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In this note, we study the effect of viscosity gradients on the energy dissipated by the
motion of microswimmers and the associated efficiency of that motion. Using spheroidal
squirmer model swimmers in weak linearly varying viscosity fields, we find that efficiency
depends on whether they generate propulsion from the back (pushers) or the front (pullers).
Pushers are faster and more efficient when moving down gradients, but slower and less
efficient moving up viscosity gradients, and the opposite is true for pullers. However, both
pushers and pullers display negative viscotaxis, therefore pushers dynamically tend to the
most efficient orientation, while pullers tend to the least. We also evaluate the effect of
shape on power expenditure and efficiency when swimming in viscosity gradients, and
find that in general, the change in both due to gradients decreases monotonically with
increasing slenderness. This work shows how shape and gait play an important role in
determining dynamics and efficiency in inhomogeneous environments, and demonstrating
that both efficiency minimizing and maximizing stable dynamical states are possible.

Key words: micro-organism dynamics

1. Introduction

Swimming microorganisms are widely found in nature and are important in a diverse array
of biological processes (Vogel 1996; Lauga 2016; Wadhwa & Berg 2022; Ishikawa &
Pedley 2023a,b). An understanding of the dynamics of microswimmers and other active
particles (biological or synthetic) in homogeneous Newtonian fluids is now reasonably
well developed (Brennen & Winet 1977; Lauga & Powers 2009; Yeomans, Pushkin
& Shum 2014; Elgeti, Winkler & Gompper 2015; Ishikawa 2024). However, natural
environments can often be quite complex and inhomogeneous (Bechinger et al. 2016;
Martínez-Calvo, Trenado-Yuste & Datta 2023).
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Inhomogeneity of fluid environments can arise due to spatial variations of different
physical quantities, including light (Jékely 2009), heat (Bahat et al. 2003), chemical
concentration and nutrients (Berg & Brown 1972; Berg 2004), and can lead to directed
motion, which is known as taxis. Natural bodies of water, such as lakes, ponds and
oceans, often have gradients in temperature or salinity, and these inhomogeneities can
also lead to a stratification of the mechanical properties of the fluid such as density and
viscosity (Stocker 2012). In response to gradients in viscosity, bacteria such as Leptospira
and Spiraplasma have been observed to perform positive viscotaxis by swimming up the
gradients (Kaiser & Doetsch 1975; Petrino & Doetsch 1978; Daniels, Longland & Gilbart
1980; Takabe et al. 2017), while Escherichia coli and Chlamydomonas reinhardtii perform
negative viscotaxis by swimming down the gradients (Sherman, Timkina & Glagolev
1982; Coppola & Kantsler 2021; Stehnach et al. 2021). A gradient in the viscosity of
the intestinal mucosal barrier is thought to control the spatial organization of intestinal
microbiota (Swidsinski et al. 2007).

While there is an obvious benefit associated with moving to an environment where
the energetic penalty of motion is lower, recent work has shown that such directed
motion can arise as an immediate consequence of interaction with an environment with
inhomogeneous mechanical properties. Inhomogeneity can break rotational symmetry,
and this leads naturally to reorientation in order to conserve angular momentum. In
pioneering work, Liebchen et al. (2018) showed that active particles, modelled as
linked spheres moving with a constant propulsive force, in weak viscosity gradients
exhibited positive viscotaxis due to the mismatch of viscous drag on the spheres. Further
investigations incorporated the impact of viscosity changes on propulsion using the
spherical (Datt & Elfring 2019; Shaik & Elfring 2021; Gong, Shaik & Elfring 2023) and
spheroidal (Gong, Shaik & Elfring 2024) squirmer models, which simulates a swimming
gait by a surface slip velocity. These studies found that the interaction between the
particle’s active slip and spatial variations of viscosity tends to dominate the dynamics
and typically results in negative viscotaxis, although the effect of the gradient decreases
with increased slenderness.

Changes in translational and rotational dynamics that arise as a consequence of viscosity
gradients are now relatively well understood, for both passive (Kamal & Lauga 2023;
Anand & Narsimhan 2024) and active (Gong et al. 2024) particles, but here we focus
on the power expended by microswimmers and any associated changes in efficiency that
are caused by the inhomogeneous environment. Even though some microswimmers are
capable of achieving higher speeds in viscosity gradients, we still need to quantify the
resultant changes in power expenditure in order to determine whether such motion is in fact
more efficient. We assess the efficiency of microswimmers using the Froude efficiency,
which is defined as the ratio of the power expended to simply drag a body of the same
shape to the power expended by propulsion (Lighthill 1952). This efficiency has been
used broadly to characterize different microswimmers in homogeneous Newtonian fluids
(Stone & Samuel 1996; Chattopadhyay et al. 2006; Ishimoto & Gaffney 2014), although
more recently, other efficiency measures have been proposed (Childress 2012; Nasouri,
Vilfan & Golestanian 2021; Daddi-Moussa-Ider, Golestanian & Vilfan 2023), to guarantee
a measure that can never exceed unity.

