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ON A MULTIDIMENSIONAL VOLKENBORN INTEGRAL AND
HIGHER ORDER BERNOULLI NUMBERS

M I N - S O O KIM AND J I N - W O O SON

In this paper, using a multidimensional Volkenborn integral, we give a p-adic
expression of the higher order Bernoulli numbers. This shows immediately the
relation to the sums of products of the ordinary Bernoulli numbers of Dilcher in
1996. We also consider the Mahler expansion of several p-adic variables function,
and give some examples.

1. INTRODUCTION AND NOTATION

The Bernoulli polynomials of order k, denoted Bn (x), are defined by

n=0

In particular, the values at x = 0 are called Bernoulli numbers of order k, that is,
Bn

k)(0) = Bn
k) (see [1, 2, 4, 5, 9, 10, 14]). When k = 1, the polynomials or numbers

are called ordinary.

The polynomials Bn (x) and numbers Bn were first defined and studied by
Norlund [9]. Also Carlitz [2] and others investigated their properties. Recently they
have been studied by Adelberg [1], Howard [5], and Young [14]. In [l], Adelberg has
given congruences for Bn which extended the Kummer congruences and has deduced
information concerning the irreducibility of certain Bernoulli polynomials with order
divisible by p. Howard [5] investigated other numbers related to the higher order
Bernoulli numbers. Young [14] considered the p-adic integrals and measures to obtain
congruences for the higher order Bernoulli numbers and polynomials.

In this paper, using a multidimensional Volkenborn integral, we give a p-adic
expression for Bernoulli number of order k. As an easy corollary we see that a p-adic
expression for the higher order Bernoulli number is related to the sums of products of
the ordinary Bernoulli numbers in Dilcher [4]. We give some examples. Our approach
essentially coincides with the p-adic expression for the ordinary Bernoulli numbers
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introduced by many authors, see for example, [8, 11, 12]. We also consider the Mahler
expansion of several p-adic variables function and its examples.

We denote by p an arbitrary but fixed rational prime number throughout. We
shall use N, Z, Z p , Q p and Cp for, respectively, the set of natural numbers, the
ring of rational integer, the ring of p-adic integer, the field of p-adic numbers, and
the completion of the algebraic closure of Q p . Bn will be the n th ordinary Bernoulli
number defined by the generating function t/(et - 1). For s € Cp write ordp (s) for
the p-adic ordinal of s. It is easy to check ordp satisfies the following three properties.

(a) ordp (st) — ordp (s) + ordp (t);
(b) ordp (s + t) > min{ordp (s),ordp (£)} ;
(c) ordp (s) = oo if and only if s = 0.

2. SOME RESULTS

Let d be a fixed positive integer. We set Xd = hjn^ (Z/dpNZ), the map from
Z/dp M Z to Z/dpNZ for M > N , to be reduction mod dpN. In the special case d = 1,
Xx = Z p . Let a + pNZp = {x € Qp | \x - a\p < p~N} for a € Qp and N € Z. Then
the sets of the form a + pNZp form a basis of open sets for the metric space Q p . This
means that any open subset of Qp is a union of open subsets of this type. Note that
(see [6, 7, 11])

(1) a + dpNZp= | J (a + bdpN) + dpN+1Zp, Xd\pXd= \J a + dpZp.
0<b<p 0<a<dp

(a,p)=l

Let UD(ZP,CP) be the Banach algebra of all uniformly (or strictly) differentiable
functions / : Zp —> Cp under the pointwise operations and valuation (see [10, 11, 13]).

Let Mo (a + dpNZp) = \/{dpN). The Volkenborn integral of a function / €
UD{ZPXP) is defined by (see [10, 11])

dP
N-i dP

N-i

(2) / f(x) d^(x) := lim £ /(o)/io(a + dpNZp) = lim (l/dpN) V /(a)

using the p-adic limit of the TVth Riemann sum of / . Here are the main properties of
this integral.

