Bull. Aust. Math. Soc. 89 (2014), 259–264 doi:10.1017/S0004972713000415

A NEW UPPER BOUND FOR $|\zeta(1 + it)|$

TIMOTHY TRUDGIAN

(Received 7 March 2013; accepted 31 March 2013; first published online 13 June 2013)

Abstract

It is known that $\zeta(1 + it) \ll (\log t)^{2/3}$ when $t \gg 1$. This paper provides a new explicit estimate $|\zeta(1 + it)| \le \frac{3}{4} \log t$, for $t \ge 3$. This gives the best upper bound on $|\zeta(1 + it)|$ for $t \le 10^{2 \cdot 10^5}$.

2010 *Mathematics subject classification*: primary 11M06. *Keywords and phrases*: Riemann zeta-function, critical strip, exponential sums.

1. Introduction

For $s = \sigma + it$ and $\sigma > 1$ one defines the Riemann zeta function to be $\zeta(s) = \sum_{n=1}^{\infty} n^{-s}$. The zeta function can be continued analytically to the entire complex plane with the exception of the solitary point s = 1. For more properties on $\zeta(s)$ the reader is referred to [7, Ch. 2].

Mellin [5] (see also [7, Theorem 3.5]) was the first to show that

$$\zeta(1+it) \ll \log t. \tag{1.1}$$

This was improved by Littlewood (see [7, Theorem 5.16]) to

$$\zeta(1+it) \ll \frac{\log t}{\log \log t}.$$
(1.2)

This was improved in turn by several authors; the best known result (see [7, Equation (6.19.2)]) is

$$\zeta(1+it) \ll (\log t)^{2/3}.$$
(1.3)

As usual, the Riemann hypothesis gives a stronger result, $\zeta(1 + it) \ll \log \log t$ when $t \gg 1$ (see [7, Section 14.18]).

As far as explicit results are concerned, Backlund [1] made (1.1) explicit by proving that

$$|\zeta(1+it)| \le \log t,\tag{1.4}$$

Supported by ARC Grant DE120100173.

© 2013 Australian Mathematical Publishing Association Inc. 0004-9727/2013 \$16.00

T. Trudgian

for $t \ge 50$. Ford [3] has made (1.3) explicit by proving that

$$|\zeta(1+it)| \le 72.6(\log t)^{2/3},\tag{1.5}$$

for $t \ge 3$. Ford's result is actually much more general: he obtains excellent bounds for $|\zeta(\sigma + it)|$ where σ is near 1. Should one be interested in a bound only on $\sigma = 1$, one can improve on (1.5) slightly. The integral inequality on [3, page 622], originally verified for $y \ge 0$, can now be evaluated at y = 0 only. This shows that $|\zeta(1 + it)| \le 62.6(\log t)^{2/3}$. Note that this improves on (1.4) when $t \ge 10^{10^5}$. Without a complete overhaul of Ford's paper it seems unlikely that his methods could furnish a bound superior to (1.4) when t is at all modest, say $t \le 10^{100}$.

To the knowledge of the author there is no explicit bound of the form (1.2). One could follow the arguments of [7, Section 5.16] to produce such a bound, though this leads to a result that only improves on (1.4) when *t* is astronomically large. However, one can still use the ideas in [7, Section 5.16] to re-prove (1.1). Indeed, if one were lucky, as the author was, one may even be able to supersede (1.4). This fortune is summarised in the following theorem.

THEOREM 1.1. When $t \ge 3$,

$$|\zeta(1+it)| \le \frac{3}{4}\log t.$$

Good explicit bounds on $|\zeta(1 + it)|$ enable one to bound the zeta function more effectively throughout the critical strip. Since, for $\sigma > 1$,

$$|\zeta(\sigma+it)| = \bigg|\sum_{n=1}^{\infty} \frac{1}{n^{\sigma+it}}\bigg| \leq \sum_{n=1}^{\infty} \frac{1}{n^{\sigma}} = \zeta(\sigma),$$

one has a bound for the zeta function to the right of the line $\sigma = 1$. By the functional equation (see [7, Section 2.1]) this bounds the zeta function to the left of the line $\sigma = 0$. One may now apply the Phragmen–Lindelöf theorem to bound $\zeta(\sigma + it)$ in $-\eta \le \sigma \le 1 + \eta$ for some fixed positive η . This leads to a bound of the type $\zeta(\sigma + it) \ll t^{(1+\eta-\sigma)/2}$. This bound throws away rather a lot of information since we know that $\zeta(1 + it) \ll \log t$.

It is better to bound $\zeta(\sigma + it)$ for $-\eta \le \sigma \le 1 + \eta$ by dividing this strip into three strips

$$\{s: -\eta \le \sigma \le 0\} \cup \{s: 0 \le \sigma \le 1\} \cup \{s: 1 \le \sigma \le 1 + \eta\}$$

and applying the bound on $\zeta(1 + it)$, and that of $\zeta(it)$, obtained from the functional equation, on each strip. Indeed, Theorem 1.1 has been used in [8] to improve the estimate on $\zeta(s)$ for $-\eta \le \sigma \le 1 + \eta$.