Several studies have investigated the efficiency of microswimmers in homogeneous
non-Newtonian environments. One study showed that pusher-type spherical squirmers
always expend more power and swim less efficiently than puller-type squirmers in
second-order fluids (De Corato, Greco & Maffettone 2015). In fluids with shear-thinning
properties, all types of two-mode spherical squirmers swim more slowly, expending less
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power with higher efficiency (Nganguia, Pietrzyk & Pak 2017), but by introducing a third
squirming mode, it is possible to design a microswimmer that can swim faster and more
efficiently in shear-thinning fluids. Specifically for mechanically inhomogeneous fluids, a
swimming sheet was shown to expend more power and move with reduced efficiency in
a viscosity stratified fluid in comparison to a homogeneous Newtonian fluid (Dandekar &
Ardekani 2020).

In this work, we aim to explore how viscosity gradients affect the swimming efficiency
of spheroidal squirmers in order to understand the role of swimming gait and shape on
power expended and efficiency in an inhomogeneous fluid. In what follows, we derive
analytical formulas for the energy expended by these microswimmers and the associated
efficiency assuming weak constant gradients in the viscosity.

2. Swimmers in viscosity gradients

2.1. The squirmer model
Microswimmers are modelled as squirmers in this research. The spherical squirmer model
is a classical hydrodynamic model for the motion of self-propelling particles, such as
protozoa or volvocine green algae, wherein the complex motions of ciliated surfaces are
represented as a tangential slip velocity on the surface of a spherical body (Lighthill 1952;
Blake 1971). The slip velocity is commonly written in terms of Legendre polynomials:

us = −
∞∑

n=1

2Bn

n(n + 1)
P′

n(p · n) p · (I − nn), (2.1)

where p is the swimming direction of the particle, Pn is the Legendre polynomial of
degree n, and n is a unit normal to the squirmer surface. The coefficients Bn, often called
squirming modes, can be related to Stokes flow singularity solutions (Pak & Lauga 2014).
The swimming velocity of a particle is determined by the B1 mode (here, we assume
B1 � 0), while the B2 mode sets the magnitude of the force dipole, the slowest decaying
contribution to the far-field flow.

Since many organisms are elongated in shape, such as Paramecium caudatum or
Opalina, the squirmer model was extended to accommodate spheroidal geometries by
Keller & Wu (1977), and the streamlines predicted by their spheroidal model indeed
closely matched the experimental streak photographs of Paramecium caudatum. The
original model by Keller & Wu (1977) included only the first squirming mode, and
latter studies added a force-dipole mode to better represent other types of microswimmers
(Gaffney et al. 2011; Ishimoto & Gaffney 2014; Theers et al. 2016). We use the two-mode
spheroidal squirmer here to represent prolate spheroidal active swimmers (Theers et al.
2016; van Gogh et al. 2022; Gong et al. 2024). The slip velocity on the surface of a prolate
spheroidal squirmer can be expressed as

us = −B1(s · p) s − B2

a
(r · p)(s · p)s, (2.2)

where r is a vector from the centre of the particle to a point on the surface, while s is the
unit tangent at that point (see figure 1). This form is equivalent to the formula in (2.1)
for a sphere with only two modes. Recent research points out that the swimming speed
and stresslet of such a squirmer are influenced by more than just the B1 and B2 modes
(Pöhnl, Popescu & Uspal 2020); however, these additional modes significantly affect the
outcome only when the particle is notably slender. For most practical cases, the two-mode
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Figure 1. Schematic of a spheroidal squirmer swimming in a constant viscosity gradient ∇η. Here, p
represents the swimming direction of the swimmer.

prolate squirmer model (Theers et al. 2016; Qi et al. 2020; Chi et al. 2022; van Gogh
et al. 2022; Gong et al. 2024) suffices to capture swimming dynamics. Thus identifying
the coefficients B1 and B2 completely determines the swimming mechanism here.

It is common to define the squirming ratio β = B2/B1, in which case the sign of
β determines whether the propulsion of the swimmer originates from its front or rear.
Organisms like Escherichia coli, which generate propulsion from their rear, are classified
as pushers and are characterized by β < 0. Conversely, organisms that draw fluid towards
them from the front, such as Chlamydomonas reinhardtii, are known as pullers and are
characterized by β > 0. There are also swimmers whose propulsion mechanisms are not
predominantly directed from the front or the rear; one example is Volvox carteri, which
has flagella evenly distributed across its spherical surface. For these organisms, referred to
as neutral swimmers, β = 0.