PROPOSITION 1. (See [8, 9,11,12].) Let \t\p < pll^-^,t e Cp and t ^ o,
and let x tie a primitive Dirichlet character with conductor d. Then we have

2- Bn= Lxn
V
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r d~l

. / X(x)etxdMx) = Yl(x(a
•'xd a=0

3. / Yl(
'xd a=0

4. Bn<x — Jx xnx(x) dfj.o{x), where Bn<x are the generalised ordinary

Bernoulli numbers, that is, BntX/n\ is the coefficient of tn in
dZ{x(a.)teat)/{edt-l).
a=0

Note that Part 2 and Part 4 of Proposition 1 are called the p-adic expression

for the ordinary Bernoulli numbers and the generalised ordinary Bernoulli numbers,

respectively.

For a fixed k € N, we set X = J ] Xdt with the product topology, so X is

»=i,...,fc
compact since X^ is compact for i = 1 , . . . , k.

The notations a and x denote, respectively, (a\,... , ak) and (x\,... , xk) •

The vector space Qp has the norm ||x|| = max \xi\p and satisfies the non-

Archimedean property ||x + y|| < max(| |x| |p, ||y||p) for x j e Q j . Let d be a point

in Nk. We shall consider the polydisc

(3) a + dp N Z p = {x € Q£ | a* = a* ( m o d d ^ ) . * = 1, • • • , * } ,

where a e Q* and dp N = (dipNl,..., dkp
N><) for N € N*: that is, the point a is the

least nonnegative residue of x m o d d p N . The polydisc a + dp N Z p is the product of
discs a* + dipNiZp for i — 1 , . . . , k,

(4) a + d p N Z p = (ai + dip N l Z p ) x • • • x (afc + dkP
N"Zp).

DEFINITION 1: Let a + d p N Z p be a polydisc with a G Qp and d — (di)1<i<k e Nfc.
Let Hi be a distribution on Zp for i — 1,2,... ,k. We define a formal direct product
of distributions jj(a) — /z(a + dpNZp) by

H{a + dp N Z p ) := mfa).. ./XfcK) := Mi(oi + dlP
N^Zp).. ./ifc(ofc + dkp

N*Zp).

DEFINITION 2: ([3, 8]) We call a function defined on a subset of Cp holomorphic
if it can be represented by a single power series and locally holomorphic if at each point in
the domain we can represent the function by a power series on some polydisc containing
the point.

Let O be an open set in Cp with a + d p N Z p C X C O. Suppose B is a Banach

space over Cp and / : O -» B is locally holomorphic. For (N\,... , Nk) & Nfc, we say
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that {Ni} —¥ oo when N\ —¥ o o , . . . , Nk -+ oo. Define

/ ( x ) d/x(x) := / . . . / f(xu... ,xn) d(jLl{xl)...d(ik{xk)
Jxdl Jxdk

•• E /(a)M(a + dpNZp),
1 " a!=0 ak=0

where a = (ai , . . . , ak) and d = (d\,... ,dk) € Nfc (see [3, Theorem 1]).
A multi-index J is an element of the k -tuples of nonnegative integers. Let J =

(ji;--- ,jk) be multi-index and x = (x\,... ,xk) € O. We use the abbreviations,
x J = x{1 ...xk

k and | J | = ji + • • • + j k .

Suppose that /(x) is given by a power series

(6)

which is convergent for all elements of the A;-tuples of p-adic integers, and where the
right side represents a power series in k variables with J running through the k-
tuples of nonnegative integers. In view of the non-archimedean nature of the norm, the
convergence of (6) is equivalent to the condition

(7)

PROPOSITION 2 . Let / ( x ) e Z p [[xi , . . . ,xk}] be a formal power series in
x\,... ,xk with p-adic integer coefficients, and let

V = {x e Ck
p | ||x||p < 1, Hxll, = max \Xi\p}

be the open polydisc of radius 1. Then /(x) converges in V.

PROOF: Set x 6 V. If /(x) = XIaJxJ> aj € Zp, where J runs through the

/c-tuples of nonnegative integers. Then since ||x|| < 1 and |aj | < 1 for all J , we have

lim |ajxJ | = 0 . This completes the proof. D
IJI-t-oo1 'P

Let / be locally holomorphic on a subset of Cp. By Definition 1 we set

(8) no(a+dpNZp) := no(ai + dlP
NiZp)... vo{ak + dkp

NkZp).

