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Abstract

We construct a "suitable" representation of a C*-algebra that carries single elements to rank one
operators. We also prove an abstract spectral theorem for compact elements in the algebra. This leads
naturally to an abstract definition of C -classes of compact elements in the algebra.
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1. Introduction

The classes Cp (0 < p <; oo) of linear operators on a Hilbert space H were

introduced by von Neumann and Schatten in [11] and have been studied in

various articles (for example, [4, 7, 8 and 10]). Suppose T is a compact operator

on H and nx, n2,... are the eigenvalues of (T*T)1/2 arranged in decreasing order

and repeated according to their multiplicity. The numbers pn (n = 1,2,...) are

called the characteristic numbers of T and are noted by sn(T) (« = 1,2,...). We

define

( i ) | |71 . = {!.„[*n(T)yy/P(0 <p < oo),

, = {TeC(H):\\T\\p< oo}.

If 1 < p < oo, then (i) Cp is a two-sided ideal of JSf ( / / ) , (ii) || • \\p is a norm on

Cp and with this norm Cp is a Banach space (which is reflexive in case/? > 1). The

set F(H) of all operators of finite rank on if is an everywhere dense linear

subspace of Cp.
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This article is an attempt to introduce in an arbitrary C "-algebra A a class of
elements analogous to the von Neumann-Schatten classes Cp of compact opera-
tors on some Hilbert space. This is an application of some faithful representation
of the algebra which carries single elements to rank one operators. This is
Theorem 5 below.

An abstract spectral theorem for certain compact elements in A is needed and it
is proved in Theorem 7.

Finally I wish to thank Dr. J. Erdos for his constant and valuable encourage-
ment during the preparation of an earlier version of this work.

2. Representations

In this section we are concerned with C*-algebras which contain non-zero
single elements. An element s in a C*-algebra A is called single if whenever
asb = 0, a, b in A, then at least one of as, sb is zero. C*-algebras are obviously
semi-simple Banach algebras and single elements in C*-algebras "act compactly"
[5, 6].

If an addition we assume that a C "-algebra A is separated by its single
elements (i.e. the left annihilator Ian a of the set a of all non-zero single elements
of A is zero) then the representation constructed in [6, Theorem 6] is isometric
and the Banach space X is in fact a Hilbert space. In fact, in that case,
Ian a = lan(soc^) = (0) and Zwill be the direct sum of {Ae},(e e d>) [6], where
(e e S) may be assumed self-adjoint ([5, Lemma 2.3] or [9, Lemma 4.9.2]). If
x, y G Ae (for some e e S) then y*x e eAe = Ce, and thus we can define a
scalar (x, y) by^*x = (JC, y)e.

By a standard argument, (x, y) defines an inner product on the elements of Ae
making it a Hilbert space, with the inner product norm identified with the algebra
norm. Hence, the space X in [6, Theorem 6] can be regarded as a Hilbert space
which we will denote in the following by H. The representation a -» ir{a)
{A -* J?(H)) of [6, Theorem 6] is then an isometric *-representation of A on the
Hilbert space H [3,1.8.1]. Hence we have the following

THEOREM 1. Let A be a C*'-algebra which is separated by the set of its non-zero
single elements. Then there exists an isometric representation a —> 7r(a) of A on a
Hilbert space H such that ir(s) has rank one, if and only if, s is a non-zero single
element of A.

Moreover, we can easily see that the closed linear span, [ir(s)H: s e a], of all
vectors ir(s)h, s e a, h e H, is all of H. The converse is also true, as the
following lemma shows.
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LEMMA 2. Let A be a C *-algebra and IT a faithful representation of A on a Hilbert
space H such that H = [ir(s)H :s e a]. Then A is separated by its single elements.

PROOF. Suppose that for some a in A we have as = 0 for all 5 e a. Since w is
faithful, we have TT(OS) = 0 and hence (ir(as)x, y) = 0, or equivalently
(ir(s)x, ir{a*)y) = 0, (s e a, x, y e H). By assumption, the latter implies that
ir(a*)y± H for all y e H and therefore ir(a*) = 0. Hence a* = 0 and so a = 0,
and the lemma follows.

REMARK. The assumption that IT is faithful cannot be discarded, as the
following example shows. Let s/be a C *-algebra with no non-zero single elements
and suppose m is the representation of A © J?(H) on the Hilbert space H defined
by ir(S © T) = T. The set of single elements of jrf®£?(H) consists of all
operators of the form 0 ffi R, with R either zero or rank one operator, in SC(H).
Clearly, w is not faithful and

H= [TT(0 <SR)H:R e <e(H), rank R < l ] .

However, a non-zero operator 5 © 0 annihilates every operator 0 ffi R and thus
jafffi J?(H) is not separated by its single elements.

Let IT and p be two representations of A, perhaps acting on different spaces H
and K. We say that TT and p are equivalent (IT ~ p) if there is a unitary operator
U:H^*K such that Uir(a)U* = p(a), for all a in^4. Equivalent representations
are indistinguishable in the sense that any geometric property of one must be
shared by the other, and it is correct to think of the unitary operator U as
representing nothing more than a change of "coordinates".