2.2. Newtonian fluid with viscosity gradients
We endeavour to find the power expended by an active particle swimming in a Newtonian
fluid with a spatially varying viscosity, and thereafter determine the efficiency of that
motion. The active particle is modelled as a prolate spheroid. The spheroid is an
axisymmetric ellipsoid with two equal-length equatorial semi-axes b and one longer polar
semi-axis a (b � a). The eccentricity

e =
√

1 − b2

a2 (2.3)

represents the slenderness of the particle. When e = 0 (b = a), the particle is a sphere
with radius a. The swimming direction p of the particle is the direction of its major axis.

Viscosity variations in fluids are caused by similar variations in temperature, salinity,
nutrient or polymer concentrations that often occur over length scales much larger than the
swimming microorganisms. For instance, the viscosity variations in microfluidic channels
occur over 102–103 μm, while those in oceans, lakes and ponds occur over several metres
to kilometres. Generally, it is reasonable to assume that viscosity varies linearly at the
scale of small (μm-sized) organisms considered here, and indeed such local to particle
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viscosity variations have been shown to largely capture changes in particle dynamics
(Shaik & Elfring 2021). Moreover, one can also achieve close to linear viscosity profiles
in microfluidic channels (Stehnach et al. 2021). Hence we consider a linearly varying
viscosity field η(x) varying over a large macroscopic length scale L such that

∇η = η∞
L

d, (2.4)

where η∞ is the viscosity at an arbitrary point near the particle, and d is the unit
direction of the viscosity gradient. Defining the dimensionless parameter ε = a/L � 1
that characterizes the size of the particle vs the length scale of the gradient, we can write
∇η = ε(η∞/a)d.

The flow around the particle in a Newtonian fluid with a spatially varying viscosity at
low Reynolds number is governed by the continuity equation and Cauchy’s equation of
motion:

∇ · u = 0, (2.5)

∇ · σ = 0, (2.6)

where u is the velocity field, and σ = −pI + η(x) γ̇ is the stress tensor. Here, p is the
pressure, and γ̇ = ∇u + (∇u)T is twice the strain-rate tensor. Defining an extra stress

τNN = (η(x)− η∞)γ̇ , (2.7)

we can alternatively write the stress tensor as

σ = −pI + η∞γ̇ + τNN . (2.8)

The boundary conditions on the flow field are that far away from the particle, the
disturbance flow generated by the microswimmer should decay, which means that

u → 0 as |r| → ∞. (2.9)

While on the particle surface (denoted by Sp), the fluid velocity u should satisfy no-slip
conditions

u(x ∈ Sp) = U + Ω × r + us. (2.10)

The slip velocity us is prescribed by (2.2), while the translational and rotational
velocities, U and Ω , are determined by satisfying the additional constraints that since the
microswimmers are considered as neutrally buoyant, there is no external force or torque
acting on the particle, and in the absence of particle inertia, the hydrodynamic force and
torque on the particle must both vanish:

F =
∫

Sp

n · σ dS = 0, (2.11)

L =
∫

Sp

r × (n · σ ) dS = 0. (2.12)

The power P expended by swimmer in its motion through the fluid is written as

P = −
∫

Sp

n · σ · u dS = −
∫

Sp

n · σ · us dS, (2.13)

where the latter form comes from substitution of the boundary conditions (2.10) and
application of the force- and torque-free conditions. Alternatively, an application of the
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divergence theorem yields the power expended by the swimmer in terms of the viscous
dissipation in the fluid volume V in which the swimmer is immersed:

P =
∫
V

σ : ∇u dV = 1
2

∫
V
η(x) γ̇ : γ̇ dV. (2.14)

Lighthill (1952) defined the efficiency E of a particle swimming at low Reynolds number
as the ratio of the power P̂ required to simply drag the particle (as a rigid body) at the same
velocity as it swims, to the power expended by swimming P , in other words,

E = P̂
P . (2.15)

The towing power P̂ in (2.15) is given by

P̂ = −F̂ · U − L̂ · Ω, (2.16)

where the hydrodynamic force F̂ and torque L̂ due to undergoing the rigid-body motion
with velocities U and Ω can be written as(

F̂
L̂

)
= −

(
RFU RFΩ

RLU RLΩ

)
·
(

U
Ω

)
, (2.17)

where (RFU ,RFΩ ,RLU ,RLΩ) are rigid-body resistance tensors dependent on the
eccentricity e, the orientation vector p, and the viscosity gradient ∇η. The detailed
expressions are given in Appendix B.

3. Asymptotic analysis

Since the gradient in viscosity is considered weak, as characterized by ε � 1, we expand
all flow terms {u, σ , τNN, γ̇ ,P, P̂, E} assuming a regular perturbation expansion in ε, for
example, u = u0 + εu1 + O(ε2).

