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A B S T R A C T . Finite mixture models provide a useful framework for analysing the overlapping 

spatial, kinematical, chemical, and age distributions of stellar populations. In this paper, the 

age-metallicity relationship is used to illustrate the properties of bivariate mixture distributions. 

The interpretation of bivariate scatter plots and 'binning' diagrams is discussed, and population 

membership is examined by computing posterior mixing proportions. 

1. Introduct ion 

It is generally recognized that in the solar neighbourhood there exist stars of all ages, up to 

A~lb Gyr. These stars are known to exhibit a diversity of chemical compositions, ranging from 

[Fe/H] ~ 0.3 to -4.0 dex, and have space motions corresponding to U velocities (directed away 

from the Galactic center) and W velocities (directed toward the North Galactic Pole) between 

-200 and -f200 km s - 1 , and V velocities (in the direction of Galactic rotation) between -400 

and -1-50 km s" 1 . The observed overall distribution functions of the variables U and W are 

symmetric about zero ( i .e . , the motions are symmetric about the local standard of rest). In 

contrast, the overall distribution functions for A, [Fe/H], and V are asymmetric. The asymmetry 

in the V distribution is the well-known asymmetric drift. 

The notion that stars in the solar neighbourhood constitute a mixture of discrete stellar 

populations can be traced to the early ideas on stellar kinematics of Kapteyn, Schwarzschild, 

and Eddington. The modern concept of a stellar population originated with Baade's 1944 

introduction of Populations I and II for modelling galaxies, and the five-component model for 

the Galaxy advocated at the 1957 Vatican conference. Within the last ten years, there has been 

considerable discussion about the number of distinct components that are needed to represent 

the chemical and dynamical history of our Galaxy (see Sandage 1987b), the proportion of stars 

belonging to each component, and the nature of the individual components. Much of this debate 

has been fuelled by various theories for the early evolutionary phases of our Galaxy (Eggen, 

Lynden-Bell k Sandage 1962, Searle and Zinn 1978, Norris k Ryan 1989). 

According to the Bahcall k Soneira model (see Bahcall 1986), the solar neighbourhood can 

be represented by only two stellar populations - a disk (D) and a halo (H) - with 99.8% of the 

nearby stars brighter than M v = 1 6 . 5 belonging to the disk component, and only 0.2% belonging 
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to the halo, i.e., D:H=500:1. Owing to uncertainty in the estimated mixing proportions, the 
ratio might actually be ~ 2-4 times greater than the quoted value. The Norris k Ryan model is 
another example of a two-component model, but in that case the two components comprise an 
extended disk component and a discrete halo. In contrast, proponents of the Gilmore-Reid-Wyse 
three-component model claim that the Galaxy has three distinct components - a flat thin disk 
(t) , a spheroidal halo (h), and an intermediate thick disk ( T ) . Estimated mixing proportions for 
this model range from a t:T:h ratio of 200:22:1 (Sandage 1987a) to a ratio of 1200:20:1 (Gilmore 
k Wyse 1985). 

The ratios quoted above are estimates of the true or absolute mixing proportions of the 
components that make up the two- or three-component model. These ratios are obviously of 
interest since they have a direct bearing on questions related to the vertical acceleration, Kz, 
and dark matter in the solar neighbourhood. However, because complete samples are rarely 
available in practice, it is generally difficult to determine the true mixing proportions. For most 
samples, only the apparent mixing proportions (which depend on the survey limits, the location 
of the survey volume, and other imposed selection criteria) can be estimated directly. 

Determination of the appropriate number of components and estimation of either the true 
or apparent mixing proportions are two essential steps in modelling galactic structure. The 
nature of the individual components is also an important consideration. This aspect of the 
model has raised questions about the shapes of the underlying within-component distribution 
functions, in particular whether there are correlations between age, kinematical and chemical 
variables, e.g., metallicity and other gradients within the components. These questions must be 
answered if the 'best' fitting model is to be identified. 