Throughout this paper $\lfloor x \rfloor$ and $\{x\}$ denote respectively the integer part and the fractional part of *x*.

2. Backlund's result

To prove (1.4) consider $\sigma > 1$ and t > 1, and write $\zeta(s) - \sum_{n \le N} n^{-s} = \sum_{N < n} n^{-s}$. Now invoke the following version of the Euler–Maclaurin summation formula—this can be found in [6, Theorem 2.19].

260

LEMMA 2.1 (Euler–Maclaurin summation). Let k be a nonnegative integer and f(x) be k + 1 times differentiable on the interval [a, b]. Then

$$\sum_{a < n \le b} f(n) = \int_{a}^{b} f(t) dt + \sum_{r=0}^{k} \frac{(-1)^{r+1}}{(r+1)!} (f^{(r)}(b) - f^{(r)}(a)) B_{r+1} + \frac{(-1)^{k}}{(k+1)!} \int_{a}^{b} B_{k+1}(x) f^{(k+1)}(x) dx,$$

where $B_j(x)$ is the *j*th periodic Bernoulli polynomial and $B_j = B_j(0)$.

Apply this to $f(n) = n^{-s}$, with k = 1, a = N and with *b* dispatched to infinity. Thus

$$\zeta(s) - \sum_{n \le N-1} n^{-s} = \frac{N^{1-s}}{s-1} + \frac{1}{2N^s} + \frac{s}{12N^{s+1}} - \frac{s(s+1)}{2} \int_N^\infty \frac{\{x\}^2 - \{x\} + \frac{1}{6}}{x^{s+2}} \, dx, \quad (2.1)$$

where, since the right-hand side converges for Re(s) > -1, the equation remains valid when s = 1 + it. Hence one can estimate the sum in (2.1) using

$$\sum_{n \le N} \frac{1}{n} \le \log N + \gamma + \frac{1}{N},\tag{2.2}$$

which follows from partial summation, and in which γ denotes Euler's constant. Now if $N = \lfloor t/m \rfloor$, where *m* is a positive integer to be chosen later, (2.1) and (2.2) combine to show that

$$|\zeta(1+it)| - \log t \le -\log m + \gamma + \frac{1}{t} + \frac{m}{2(t-m)} + \frac{m^2(1+t)(4+t)}{24(t-m)^2}.$$
 (2.3)

The aim is to choose m and t_0 such that $t \ge t_0$ guarantees the right-hand side of (2.3) to be negative. It is easy to verify that when m = 3, choosing $t = 49.385 \dots$ suffices. Thus (1.4) is true for all $t \ge 50$; a quick computation shows that (1.4) remains true for $t \ge 2.001 \dots$

It seems impossible to improve upon (1.4) without a closer analysis of sums of the form $\sum_{a < n \le 2a} n^{-it}$. Taking further terms in the Euler–Maclaurin expansion in (2.1) does not achieve an overall saving; choosing $N = \lfloor t^{\alpha} \rfloor$ for some $\alpha < 1$ in (2.2) means that the integral in (2.1) is no longer bounded when $t \to \infty$.

The next section aims to secure a good bound for $\sum_{a < n \le 2a} n^{-it}$ for 'large' values of *a*. For 'small' values of *a* one may estimate the sum trivially. The inherent optimism is that, when combined, these two estimates give an improvement on (1.4).

3. Exponential sums: beyond Backlund

The following is an explicit version of [7, Theorem 5.9].

LEMMA 3.1 (Cheng and Graham). Assume that f(x) is a real-valued function with two continuous derivatives when $x \in (a, c]$. If there exist two real numbers V < W

with W > 1 such that

$$\frac{1}{W} \le |f''(x)| \le \frac{1}{V}$$

for $x \in [a + 1, c]$ *, then*

$$\left|\sum_{a < n \le c} e^{2\pi i f(n)}\right| \le \frac{1}{5} \left(\frac{c-a}{V} + 1\right) (8W^{1/2} + 15).$$

PROOF. See [2, Lemma 3].

Applying Lemma 3.1 to $f(x) = -(2\pi)^{-1}t \log x$ gives

$$\max_{a < c \le 2a} \left| \sum_{a < n \le c} n^{-it} \right| \le t^{1/2} \left(\frac{8}{5} \sqrt{\frac{2}{\pi}} + \frac{16\sqrt{2\pi}a}{5t} + \frac{3t^{1/2}}{2\pi a} + 3t^{-1/2} \right), \tag{3.1}$$

subject to $2\pi a^2 > t$. Imposing that $2\pi a^2 > t$ is to ensure that, in Lemma 3.1, W > 1; see (4.2). Now take $A_1 t^{1/2} < a \le \lfloor t/m \rfloor$ for some constant A_1 and positive integer *m* to be determined later. To ensure that this is a nonempty interval, see (4.2). If $t \ge t_0$ then (3.1) shows that

$$\max_{a < c \le 2a} \left| \sum_{a < n \le c} n^{-it} \right| \le A_2 t^{1/2},$$

and hence, by partial summation,

$$\left|\sum_{a < n \le 2a} n^{-1 - it}\right| \le A_2 a^{-1} t^{1/2} \le \frac{A_2}{A_1},\tag{3.2}$$

where

$$A_2 = \frac{8}{5}\sqrt{\frac{2}{\pi}} + \frac{16\sqrt{2\pi}}{5m} + \frac{3}{2\pi A_1} + 3t_0^{-1/2}.$$