The spatially varying viscosity field can be written in terms of the centre of the
particle xc as

η(x) = η(xc)+ (x − xc) · ∇η = η(xc)+ ε
η∞
a

d · (x − xc). (3.1)

The centre of the particle need not necessarily be in the plane X∞ where
η(x) = η∞, but we can always define η∞ near the particle such that the distance
|d · (x − xc)|/a � O(1/ε) for x ∈ X∞, hence η(xc) = η∞ + O(ε).

3.1. Homogeneous fluids
At leading order, ε → 0, the viscosity is homogeneous, so we simply have an active
particle swimming in a Newtonian fluid with a constant viscosity. The corresponding
flow field is well known, for both spherical and spheroidal active particles, and given
in Appendix A. According to (2.14), the leading-order value of power dissipation has the
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form

P0 = 1
2

∫
V
η∞γ̇ 0 : γ̇ 0 dS. (3.2)

Evaluating the integral, we obtain

P0 = πaη∞(A + Bβ2)B2
1, (3.3)

where the terms A and B are functions of only the eccentricity and have the form

A = 2(1 − e2)[−2e + (1 + e2)Le]
e3 , (3.4)

B= −8e2(45 − 51e2 + 8e4)+ 24e(15 − 22e2 + 7e4)Le + 6(−15 + 27e2 − 13e4 + e6)L2
e

3e5[6e + (−3 + e2)Le]
,

(3.5)

Le = ln((1 + e)/(1 − e)). (3.6)

Keller & Wu (1977) derived the above result for a neutral spheroidal squirmer, but here
we have added the contribution of the second mode to obtain a formula valid for pushers
and pullers. When e → 0, A = 16/3 and B = 8/3, and we obtain the result for a spherical
squirmer derived by Lighthill (1952) and Blake (1971):

P0,sphere = 8
3π(2 + β2)η∞aB2

1 = 6πaη∞(2 + β2)U2
0,sphere, (3.7)

where U0,sphere = 2B1/3 is the swimming speed of a spherical squirmer in Newtonian
fluid with uniform viscosity. Here, A and B are monotonically decreasing functions of
eccentricity, meaning that power diminishes as a spheroidal squirmer becomes more
slender, and when e → 1, A = B = 0, meaning that an infinitely slender squirmer requires
no power to move (with speed equal to B1) through a homogeneous Newtonian fluid.

The efficiency at leading order is

E0 = P̂0

P0
= U0 · R(0)FU · U0 + Ω0 · R(0)LΩ · Ω0

P0
. (3.8)

Using classic results of the rigid-body resistance (see Appendix B) and the velocity of a
spheroidal squirmer in a homogeneous Newtonian fluid (Keller & Wu 1977),

U0 = 2e − (1 − e2)Le

2e3 B1p, (3.9)

Ω0 = 0, (3.10)

we obtain the efficiency

E0 = F
A + Bβ2 , (3.11)

where

F = 4[2e + (−1 + e2)Le]2

e3[−2e + (1 + e2)Le]
(3.12)
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is a monotonically decreasing function of slenderness e. When e → 0, F = 8/3 and we
obtain the classic efficiency of a two-mode spherical squirmer,

E0,sphere = 1
2 + β2 . (3.13)

In the slender limit, E0(e → 1) = 3/β2, meaning that efficiency is finite given the
presence of the wasteful B2 mode.

3.2. Effect of gradients
The effect of viscosity variations on the power dissipation in (2.14) are captured at O(ε)
by

ε P1 = 1
2

∫
V
(η(x)− η∞)γ̇ 0 : γ̇ 0 dV. (3.14)

Terms involving γ̇ 1 are identically zero due to the force- and torque-free condition (De
Corato et al. 2015; Nganguia et al. 2017), so power at this order involves only integrating
the leading-order homogeneous flow field. Similarly, the particle dynamics in viscosity
gradients can be written as an integral of the leading-order flow field, although against a
different kernel (Gong et al. 2024), hence as the efficiency depends on power and particle
dynamics, it can also be found from the leading-order homogeneous flow field. With the
above formula, we obtain the power dissipation, valid up to O(ε):

P = π(A + Bβ2) η(xc) aB2
1 + πa2CB2

1β(p · ∇η), (3.15)

where

C = 4(−1 + e2)[6e + (−3 + e2)Le]
e5 (3.16)

is a monotonically decreasing function of eccentricity. Taking the limit e → 0, C = 32/15
and we obtain for a sphere that

Psphere = 8
3

π(2 + β2) η(xc) aB2
1 + 32

15
πa2B2

1β(p · ∇η). (3.17)

What we see is that pushers (β < 0) require less power to swim up viscosity gradients,
and more to swim down viscosity gradients, in comparison to a homogeneous fluid, while
the opposite is true for pullers (β > 0). Neutral squirmers (β = 0) do not see a change in
power. The reason for this change in power expended can be understood in terms of the
change in speed experienced by the squirmers. Previous research (Datt & Elfring 2019;
Gong et al. 2024) showed that pushers generate more thrust and thus swim faster and
dissipate more energy when moving down viscosity gradients; conversely, they generate
less thrust, swim slower and dissipate less energy when moving up viscosity gradients.
The opposite is true for pullers.