For simplicity, the discussion in this paper is limited to bivariate mixture models. After 
briefly reviewing the fundamental ideas on which finite mixture models are based (§2), we 
discuss bivariate scatter plots and 'binning' diagrams (§3), and bivariate posterior mixing 
proportions (§4). Such topics as parameter estimation, and the problem of the optimum number 
of components, were discussed in Nemec k Nemec (1991a, hereafter Paper I) , and in Nemec k 
Nemec (1991b, hereafter Paper II), and will not be repeated here. Generalization of the bivariate 
mixture model to the multivariate case is straightforward. The reader is referred to Papers I 
and II, and the references therein, for a more detailed exposition of univariate and multivariate 
mixture models and their application to the study of stellar populations. 

2 . Bivariate Mixture Model for Age-[Fe/H] Relationship 

To illustrate the application of mixture models to stellar population problems (in particular 
the thick-disk problem), we consider here an idealized age-metallicity relationship for the solar 
neighbourhood (i.e., stars with distances nearer than about 500 pc ) , which will be assumed to 
comprise thin-disk, thick-disk, and halo stars. The basic equation for a three-component mixture 
model is 

3 

f(A,m) = ^2pkf(A,m\k), (1) 

Jb = l 
where f(A, m) is the overall joint or bivariate probability density function of age (A) and 
metallicity (m = [Fe/H]), is the mixing proportion for the kth population, and f(A,m\k) 
is the corresponding joint density function of the kth component (k = 1,2,3). To obtain the 
univariate, or marginal, density function of an individual variable (in this case, A or m) , the 
joint density function (Eqn. 1) is integrated over the other variable. The result is a univariate 
mixture distribution with the same mixing proportions as the joint distribution. 

According to Eqn. 1, if the true mixing proportions are in the ratio t:T:h=200:20:l (see 
above), then one would expect to find, in a random sample of 1000 nearby stars, ~905 thin-disk 
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stars, ~90 thick-disk stars, and ~ 5 halo stars, each of which would have an age and a metallicity 
drawn from their respective within-component joint distribution functions of A and [Fe/H], 
i.e., / ( A , m\k). For a sample of stars selected in a way that strongly favours nearby halo and 
thick-disk stars (e.g., the Sandage &; Fouts 1987a and Carney et al. 1989 samples, which consist 
of high-proper-motion stars drawn from the Lowell proper motion survey), the true mixing 
proportions are replaced by sample-dependent apparent mixing proportions, e.g., t :T:h=2:2:l . 

At present, the forms of the within-component distribution functions are not well known. 
However, there is little evidence to suggest that a bivariate Gaussian distribution is not a good 
first order approximation. We will, therefore, assume that the within-component distributions 
are Gaussian. Thus, 

f(A, m\k) = [2xamk*M(l - pi)1'2]'1 e x p { - Q * } (2) 

where 

and 

Qk = 
ι 

2(1-/>D 
(m - m ) , (A - PAk)2

 0 ( m - / i m f c ) {Α- μΑ]ε) 
2 1 2 2P* 

a m k < T A k a m k (TAk 

Pk 
Covk(A,m) 

<7Ak<7mk 

is the (Pearson) correlation between m and A for component k. 

Figure 1. Overall bivariate distribution function corresponding to the yi-[Fe/H] relationship for 
solar neighborhood stars. 

