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ON BOUNDEDNESS OF THE WEIGHTED
BERGMAN PROJECTIONS ON THE LIPSCHITZ SPACES

HONG RAE CHO AND JINKEE LEE

In this paper we study the boundedness of the weighted Bergman projections on
the weighted subspaces of Bergman spaces and the Lipschitz spaces on the unit
ball and the unit polydisc.

1. INTRODUCTION

Let Bn and Dn be the unit ball and the unit polydisc in C", respectively. Let
- 1 < 7 < oo and 0 < p < oo. Let L^{Bn) and L^(Dn) be IP -spaces with respect to
the weighted volume measures

on Bn and £>", respectively. Let A*(Bn) and A?{Dn) be subspaces of LP(Bn) and
L7(£>") consisting of functions which are holomorphic on Bn and Dn, respectively.
They are called the weighted Bergman spaces. We define

(1.1) P7/(z) = Cn,7 / _ / ( C )
n + 1 + 7 (1 - |C|2)7 ^ ( C ) , z € Bn,

JBn (1 - C • Z) ._
(1 - C • Z)

where
nlnl

n ' 7
 TT"TT" T(n + l)r(7 + 1)'

For the unit polydisc we define

(1.2) n J^
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where

{ )
They are orthogonal projections on L*(Bn) and L^(Dn) onto A^(Bn) and A^(Dn),

respectively. They are .called the weighted Bergman projections on Bn and Dn, re-

spectively.

In this paper we study the boundedness of the weighted Bergman projections on

the weighted subspaces of Bergman spaces and the Lipschitz spaces.

2 . LP>a BOUNDEDNESS

For 0 < p < co, —1 < 7 < oo and a > 0, L?i'
a(Bn) is defined to be the class of

those / € L*(Bn) for which

sup | / (2) | (1- |* | 2 ) Q <oo.

For / e LP'a(Bn), we define

Then the weighted subspace L^'a(Bn) of L^(Bn) is a Banach space with the norm
II • \\Lp'a(Bn)

 w^en 1 < p < oo. Let A^'a(Bn) be the subspace of l^a{Bn) consisting
of functions which are holomorphic on Bn. We note that

Thus for / 6 AP-a(Bn) it follows that

l l / l l i^*, . ) « sup | / ( z ) | ( l - | 2 | 2 ) Q for

We can see that ([7, 2]) for 0 < p < co and -1 < 7 < 00

Hence AP-tt(£n) = ^ ( 5 B ) for a ^ (n + 1 + 7 ) /p .

For the polydisc we define LP'a(Dn) by the class of those / € LP(Dn) for which

j
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For / 6 1 ^ (£>"), we define

(||/||LP(DB), sup \f(z)\ f [ ( l - \Zj\
2)a).

Let AP'a(£>") be the subspace of L^'a{Dn) consisting of functions which are holomor-
phic on Dn. By the representation (1.2), Holder's inequality, and (i) of Lemma 2.1, we
can see that

Hence A*<a(Dn) = A^{Dn) for a ^ (2 + 7 ) /p .

For an account of the known results on these spaces, see [4, 6].

LEMMA 2 . 1 . ([7]) For ze Bn, c real, t> - 1 , define

T / \

where dV(£) is the volume measure.

(i) When c > 0, then

Je,t(z) « (1 - \z\2]

(ii) When c — 0, then

1
•A),t(z) « log

The notation a(z) « 6(z) means that the ratio a(z)/b(z) has a positive finite limit as

1 * 1 - > 1 -
In [1] we can see that the weighted Bergman projection P7 maps L^(Bn) onto

A?(Bn), boundedly, for 1 < p < oo and 7 > — 1. In this section we consider the
boundedness of P7 on weighted subspaces L?'a of L?.

THEOREM 2 . 2 . For 1 ^ p < o o , 7 > - 1 , and 0 < a < 7 + 1, the weighted
Bergman projection P7 maps L^a{Bn) onto A^'a{Bn), boundedly.

PROOF: From (1.1) we have
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By (i) of Lemma 2.1, the right side integral of the last inequality is bounded by l / ( l

- | z | 2 ) a . Thus we have

(2.1) \Ptf(z)\{l-\z\2)a< sup|/(C)|(l-|ClT, zeBn.
C6Bn

First we consider the case 1 < p < oo. In [1] we can see that

(2-2) WP-rfW^Bn) Z Wf\\L>(Bn) for 1< p < oo.

By (2.1) and (2.2), we get the result for the case 1 < p < oo.
Now we consider the case p — 1. By (2.1), it follows that

(2-3) r L ( B B ) /

<
JBn

Since 0 < a — 7 < 1, the last integral is bounded by the constant depending on 7,0,
and n. By (2.1) and (2.3), we get the result for the case p = 1. Therefore the result
holds for all cases 1 ̂  p < 00. D

THEOREM 2 . 3 . For I < p < o o , 7 > - 1 , and 0 < a < 7 + 1, the weighted
Bergman projection P7 maps LP'a(Dn) onto A%a(Dn), boundedly.

PROOF: In [3] we can see that

for 1 < P < 0 0 .

By the similar method as the proof of Theorem 2.2, we can get the result. D

3. HOLDER BOUNDEDNESS

In order to prove that a function belongs to a Lipschitz space AQ we shall use the
following Hardy-Littlewood type lemma.

LEMMA 3 . 1 . Let fi <s Cn be a domain with piecewise smooth boundary. Sup-
pose f £ Cx(fi) and that for some 0 < a < 1 there is a constant C, such that

|V/(z)| < C 5n{z)°"1 for all z € fi,

where 5n(z) is the distance function for ft. Then f € AQ(f2).

The proof of the above lemma and of more general results about the Lipschitz
spaces can be found in [5].
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THEOREM 3 . 2 . Suppose 0 < a < 1. Then the weighted Bergman projection P 7

maps Aa(Bn) onto Aa(Bn), boundedly.

P R O O F : By symmetry, for z = {z\, • • • , zn) € Bn, it suffices to treat the case

j = 1, that is,

(3-D I^V
By (1.1), we have

JBn (1 - C, •

= I(z) + II(z).

Since

L \ 1 - KIT
we have, by differentiating the integral above with respect to z\,

= 0,CBl7 / - ^ n
JBn \\ — Q • Z)

and we then have II(z) = 0.
Now |C - z\/\l — (, • z\ < 1, and using the property (i) of Lemma 2.1, we have

l/Ua(Bn)- —

Thus we get (3.1).

We consider the case of the unit polydisc, it can be treated in the same way as in
the proof of Theorem 3.2.
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THEOREM 3 . 3 . Suppose 0 < /? < a < 1. Then the weighted Bergman projec-

tion Py maps Aa(D
n) onto Ap(Dn), boundedly.

PROOF: By (1.2), we have, by the same process as in the proof of Theorem 3.2,

^ _

—p3

3=2 (

Then, by (i) and (ii) of Lemma 2.1, we have

(3.2)

d
dzx

< m f Ci -

s \t\ 1

~ ^aKU"] (1 _ 21 *)

Zl ° ( l ~ ICl

n

3=2

r
11
3=2

1

1 - \Zj
2

( i -

H-<
10 r

17+2

Let 0 < e < a. Then it follows that

(3-3) — ^ T T ^ r i l o g — ^ < - 1

( l k | 2 ) J 1̂ 1 ( l | | 2 )

\l-a+e"
)

By (3.2) and (3.3), we have

Thus we get the result. D
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