One may now apply (3.2) to each of the sums on the right-hand side of

$$\left|\sum_{A_1t^{1/2} < n \le (t/m)} \frac{1}{n^{1+it}}\right| = \sum_{\frac{1}{2}(t/m) < n \le (t/m)} + \sum_{\frac{1}{4}(t/m) < n \le \frac{1}{2}(t/m)} + \cdots$$

There are at most

$$\frac{\frac{1}{2}\log t - \log(mA_1) + \log 2}{\log 2}$$
(3.3)

such sums. This gives an upper bound for $\sum n^{-1-it}$ when $n > A_1 t^{1/2}$. When $n \le A_1 t^{1/2}$ one may use (2.2) to estimate the sum trivially.

[4]

262

A new upper bound for $|\zeta(1 + it)|$

4. Proof of Theorem 1.1

In $\zeta(s) - \sum_{n \le N} n^{-s} = \sum_{N \le n} n^{-s}$ use Lemma 2.1 and expand to *k* terms. Choosing $N - 1 = \lfloor t/m \rfloor$, recalling (3.2) and (3.3), and estimating all complex terms trivially gives

$$\begin{aligned} |\zeta(1+it)| &\leq \log t \left(\frac{1}{2} + \frac{A_2}{2A_1 \log 2} \right) + \frac{A_2(\log 2 - \log(mA_1))}{A_1 \log 2} + \log A_1 + \gamma \\ &+ \frac{1}{A_1 t_0^{1/2}} + \frac{m}{2t} + \frac{1}{t} + \sum_{r=1}^k \frac{|B_{r+1}|}{(r+1)!} (1+t) \cdots (r+t) \left(\frac{m}{t} \right)^{r+1} \\ &+ \frac{(1+t) \cdots (k+1+t)}{(k+1) \cdot (k+1)!} \max |B_{k+1}(x)| \left(\frac{m}{t} \right)^{k+1}. \end{aligned}$$
(4.1)

Note that each term in the *r*-sum in (4.1) is $O_{m,k}(t^{-1})$. This is cheap relative to the last term which is $O_{m,k}(1)$. Thus one can take *k* somewhat large to reduce the burden of the final term. For a given t_0 , when $t \ge t_0$ one can optimise (4.1) over *k*, *m* and A_1 subject to

$$A_1 > \frac{1}{\sqrt{2\pi}}, \quad mA_1 \le t_0^{1/2}.$$
 (4.2)

One finds that, when k = 14, m = 6, $A_1 = 23$ then $|\zeta(1 + it)| \le 0.749818...$, for all $t \ge 10^8$. A numerical check on *Mathematica* suffices to extend the result to all $t \ge 2.391...$, whence Theorem 1.1 follows.

4.1. Improvements. Lemma 3.1 is unable to furnish a value less than $\frac{1}{2}$ in Theorem 1.1. On the other hand, by verifying that $|\zeta(1 + it)| < \frac{1}{2} \log t$ for *t* larger than 10^8 one will improve slightly on Theorem 1.1.

One could also take an analogue of Lemma 3.1 that incorporates higher derivatives. Such a result, giving explicit bounds on exponential sums of a function involving k derivatives, is given in [4, Proposition 8.2]. It is unclear how much could be gained from pursuing this idea.

References

- [1] R. J. Backlund, 'Sur les zéros de la fonction $\zeta(s)$ de Riemann', C. R. Math. Acad. Sci. Paris 158 (1914), 1979–1982.
- [2] Y. F. Cheng and S. W. Graham, 'Explicit estimates for the Riemann zeta function', *Rocky Mountain J. Math.* 34(4) (2004), 1261–1280.
- [3] K. Ford, 'Vinogradov's integral and bounds for the Riemann zeta function', *Proc. Lond. Math. Soc.* 85(3) (2002), 565–633.
- [4] A. Granville and O. Ramaré, 'Explicit bounds on exponential sums and the scarcity of squarefree binomial coefficients', *Mathematika* 43(1) (1996), 73–197.
- [5] Hj. Mellin, 'Eine Formel f
 ür den Logarithmus transcendenter Funktionen von endlichem Geschlecht', Acta Soc. Sci. Fenn. 24(4) (1902), 1–50.
- [6] M. Ram Murty, *Problems in Analytic Number Theory*, Graduate Texts in Mathematics, 206 (Springer, New York, 2008).

T. Trudgian

- [7] E. C. Titchmarsh, *The Theory of the Riemann Zeta-function*, 2nd edn. (Oxford University Press, Oxford, 1986).
- [8] T. S. Trudgian, 'An improved upper bound for the argument of the Riemann zeta-function on the critical line II'. Preprint.

TIMOTHY TRUDGIAN, Mathematical Sciences Institute, The Australian National University, ACT 0200, Australia e-mail: timothy.trudgian@anu.edu.au

264