F i g . l illustrates a typical overall age-metallicity distribution that might arise under a 
Gaussian mixture model. The plot was generated by substituting a particular set of parameter 
values into Eqn. 2 and plotting the resultant mixture density function. For the (apparent) 
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mixing proportions, we have substituted 20% halo, 40% thick disk, and 40% thin disk, which 

are consistent with the values that might be expected for high-proper-motion samples of the 

type mentioned above. For the means and standard deviations of the three components, we have 

adopted the following parameters: for the halo, a mean metallicity of / i m / j = - 1 . 5 0 dex, with a 

standard deviation of amh=0.3b dex, and a mean age of μ Ah=15 Gyr, with a standard deviation 

of σ ^ Λ = 1 Gyr; for the thick disk, a mean metallicity / / m T = - 0 . 5 0 dex, with a standard deviation 

of amT=0.2b dex, and a mean age of / i ^ T = 1 3 Gyr, with a standard deviation of σ ^ τ = 1 · 5 Gyr; 

and for the thin disk, a mean metallicity of / / m i = 0 dex, with a standard deviation of σ Γ η ί = 0 . 1 5 

dex, and a mean age of pAt=§ Gyr, with a standard deviation of σ ^ ί = 2 . 5 Gyr. These values 

were chosen to be representative of recent estimates (see Paper I) . We have also assumed that m 

and A are statistically independent for each component, i.e., pk = 0 for k = 1,2,3. 

The number of distinct peaks in Fig.l is clearly equal to three. However, because the means 

for the individual components may be less well separated for some pairs of variables, the thick-

disk might be less obvious in such bivariate plots as the Bottlinger U-V diagram, the V-m 

diagram, and the W-m diagram (see Nemec & Nemec 1992, in preparation). Of course, if these 

bivariate plots are compared with plots of the corresponding marginal distributions (cf. Fig. 1 

of this paper and Fig. 1 of Paper I) , it is evident that the ability to discriminate components 

improves as additional variables are taken into consideration. 

In Fig. 1, we assumed that A and m are independently distributed for each component Ar, 

i.e., there are no within-component gradients. To test the validity of this assumption, it is 

sufficient, in the Gaussian case, to test the null hypothesis that pk = 0 for k = 1,2, 3. Regardless 

of whether or not there are within-component gradients, it is evident that mixture distributions 

(Eqn. 1) do not generally factor into the corresponding marginals - a condition that is necessary 

for independence. Thus mixtures invariably exhibit some sort of overall gradient 

3 . Bivariate Scatter Plots and Binning Diagrams 

In the study of stellar populations, two types of bivariate diagrams are commonly used to 

display the data: (1) a scatter plot of the raw data, i.e., y versus χ for individual stars or 

star clusters; and when the sample is sufficiently large, (2) 'binning plots', in which the data 

are binned according to χ and, for each bin, either the mean of the y-values, y(x), or the 

corresponding standard deviation, sy(x), is plotted against χ (the mid-point of the x-values). 

Scatter plots, and plots of y(x) versus x, which are simply smoothed scatter plots, are useful 

for depicting overall trends in the relationship between two variables. For example, the A-m 

scatter plots of Carlberg et al. (1985, Fig. 3a) and Schuster h Nissen (1989, Fig. 7) , and the 

Ä(m)-m binning diagrams of Twarog (1980, Figs. 1-3), Carlberg et al. (1985, Fig. 3b) and 

Schuster & Nissen (1989, Table 2) , show that, for samples of solar neighbourhood stars, there 

is a tendency for older stars to be more metal poor. This type of non-linear trend is expected 

if the data are drawn from a mixture of stellar populations, each of which has a different mean 

age and mean metal abundance. In fact, if Eqn. 2 holds, the exact functional form of the 

relationship can be determined by computing the conditional mean of A given m (see Paper 

Ν)· 

Patterns of dispersion are often of as much interest as overall trends. For example, a 

scatter plot of W versus m typically shows no trend in the mean (i.e., the points are scattered 

about the line W = 0) but has an obvious wedge-shaped appearance which is indicative of 

a heterogeneous variance. Such a pattern can readily be explained by a mixture, in which the 

constituent stellar populations have different W-dispersions (with pwk — 0 for all components 

k) and different mean metallicities (see Fig. 3 of Paper II). Although scatter plots are useful for 

identifying heterogeneity in the dispersion, they are not very effective for describing precisely 

how the dispersion varies. A binning diagram of sy(x) versus χ is more useful for this purpose. 
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Some examples of this approach are the su(m)-m, sv(m)-m, and % ( m ) - m values, which have 
been tabulated and plotted by Sandage k Fouts (1987), Carney, Latham k Laird (1989), Yoshii 
k Saio (1979), and Norris k Ryan (1989). Computation of the conditional standard deviation 

of y given x, under an appropriate mixture model (Eqn. 1 or 2) , yields the relevant analytical 
expression for the dispersion. 