A spheroidal squirmer always dissipates less power (for the same B1 and B2 values) as
A, B and C are all monotonically decreasing functions of the slenderness e, that all go to
zero when e → 1.
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The correction to the efficiency, at O(ε), can be written as

E1 = P̂1

P0
− E0

P1

P0
. (3.18)

From Appendix B, we know that RFU , RLΩ are O(1) at the leading order, while RFΩ ,RLU
are O(ε) as a result:

P̂1 = 2U1 · R(0)FU · U0 + U0 · R(1)FU · U0. (3.19)

The correction to particle velocities due to viscosity variations, U1 and Ω1, are from Gong
et al. (2024):

U1 = −B2

5
(XUI − YU3pp) · d, (3.20)

Ω1 = − 1
2a

XΩU0 × d, (3.21)

where

XU = 5[−6e + 4e3 + 3(1 − e2)Le][−6e + 10e3 + 3(1 − e2)2Le]
24e5[6e − (3 − e2)Le]

, (3.22)

YU = 5[−6e + 4e3 + 3(1 − e2)Le][−18e + 6e3 + (9 − 6e2 + 5e4)Le]
72e5[6e − (3 − e2)]

, (3.23)

XΩ = (1 − e2)[−2e + (1 + e2)Le]
(2 − e2)[2e − (1 − e2)Le]

. (3.24)

However, note that Ω1 is not needed for P̂1. Substituting P̂1 and P1 from (3.15) into (3.18),
we can calculate the efficiency valid to O(ε) as

E = F
A + Bβ2 + ε

G + Hβ2

(A + Bβ2)2
β(p · d), (3.25)

where G (for e < 0.964) and H are monotonically decreasing function of slenderness:

G = 8(1 − e2)[2e + (−1 + e2)Le][8e3(45 + 3e2 + 2e4)− 4e2(135 − 84e2 + 5e4 + 4e6)Le

+ 2e(135 − 177e2 + 51e4 + 5e6 + 2e8)L2
e − 3(1 − e2)2(15 + e4)L3

e]

× {3e8[6e + (−3 + e2)Le][−2e + (1 + e2)Le]}−1, (3.26)

H = 4[2e + (−1 + e2)Le]

× [8e2(45 − 51e2 + 8e4)− 24e(15 − 22e2 + 7e4)Le

− 6(−15 + 27e2 − 13e4 + e6)L2
e]

× [4e2(−9 + 3e2 + 2e4)− 4e(−9 + 6e2 + e6)Le + 3(−3 + 3e2 − e4 + e6)L2
e]

× {9e10[6e + (−3 + e2)Le]2[−2e + (1 + e2)Le]}−1. (3.27)

For spheres, e → 0, the efficiency simplifies to

Esphere = 1
2 + β2 + ε

8 + 6β2

5(2 + β2)2
β(p · d). (3.28)
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Figure 2. Variation of (a) relative power expenditure and (b) swimming efficiency of a swimmer moving down
viscosity gradients with squirming ratio β and eccentricity e. Power expenditure is evaluated by choosing the
viscosity at the centre of the swimmer as η∞ (η(xc) = η∞).

The essential message of these formulas is that, similar to speed and power, the
correction to efficiency due to viscosity gradients is proportional to β(p · d), meaning
that, for example, when swimming down viscosity gradients, pushers are faster and expend
more power, but are more efficient, while pullers are slower, expend less power and are
less efficient. These trends are illustrated in figure 2, which shows the variation of relative
power and efficiency as a function of β for various eccentricities e. The opposite is true
when swimming up viscosity gradients; however, we know that swimming up viscosity
gradients is dynamically unstable, and all squirmers tend to perform negative viscotaxis.

In deriving these formulas, we have assumed that the background viscosity remains
fixed even in the presence of the particle. However, variations in viscosity generally arise
from variations in an underlying field that affects the viscosity, such as temperature, salt
or nutrient concentration, and taking into account the effect of boundary conditions on the
surface of the particle in relation to the underlying field will then lead to changes in the
viscosity. In Appendix C, we determine the effects of imposing a ‘no-flux’ condition for
viscosity at the surface of the particle, and the associated effects on power expended and
efficiency. Although there are quantitative differences in the parameters, the qualitative
picture described above remains unchanged.

