

� R1;k sin

Pm
n¼0

αn;k

	 

;

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð37Þ

Figure 3. Positions of the target and the mobile buoys.
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Equation (36) is satisfied when

αi;k ¼ 2π
m

;

R1;k ¼ R2;k ¼ ::: ¼ Rm;k:

8<
: ð38Þ

From this, we can see that the optimal geometry is that the mobile buoys are on the
vertices of a regular polygon centred at the target.

4.2. PAM in optimal geometry. In this sub-section, we will calculate the PAM
when the optimal geometry has been reached. Here, we use Figure 4 to illustrate
how to calculate the PAM. As shown in Figure 4, m mobile buoys are on the vertices
of a regular polygon, Ri,k is the circumradius of the regular m-gons, and li,k is the side
length (Williams, 1996). By defining R =Ri,k, we have

li;k ¼ 2R sin
π

m
; ð39Þ

l2i;k ¼ xi;k � xiþ1;k
� �2þ yi;k � yiþ1;k

� �2¼ a2i;k þ b2i;k;

l2m;k ¼ xm;k � x1;k
� �2þ ym;k � y1;k

� �2¼ a2m;k þ b2m;k;
i ¼ 1; 2; :::;m� 1;

8<
: ð40Þ

and

Xm
i¼1

l2i;k ¼
Xm
i¼1

a2i;k þ
Xm
i¼1

b2i;k: ð41Þ

Figure 4. Positions of the target and the mobile buoys in the optimal geometry.
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Combining Equations (36)-(41) with Equation (31), it follows that

min
xi;k ;yi;kð Þ∈R2

tr CTC
� ��1

� �
¼ 4Pm

i¼1
l2i;k

¼ 1

m R sin
π

m

� �2 : ð42Þ

Thus, the PAM function J in optimal geometry can be described as

J ¼ 2σ2s
Xm
i¼1

r2i;k � z2k
� �

þ 2σ2r
Xm
i¼1

1þ ηri;k
� �2

r2i;k

" #
� 1

m R sin
π

m

� �2 : ð43Þ

4.3. Derivation of optimal distance. In this sub-section, we will study how to
derive the optimal distance between the target and each mobile buoy. According to
the Pythagorean theorem ri,k

2 = zk
2 +Ri,k

2 , we have

r1;k ¼ r2;k ¼ ::: ¼ rm;k: ð44Þ
By defining r= ri,k, σs

2 = μσr
2 and zk= h, it follows that

min
xi;k ;yi;kð Þ∈R2

J ¼ min
xi;k ;yi;kð Þ∈R2

tr Fð Þtr GTG
� � ¼ tr Fð Þtr CTC

� ��1
� �

¼ min
xi;k ;yi;kð Þ∈R2

2σ2s
Xm
i¼1

r2i;k � z2k
� �

þ 2σ2r
Xm
i¼1

1þ ηri;k
� �2

r2i;k

" #
� 1

m R sin
π

m

� �2

¼ min
xi;k ;yi;kð Þ∈R2

2mσ2r μ r2 � h2
� �þ 1þ ηrð Þ2r2

h i
� 1

m R sin
π

m

� �2

¼ min
xi;k ;yi;kð Þ∈R2

2σ2r

sin
π

m

� �2 � μþ 1þ ηrð Þ2r2
r2 � h2

" #

¼ d � min
xi;k ;yi;kð Þ∈R2

gðμ; η; h; rÞ:

ð45Þ

where

d ¼ 2σ2r

sin
π

m

� �2 ; ð46Þ

gðμ; η; h; rÞ ¼ μþ 1þ ηrð Þ2r2
r2 � h2

" #
: ð47Þ

Note that d is a constant, therefore the minimum value of J is determined by g(μ, η, h, r).
The optimal distance r between target and each mobile buoy can be describedwhen the
parameter μ, η and the depth of the target h are known. The differential equation of g
(μ, ,η, h, r) is written as