LEMMA 3. Let A be a C*-algebra, and IT and p two isometric representations of A
acting on the Hilbert spaces H and K respectively, which map single elements to
operators of rank one and such that [w(s)H:s e a] = H and [p(s)K:s e a] = K.
Then ir and p are equivalent.

PROOF. By Zorn's lemma, there exists a family S = {e,} of minimal idempo-
tents in A which is maximal subject to the condition,

(Ae,A) n{AejA) = (0), i * j , e,, e} e g.

We may also assume that { e,} are self-adjoint and hence each of the minimal left
ideals Aet of A is a Hilbert space with the C "-algebra norm. Consider now, a
family of vectors of unit norm {x,} c H, such that 7r(e,) = x, ffi xt, and denote
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Hj = { w{a)xi: a e A } for all /. Since

Ma);c/HM«WHK«KII
= \\ir(a)xi ® 7r(a)x,|| = \\ir(a)(Xi ® x ,>(a*) | |

we have that {//,} are isometrically isomorphic to the minimal left ideals {^4e,}.
Minimal left ideals are always closed so { Hi} are closed. More precisely //, is a
closed ir(A)-invariant subspace of H, where the x, are cyclic vectors for Ht, for all
i. Now, for any elements a, bin A we have that

iriae^x, = ir{a) • w(e,).x, = ir(a)(xt ® x,)x, = ^(a)jC; G /̂ ,-

and

ejb*aet G ̂ ey.4 n AetA = (0) (/ # ; ) .

Hence, if / ^ y, and ( , ) is the inner product on H, then

= (ir(eJb*aei)x,,xJ)

showing that Ht and Hj are orthogonal. Now, let mi be the restriction of m on //,.
Then 77, is irreducible since every non-zero vector of Ht is cyclic. In fact

{•7ri(A)ni(a)xi} = {iTi(A)'!Ti(ae^xi} = {^(Aae^x^

To prove that IT (a) = ®w,(a) (a G A), it is sufficient to show that H =
But, this is true since h e H implies ir(et)h e //, and therefore H = [•7r(s)H:s e

c i7.

This completes the proof that there is a family { w,} of irreducible subrepresen-
tations of w such that IT (a) is the direct sum of 7r,(a) (a G ^4).

Also, if we. denote T̂,. = { p(a)yl,: a G ̂ 4} and p, the restriction of p on #,, then
(as above) K = © A", and p(a) = ©p,(a) (a G A). Ht and iT, are isometrically
isomorphic since
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and therefore we may define a unitary operator Ut: Hi -» Kt by Uiir(a)xi =
p(a)>>,, so that If 7r,(a)t/* = p,(a) (a e A) for all /. The operator U = © If is
clearly a unitary operator from H onto K and

Uw(a)U* = 0 I/,«i(a)^.* = 0 p,(a) = p(a) (a eA).

REMARKS, (a) The assumptions that [ir(s)H:s e a] = H and [p(s)K:s e a] =
/f cannot be discarded, as the following example shows. Let H be an infinite
dimensional Hilbert space and A the C*-subalgebra of ^(H © H) defined as
follows:

« \I o \ where X e C, / is the identity
0 XI + K)' and Kis a compact operator on H

Let w be the identity representation of A on H © //, and p the representation of A
on H given

'((V
Clearly, the single elements of A are all elements of the form (Q°R) with R either
zero or rank one operator on H. We can easily see that IT and p carry single
elements to rank one operators. But there is no unitary operator U:H®H^>H.

(b) Erdos in [5, Theorem 3.7] proved that for an arbitrary C*-algebra^4 "there
exists an isometric representation w of A on a Hilbert space H such that the image
of each non-zero element has rank one". Along the lines of the proof of this
theorem it is shown that IT is the direct sum of irreducible representations, and
therefore one can reobtain Lemma 3 as a consequence of the referred to Theorem
3.7 of [5]. In our case Erdos's Theorem can be deduced from Lemma 3.

Ylinen, drawing upon the representation referred to in that theorem, proved the
following theorem [12].

THEOREM 4. Let A be a C *-algebra. Then there exists an isometric representa-
tion IT of A on a Hilbert space H such that t is compactly acting element of A, if and
only if, ir(t) is a compact operator on H. Furthermore, t is an element of the soc(A)
(i.e., the operator a —> tat on A has finite rank), if and only if, ir(t) is a finite rank
operator on H.

Suppose now, that IT is any faithful representation of a C*-algebra A on a
Hilbert space H. Choose any closed two-sided ideal J of A and define H7 =
[ir(J)H]. Clearly, since / is an ideal of A, H = Hj © Hf gives a decomposition
of H into reducing subspaces for TT(A). Define representations ITJ and irj- of A on
Hj and Hf to be the restrictions of IT on Hj and Hj- respectively. Then in a
natural sense we have that ir(a) = TTj(a) ffi irj- (a) (a e A) and a e J implies that
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iTj(a) = 0. Suppose now that / = c\(soc(A)) and m and p are two isometric
representations of A, acting on the Hilbert spaces H and K respectively (as in
Proposition 4). Define IT' and p' to be the representations on J given by
ir'(a) = iTj(a) and p'(a) = Pj(a) (a e J), respectively. Since J is separated by its
single elements, Lemma 3 implies that m' and p' are equivalent and hence by [1,
Theorem 1.3.4] their extensions TTJ and pj are also equivalent.