We have also neglected the higher-order (n > 2) squirming modes. The higher-order
modes do not affect the velocity of a spherical squirmer in a homogeneous fluid (Lighthill
1952; Blake 1971) or in viscosity gradients (Datt & Elfring 2019; Shaik & Elfring
2021). But they do affect the velocity of a spheroidal squirmer in homogeneous fluids
(Pöhnl et al. 2020), and we expect the effect to persist even in viscosity gradients.
However, higher-order modes affect power dissipation and swimming efficiency in all
cases, regardless of the presence of viscosity gradients or swimmer shape. In Appendix D,
we give general formulas for power dissipation and efficiency for arbitrary spherical
squirmers, and from those equations, we see that the effect of higher-order modes generally
diminishes rapidly with the mode number n, and so may often be reasonably neglected.
However, the presence of additional modes can substantially change the picture depending
on the magnitude of the higher modes. For example, a three-mode pusher swimming down
the viscosity gradients can dissipate more or less power and swim more or less efficiently
as compared to in homogeneous fluids. We expect these broad insights on the effect
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of higher-order modes for a spherical squirmer to translate qualitatively to a spheroidal
squirmer.

4. Conclusion

In this work, we derived analytical formulas for the power expended by spheroidal
squirmers swimming in linearly varying viscosity fields, and the associated efficiency
of that motion. We found that pushers are faster and more efficient when moving down
gradients, but slower and less efficient moving up viscosity gradients, and the opposite is
true for pullers. We also evaluated the effect of shape on power expenditure and efficiency
when swimming in viscosity gradients, and found that the change in both due to gradients
diminishes monotonically with increasing slenderness.

Swimming down viscosity gradients is favourable for pushers because they generate
thrust from the rear, where the viscosity is highest, which leads to faster swimming and
thus a greater level of power expenditure; however, the energetic cost of this boost is lower
(relative to rigid body motion) in comparison to a homogeneous fluid, thus the increase in
efficiency. While both pushers and pullers can minimize or maximize efficiency depending
on orientation relative to the gradient, both display negative viscotaxis, which means that
pushers dynamically tend to the most efficient orientation while pullers tend to the least.
However, this conclusion is sensitive to geometry. For example, if we construct a pusher
made from a very thin ‘tail’ that generates thrust, and a large head that bears the majority
of the drag, then this sort of swimmer would display positive viscotaxis (Gong et al.
2024), and be efficiency minimizing. This shows how shape and gait play a critical role in
driving dynamics in inhomogeneous environments, and how both efficiency minimizing
and maximizing dynamical states can be stable depending on the specific shape and gait.
This raises questions about whether organisms might adjust their swimming gait in light
of this fact. Finally, we note that while a puller is less efficient moving down a viscosity
gradient in comparison to a homogeneous fluid of the same viscosity, it will still be
energetically preferable to move to the region of lower viscosity, even if the instantaneous
dynamics is slower and less efficient.
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Appendix A. An active prolate spheroid in Stokes flow

The flow field u0 of an active spheroid swimming in a Newtonian fluid with uniform
viscosity can be expressed in terms of a stream function ψ0 (Keller & Wu 1977; Theers
et al. 2016; van Gogh et al. 2022) as

u0 = 1

c2
√
ζ 2

1 − ζ 2
2

⎛⎝ 1√
ζ 2

1 − 1

∂ψ0

∂ζ2
eζ1 − 1√

1 − ζ 2
2

∂ψ0

∂ζ1
eζ2

⎞⎠ , (A1)

using prolate spheroid coordinates O′ζ1ζ2φ, where O′ is the centre of the spheroid at xc.
The spheroidal coordinate system can be related to a particle-aligned Cartesian coordinate
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system O′X1X2X3 as follows:

X1 = c
√
ζ 2

1 − 1
√

1 − ζ 2
2 cosφ,

X2 = c
√
ζ 2

1 − 1
√

1 − ζ 2
2 sinφ,

X3 = cζ1ζ2,

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (A2)

where 1 � ζ1 < ∞, −1 � ζ2 � 1 and 0 � φ < 2π. Here, c = √
a2 − b2 is half of the

focal length. We can define ζ̃1 = 1/e, with ζ1 > ζ̃1 corresponding to the fluid domain
exterior to the surface ζ1 = ζ̃1 of the particle.

The stream function ψ0 has the solution

ψ0 = C1 H2(ζ1)G2(ζ2)+ C2ζ1(1 − ζ 2
2 )

+ C3 H3(ζ1)G3(ζ2)+ C4ζ2(1 − ζ 2
2 )+ 1

2 U0c2(ζ 2
1 − 1)(1 − ζ 2

2 ). (A3)

Here, Hn(x) and Gn(x) are Gegenbauer functions of the first and second order of degree
−1/2 (Theers et al. 2016). The coefficients Cn are

C1 = 2c2 U0(ζ̃
2
1 + 1)− 2B1ζ̃

2
1

−ζ̃1 + (1 + ζ̃ 2
1 ) coth−1 ζ̃1

,

C2 = c2 B1ζ̃1[ζ̃1 − (ζ̃ 2
1 − 1) coth−1 ζ̃1 − U0]

−ζ̃1 + (1 + ζ̃ 2
1 ) coth−1 ζ̃1

,

C3 = c2 4B2ζ̃1

3ζ̃1 + (1 − 3ζ̃ 2
1 ) coth−1 ζ̃1

,

C4 = c2 B2ζ̃1[2/3 − ζ̃ 2
1 + ζ̃1(ζ̃

2
1 − 1) coth−1 ζ̃1]

3ζ̃1 + (1 − 3ζ̃ 2
1 ) coth−1 ζ̃1

,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A4)

and U0 = |U0| is given in (3.9).