∂g
∂r

¼ 2r 1þ ηrð Þ ηr3 � 2ηh2r� h2
� �
r2 � h2ð Þ2

¼ l � ηr3 � 2ηh2r� h2
� �

; ð48Þ
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where

l ¼ 2r 1þ ηrð Þ
r2 � h2ð Þ2

> 0: ð49Þ

The minimum value of J is reached when ∂g/∂r= 0. Assuming ∂g/∂r= 0, the optimal
distance can be calculated by the Cardan method (Nickalls, 1993), then we have

r ¼ h4

4η2
� 8h6

27

	 
1
2
þ h2

2η

2
4

3
5
1
3

þ 2h2

3
h4

4η2
� 8h6

27

	 
1
2
þ h2

2η

2
4

3
5
1
3

: ð50Þ

From Equation (45) and Equation (50), it can be seen that the positioning accuracy is
determined by the geometry of mobile buoys and the distance between the mobile buoy
and the target. The optimal geometry is that the mobile buoys are on the vertices of a
regular polygon centred at the target, and the optimal distance is related to the par-
ameter η and the depth of the target h.

5. SIMULATIONS. This section describes two simulations to illustrate the
optimal distance for the target positioning. In this simulation, Unmanned Surface
Vehicles (USVs) equipped with transponders, GPS and wireless communications are
employed as the mobile buoys, and an Autonomous Underwater Vehicle (AUV)
equippedwith a transponder is employed as the target. The positioning system consists
of four USVs and an AUV. We assume that the distance error εi,k between USV and
AUV is around 1 m when this distance is small, and the distance error is about 0.1%
of the distance when the distance is large. Then we can choose the parameters as σr
= εr

2 = εi,r
2 = 1 and η= εi,r / εrri = 0.001ri / εrri = 0.001 m−1. The parameter σr increases

along with the distance error when the distance is small, and the parameter η also
increases as distance error increases when the distance is large. The position errors
of the USVs are assumed to be σs= 1. The first example shows the evaluation of the
PAM. The second example presents the evaluation through Monte Carlo method.

5.1. Evaluation of PAM
a) Optimal geometry: Figures 5 and 6 show the evaluations of the PAM.
In Figure 5, the AUV is static and the USVs are moving. The parameters of the AUV

and the USVs are shown in Table 1, and the USVs are on the vertices of the square
when t= 200 s. As shown in Figure 5(a), the initial positions and the positions at t=
200 s of the USVs are denoted by ‘▲’ and ‘■’, respectively. Figure 5(b) shows that
the minimum value of the PAM is reached when t= 200 s, with J= 12.477.
In Figure 6, the static USVs are in the positions of (400 m, 0 m, 0 m), (0 m, 400 m,

0 m), (−400 m, 0 m, 0 m), (0 m, −400 m, 0 m), and the positions of the USVs are
denoted by ‘*’. The AUV moves in a bounded region (x, y, z)|−800 m≤ x≤ 800 m,
−800m ≤ y≤ 800 m, z= 100m. The results show that the minimum value of the
PAM is reached when (x, y) = (0 m, 0 m), with J= 12.477.
These results verify that the minimum value of the PAM is reached when the USVs

are on the vertices of the square centred at the AUV.
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b) Optimal distance: In this example, the optimal geometry has been reached. We
assume that the AUV is at a constant depth of 100 m, and the distances between the
AUV and each USV change. As shown in Figure 7, the PAM reaches the minimum
value with J= 11.439 when the distance is r= 246.221 m. According to Equation
(50), the optimal distance is r= 246.205 m, and the slight difference is caused by the
calculation. The value of the PAM is J= 12.477 when the distance is
r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4002 þ 1002
p ¼ 412:311m, and it coincides with the result in part (a).

5.2. Evaluation through Monte Carlo method. Since the position errors of the
USVs and AUV are random in nature, we compare the positioning errors by using
Monte Carlo method. In this part, the positioning errors are simulated for 100
Monte Carlo trials. Firstly, we calculate the positioning errors eq;k ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xqk � ~xqk
� �2þ yqk � ~yqk

� �2q
of the AUV in 100 experiments at stamp k, where (xk

q, yk
q)

and (~xqk; ~y
q
kÞ are the real and estimated positions of the AUV. Then the mean

Figure 5. The evaluation of the PAM when USVs are moving: (a) the trajectories of the USVs,
(b) the value of the PAM.