We summarize what we have just proved and discussed, in the following
theorem.

THEOREM 5. Let A be a C*-algebra and J = cl(soc(^)). Then there exists an
isometric representation IT of A on some Hilbert space H such that the image of each
non-zero single element has rank one. Moreover, if m and p are such representations
of A, then

(i) TTJ and pj are equivalent, and
(ii) a G J if and only if it (a) = ">(a) © 0 is a compact operator.
(iii) In particular, a e SOC(J4) if and only if IT {a) is a finite rank operator.

3. Applications

Theorem 5 gives us a method of investigating the properties of compactly
acting elements in C ""-algebras. For example, it can be used to introduce in an
arbitrary C*-algebra A, a class of elements analogous to von Neumann-Schatten
classes Cp of compact operators on a Hilbert space H, by a reduction to the
concrete case.

First, we need the following well-known proposition, which we state without
proof.

PROPOSITION 6. If K is any compact operator on some Hilbert space H, and {Tn}
a sequence in ^C(H) converging to T, say, in the strong operator topology, then the
sequence {TnK} converges to TKin the norm topology.

The following result is related to the spectral theorem for compact normal
operators on Hilbert spaces.

THEOREM 7. Let A be a C*-algebra and let a be a normal element in J =
cl(soc(v4)). Then a may be represented as a sum
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in which
(i) { rn} is a finite or a countable family of non-zero complex numbers consisting of

the non-zero elements of the spectrum of a (repeated according to their multiplicity).
(ii) { en } is a countable family of mutually orthogonal self-adjoint single idempo-

tents. We have, aen = ena = enaen = rnen, for each n; a is self-adjoint if and only if
each rn is real, and a is positive if and only if each rn > 0.

Such a representation (*) of a, having properties (i) and (ii) of Theorem 7, is
said to be a spectral representation of a.

PROOF. From Theorem 5, we have that a is in cl(soc(v4)) if and only if "n(a) is a
compact operator and a is normal, which is if and only if ir(a) is normal. By the
spectral theorem for compact operators we have that TT{O) = YXiPj where {A,} is
the sequence of distinct non-zero eigenvalues of IT (a), and Pt is the finite rank
projection upon the eigenspace corresponding to the eigenvalue A,. Every projec-
tion Pi is then the strong limit of polynomials in IT (a), i.e. there exists a sequence
of polynomials qn(-) such that qn(-n(a)) -* Pt (strongly). From Proposition 6 we
have qn(ir(a))'7r(A) -* Pt-n(a) (in norm). Since Ptir(a) = A,/*, we have
{\/\i)qn(ir(a))-n(a) -» Pt (in norm) and so, every projection Pt belongs to the
closed algebra generated by ir(a). Hence Pt e IT(A), and therefore for every i
there exists a self-adjoint idempotent/; in A such that P, = TT(/,). From Theorem
5, since the {/*,} are finite dimensional, we have that the {/,} are in soc(^4) and
therefore each /) is a finite sum of orthogonal self-adjoint single idempotents
fi = Lj eu say. Using Theorem 5 we obtain a = E, A,./. = E, A^E,- e,y) = E,E, A,e,7
and hence by a suitable modification of the notation, a = Hrnen. By multiplying
the above equality by en we have aen = ena = enaen = rnen. The latter part of the
Theorem is now clear.

REMARK. From Theorem 5 it follows that {/•„} in the spectral representation (*)
of the element a, in Theorem 7, does not depend on the choice of the representa-
tion m oiA.

If a is a non-zero element in cl(soc(y4)) then a*a is positive and clearly to
cl(soc(/l)) also. Let a*a = lLrnen be a spectral representation of a*a. The numbers
fa (denoted by sn(a)) are called the characteristic numbers of a.

DEFINITION 8. Let A be a C*-algebra. Define

(i) Ap={ae cl(soc(>t)): [ E n ^ ( a ) ] ^ < + » } (0 < p < oo) and Ax =
cl(soc(y4)),

(ii) for a G Ap, \\a\\p = [En s^a)]1^ (0 < p < oo) and for a e Ax, \\a\\x = \\a\\
= m&K{sn(a):n = 1,2,. . .}.
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From the above remark, || • \\p is well defined. An immediate consequence of
the above definition is the following.

COROLLARY 9. (i) a e Ap, if and only if, ir(a) e Cp.

Hence, by a reduction to the concrete case we can easily see that \\a\\p (p > 1)
is a norm on Ap making it a Banach space, and soc(v4) is a || • H^-dense subspace
of Ap. Well-known results for the Cp class can be extended to results for the Ap

class by means of Corollary 9.
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