Appendix B. Resistance tensor for a passive prolate spheroid in viscosity gradient

Here, we derive the resistance tensor for a spheroidal particle undergoing rigid-body
motion in a fluid with a linearly varying viscosity field. We follow steps similar to those
shown in a previous paper deriving the mobility of a spheroidal particle in a viscosity
gradient (Gong et al. 2024), and likewise, we use compact six-dimensional vectors
for velocities U = (U,Ω)T and forces and torques F̂ = (F̂ , L̂)T to simplify formulas.
Following the notation of this paper, the hat notation corresponds to values associated
with rigid-body motion.

The resistance tensor to leading order, R(0)FU , corresponding to a homogeneous fluid
with uniform viscosity η∞, is well known and given by Kim & Karilla (1991).
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Swimming efficiency in viscosity gradients

The hydrodynamic force and torque in a viscosity gradient can be written as

F̂ = −R(0)FU · U + F̂ NN . (B1)

The ‘extra’ hydrodynamic force and torque corresponding to the extra stress τ̂NN from the
gradient can be shown, by the reciprocal theorem, to be

F̂ NN = −
∫
V

τ̂NN : Ê(0)U dV, (B2)

where the operator Ê(0)U corresponds to the rate of strain tensor in a homogeneous fluid,

ˆ̇γ 0 = 2Ê(0)U · U, (B3)

and may be calculated with the flow field due to a spheroid undergoing rigid-body motion
in a homogeneous Newtonian fluid, given by Kim & Karilla (1991). Substituting τ̂NN =
(η(x)− η∞)̂̇γ into the equation above, and expanding terms in powers of ε, we obtain

F̂ NN = −
∫
V

2(η(x)− η∞)Ê(0)U : Ê(0)U · U dV + O(ε2), (B4)

hence we can identify

εR(1)FU =
∫
V

2(η(x)− η∞)Ê(0)U : Ê(0)U dV. (B5)

Combining terms, the resistance tensor accurate to O(ε) is RFU = R(0)FU + εR(1)FU ,
where

RFU =
(

RF U RFΩ

RLU RLΩ

)
, (B6)

and RFΩ = RT
LU . The resistance depends on the eccentricity e, the orientation vector p,

and the viscosity gradient ∇η. Detailed expressions for all couplings in (B6) are

RFU = 6π η(xc) a[X App + YA(I − pp)], (B7)

RLΩ = 8π η(xc) a3[XCpp + YC(I − pp)], (B8)

RFΩ = R�
LU = ε6πη∞a2[λ1(d × I)+ λ2(p · d)(p × I)+ λ3p(d × p)], (B9)
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where

λ1 = 16e3(1 − e2)

9[−2e + (1 − 3e2)Le]
, (B10)

λ2 = 8[6e4(1 − e2)+ e3(−3 + 4e2 + 3e4)Le]
9[−2e + (1 + e2)Le][−2e + (1 − 3e2)Le]

, (B11)

λ3 = 4[e5(36 − 28e2)+ e4(−36 + 40e2 + 4e4)Le + e3(9 − 13e2 − e4 + 5e6)L2
e]

9[−2e + (1 + e2)Le]2[−2e + (1 − 3e2)Le]
,

(B12)

X A = 8e3

3[−2e + (1 + e2)Le]
, (B13)

YA = 16e3

3[2e + (3e2 − 1)Le]
, (B14)

XC = 4e3(1 − e2)

3[2e − (1 − e2)Le]
, (B15)

YC = 4e3(2 − e2)

3[−2e + (1 + e2)Le]
(B16)

are functions of eccentricity e.

Appendix C. Disturbance viscosity effects

Variations in viscosity generally arise from variations in an underlying field that affects the
viscosity, such as temperature, salt or nutrient concentration. Taking into account the effect
of boundary conditions on the surface of the particle in relation to the underlying field will
then lead to changes in the viscosity. For example, in an otherwise linear salt concentration
field, the presence of a particle will disrupt the field due to salt impermeability. Although
these disturbances diminish with distance from the particle, the disturbance does have a
leading-order effect on the dynamics of the active particle (Shaik & Elfring 2021).