Figure 6. The evaluation of the PAM when AUV is moving: (a) 3-dimensional mesh graph,
(b) contour graph.
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positioning error ek can be acquired by averaging these positioning errors, i.e.,

ek ¼ 1
100

X100
q¼1

eq;k.

a) Optimal geometry: Two groups of USVs are used to position the target. One
group consists of USV1, USV2, USV3 and USV4, and the other group consists of
USV5, USV6, USV7 and USV8. Two groups are both in the optimal geometry orig-
inally. The parameters of the AUVand the USVs are shown in Table 2. The trajectories
of the USVs are shown in Figure 8. The positions of the USVs and the AUV at t= 0 s,
t= 1000 s and t= 2000 s are denoted by ‘▲’,‘■’ and ‘✶’, respectively. Figure 9(a)
shows the maximum and minimum positioning errors of 100 experiments in the
optimal geometry, and Figure 9(b) shows the maximum and minimum positioning
errors of 100 experiments in the general geometry. The mean positioning error is
shown in Figure 10, and we can see that the group in the optimal geometry has a
higher positioning accuracy.
b) Optimal distance: In this example, the optimal geometry has been reached. In

Figure 11, three groups of USVs are used to position the target, and each group con-
sists of four USVs. The distances in each group are 102.0 m, 246.2 m and 510.0 m, re-
spectively. Comparing these positioning errors, we find that the group at the optimal

Table 1. The parameters of the USVs and the AUV.

Vehicle Initial Position (m) Velocity (m/s) Yaw(°) Position at t= 200 s (m)

AUV (0,0,100) 0 0 (0,0,100)
USV1 (100,−519·62,0) 3 60 (400,0,0)
USV2 (−362·52,230·95,0) 2 25 (0,400,0)
USV 3 (−563·83,114·72,0) 1 −35 (−400,0,0)
USV 4 (−751·75,−673·62,0) 4 20 (0,−400,0)

Figure 7. Relationship between the distance and the PAM.
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distance r= 246.2 m has the highest positioning accuracy. The positioning errors cor-
respond to the results in Figure 7.
The simulation results indicate that the positioning accuracy depends directly on the

PAM, and the optimal distance can apparently improve the positioning accuracy.

Table 2. The parameters of the USVs and the AUV.

Vehicle Initial Position (m) Velocity (m/s) Yaw(o) Pitch(o)

AUV (0,0,100) 2·003 30 1
USV1 (400,0,0) 2 30
USV2 (0,400,0) 2 30
USV 3 (−400,0,0) 2 30
USV 4 (0,−400,0) 2 30
USV5 (400,0,0) 2 45
USV6 (0,400,0) 3 10
USV7 (−400,0,0) 1 15
USV8 (0,−400,0) 1·5 −10

Figure 8. The trajectories of the USVs: (a) in optimal geometry, (b) in general geometry.

Figure 9. Maximum and minimum positioning errors of 100 experiments: (a) in optimal geometry,
(b) in general geometry.
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6. CONCLUSION. In this paper, we have investigated the problem of how to
derive the optimal distance between the mobile buoy and the target to improve the
positioning accuracy. The positioning model and error sources of MLBL have been de-
veloped. Considering the distance error and the position error of the mobile buoy, we
propose the PAM tomeasure the positioning accuracy, based on which the optimal dis-
tance has been derived. We have shown that the optimal geometry is that the mobile
buoys are on the vertices of the regular polygon centred at the target, and the

Figure 10. Comparison of the positioning error between optimal and general geometry.

Figure 11. Relationship between the distance and the positioning error.
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optimal distance is related to the depth of the target and the parameter of the distance
error. Simulation results have demonstrated the optimal distance and its effectiveness.
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