The bivariate diagrams described above are generally thought to provide important clues 
about galactic evolution, such as evidence of a thick-disk component, information about within-
component gradients, or features that might suggest the number of components. The great 
utility of mixture models is that by appealing to theory and to simulations much insight into 
the interpretation of these diagrams can be gained. For instance, simulated scatter plots of A 

versus m, and plots of the corresponding conditional mean, can be used to examine the effects of 
varying the mixing proportions (see Fig.6 of Paper II). Furthermore, if the properties of s^y (m)-
m plots are understood (see Fig. 4 of Paper II), then it is clear that such diagrams cannot, in 
general, be used to determine the number of components in a mixture. They can, however, be 
useful for examining gradients within components, but only at the extremities of metallicity 
range where the influence of overlapping components is minimized, if not eliminated. Of 
course, the exact range over which this is achieved is difficult to determine and there is always 
the possibility of contamination from unidentified extreme components, e.g., the presence of 
possible Pop. Il l stars, or metal-rich bulge stars. Because evidence for a gradient within a given 
component (e.g., the Norris k Ryan extended disk) always depends on the underlying model 
(in particular, the assumed number of components - see Fig.3 of Paper II), any conclusions 
should be accepted with caution. Likewise, claims that one can, using such plots as Vrot versus 
m, distinguish between a 'continuum model ' and a discrete component mixture model can be 
misleading, since what is often purported to support the continuum model is often equally 
explicable by a simple mixture model. 

4. Bivariate Posterior Mixing Proportions: Population Membership 

The mixing proportion in Eqn. 1 is the unconditional (or overall) probability that a 

randomly selected star belongs to the kth stellar population. Once age and [Fe/H] measurements 

have been made, then the probability that the star belongs to a particular population should 

be revised to take into account this information, e.g., if the star is very metal-poor then the 

probability that the star belongs to the halo should be adjusted upwards. The revised, or 

conditional, probabilities are known as posterior mixing proportions and will be denoted 

p(fc|j4, m) , for fc=l,2, 3. These probabilities are functions of A and m and satisfy the constraint 

£3fc=i Ρ(^|Ά> τη) = I for each (A,m). 

Posterior mixing proportions are easily calculated using Bayes' Theorem. In the bivariate 

case of age and metallicity, 

p(k\A, m) = — . (3) 

T,PiM,m\J) 

The right-hand side of this equation depends on the unknown model parameters, μ^*, σ ^ * , 

etc., which must be replaced by estimates before the posterior mixing proportions can be 

evaluated. Notice that even if A and m are independent for each component, i.e., f(A,m\k) = 

f(A\k) f(m\k), the posterior probability p(k\A,m) does not factor into the univariate posterior 

functions. 

Fig. 2 shows bivariate posterior mixing proportions p(k\A,m) corresponding to the thick-

disk and halo components of the model illustrated in Fig. l . The surfaces give membership 

probabilities for the thick disk and the halo components, for each value of A and m. In practice, 
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such diagrams (computed and plotted for any number of components, and based on estimated 

parameters for a spécifie catalog of data) provide a quick visual estimate of the probability that 

a star belongs to a given stellar population. 

Figure 2. Posterior mixing proportions, conditional on age and metallicity, for the halo and 

thick-disk components of the three-component Gaussian model shown in Figure 1. 
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