Here, we determine the power dissipation and swimming efficiency, factoring in the
disturbance to viscosity due to the application of a no-flux condition at the particle’s
surface. The total viscosity field can be represented as the superposition of an ambient
viscosity field (denoted as η0) and a disturbance viscosity field (denoted by a prime):

η = η0 + η′. (C1)

The boundary conditions on the disturbance viscosity field η′ are that the disturbance
viscosity should diminish in the far-field region:

η′ → 0 as |r| → ∞. (C2)

The transport of scalar fields, such as temperature, salt or nutrient concentrations, can be
characterized using an advection–diffusion equation. When variations in these scalar fields
are minimal, changes in viscosity can be modelled with a similar advection–diffusion
equation. For slow-moving microswimmers in environments with highly diffusive scalar
fields, such as temperature or salt concentration, advection is minimal, resulting in the
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viscosity distribution following the Laplace equation. Since the ambient viscosity field is
linear, the disturbance viscosity field must also conform to the Laplace equation,

∇2η = ∇2η′ = 0. (C3)

The disturbance viscosity field is also governed by the boundary conditions on the
particle’s surface. We consider the surface to be impermeable to salt or insulated against
temperature changes, and this leads to an associated ‘no-flux’ condition for viscosity at the
particle’s boundary,

n · ∇η = 0 on Sp. (C4)

Supposing that the ambient viscosity field is along e1, the mathematical expression of
the disturbance viscosity field η′ in a particle-aligned coordinate is

η′ = A1,0 P0
1(ζ2)Q0

1(ζ1)+ A1,1 P1
1(ζ2)Q1

1(ζ1) cos(φ), (C5)

where

A1,0 = εη∞p1
2e(1 − e2)

[2e − (1 − e2)Le]
, (C6)

A1,1 = εη∞
√

1 − p2
1

2e(1 − e2)

[2e − 4e3 − (1 − e2)Le]
. (C7)

Here, p1 = p · e1, and Pm
k and Qm

k denote the associated Legendre polynomials of the first
and second kinds, with degree k and order m. Their detailed mathematical formulations
can be found in Abramowitz & Stegun (1964).

The power dissipation of a prolate spheroidal squirmer with a no-flux condition is, to
first order,

P = π(A + Bβ2) η(xc) aB2
1 + πa2Cnf B2

1β(p · ∇η), (C8)

where

Cnf = 8(−1 + e2)[6e + (−3 + e2)Le]
e2[2e + (−1 + e2)Le]

(C9)

is a monotonically decreasing function of eccentricity. For a sphere, e → 0, Cnf = 16/5,
and we have

Pnf
sphere = 8

3π(2 + β2) η(xc) aB2
1 + 16

5 πa2B2
1β(p · ∇η). (C10)

The corresponding swimming efficiency up to O(ε) is

E = F
A + Bβ2 + ε

Gnf + Hnfβ2

(A + Bβ2)2
β(p · d), (C11)

where

Gnf = 8(1 − e2)[8e3(45 + 87e2 − 32e4)+ 4e2(−135 − 36e2 + 19e4 + 32e6)Le

+ (270e−426e3+402e5−182e7)L2
e + (−45+186e2−212e4+54e6+17e8)L3

e

− 12e(1 − e2)2(1 + e2)L4
e] × {3e5[6e + (−3 + e2)Le][−2e + (1 + e2)Le]}−1,

(C12)
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Hnf = 8[−4e2(45−51e2+8e4)+12e(15−22e2+7e4)Le−3(15−27e2+13e4−e6)L2
e]

× [4e2(63−87e2+32e4)−4e(63−96e2+37e4)Le+(63−81e2+e4+17e6)L2
e

− 12e(1 − e2)2L3
e] × {9e7[6e + (−3 + e2)Le]2[−2e + (1 + e2)Le]}−1. (C13)

Here, Gnf (for e < 0.954) and Hnf are monotonically decreasing functions of slenderness,
and they both vanish when e → 1. For a sphere, we obtain

Enf
sphere = 1

2 + β2 + ε
14 + 13β2

10(2 + β2)2
β(p · d). (C14)

We see that taking into account the disturbance viscosity due to a no-flux boundary
condition does not change the qualitative picture when compared to the effects of ambient
viscosity alone.

Appendix D. Higher-order modes

A spherical squirmer with an arbitrary number of squirming modes Bn expends power

Psphere =
(

16
3

B2
1 +

∞∑
n=2

16
n(n + 1)

B2
n

)
π η(xc) a

+
(

32
15

B1B2 +
∞∑

n=2

32
(n + 1)(2n + 1)

BnBn+1

)
πa2(p · ∇η), (D1)

and swims with efficiency

Esphere = B2
1

2B2
1 +

∞∑
n=2

6
n(n + 1)

B2
n

+ ε(p · d)

8
5

B3
1B2 +

∞∑
n=2

(
36

5n(n + 2)
B1B2B2

n − 12
(n + 1)(2n + 1)

B2
1BnBn+1

)
(

2B2
1 +

∞∑
n=2

6
n(n + 1)

B2
n

)2 .

(D2)
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