We also set
dkp

Nk-\

(9) S{Nu...,Nk;&)=
31=0
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From (6) and (8), we can write

Nk

dkP
Nk-i 1

E - E *J

and hence
lim

d p 1
since 5 n = lim l/(dpN) J2 xn and each limit is uniform with respect to the re-

N-KX x=0

maining variables. Therefore

(10) L= lim S(Nlt... ,Nk;d) exists.
{JVi}->oo

Therefore we have the following definition of a multidimensional Volkenborn inte-
gral of a locally holomorphic function.

DEFINITION 3: Let O be an open set in C* with X C 0 , and let / : O -> B
bo locally holomorphic, where B is a Banach space over C p . The multidimensional
Volkenborn integral of / is defined by

f{x)dno(x):= ... f(xi,... ,xn)
Jx Jxdl Jxdk

lP
Nl-l dkp

Nk-l

E ••• E

dlP
Nl-l dkV

Nk-l

1 1J — a1=o ofc=o *

where a = (a\,... .ak) and d — (d\,... , 4 ) £ N k .

For the clarity, in the rest of this paper, we shall denote by 1 the point ( 1 , . . . . 1).

If we substitute 1 and Afl for d and N , respectively, then Definition 3 with / (x) =

(xi + • •• + xk)
n suggests a p-adic analogue of the higher order Bernoulli number Bn

k',

which is defined by the generating function (t/{el - 1)) .

The following proposition is obvious
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PROPOSITION 3 . Let f be a locally holomorphic function on Z£, /(x)

= Z) a J x J ( x G ^p) > a n ^ ^et J e t cetera, be as above. Then we have

f

Now, we consider the function defined on Z£ by

(11)

We shall prove the following generalisation of Proposition 1.

THEOREM 4 . For x € Z£ iet | x | n = (Xl + --- + xk)
n, where k € N and n > 0.

Then

2. B$\x) = f (x+\x\)n dno(x). In particular, B(n\x) = £ B\k) (n>\xn-i.
Jz$ i=o \ V

PROOF: Suppose \t\p ^ p 1 / ( 1 ~ p ) , t € Cp and t ^ 0. First we must show that

= lim -^v

The case k = 1 is familiar from Proposition 1. For the k -dimensional case, by (8),
write

Jzp* Jzp

and apply the one-dimensional results. This gives the desired result.
oo

• Since we also write eW = J2 ( lx | n tn)/(n\), applying term-by-term integration
r>=0

we can readily show that

n=0 XJ*-P ' «=0

This proves the first part. The second part follows in the same fashion. D

REMARK. The higher order Bernoulli numbers are a special case of the generalised

higher order Bernoulli numbers Bn,x belong to the Dirichlet character with conductor.

It is obvious how to obtain the formulas of Theorem 4 for the generalised higher order

Bernoulli numbers Bn,x •

https://doi.org/10.1017/S0004972700020062 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700020062


[7] Volkenborn integral and Bernoulli numbers 65

COROLLARY 5 . For k e N and n > 0 we have

= £ n

where the sum is taken over all nonnegative integers i\, • •. ,ik such that n — i\ + - • -+ik,

and where I . I = (n!) / ( i i ! . . .ifc!) is the multinomial coefficient.

PROOF: From Theorem 4 we have

W->oo T>
i l = 0 xk=0

Y^ ( n \ v 1

— / I . . 1 l i m —prr / . . . / jb-i . . . JL,U .
I " * " ) K /HH M/t=n N i J ' "' r i 1 = 0 xk=0

We therefore obtain the corollary. D

EXAMPLE 1. In fact Bo = 1,BX = -(1/2), B2 = 1/6, B3 = 0 and 0! = 1, we have

1. F o r n = l , ^ f c ) = £ ( X .)Bil...Bik=kB1 = -(l/2)k.

2. For n = 2,

2

3. For n = 3,

»1 + •••+** = 3 X ' ' ' '

EXAMPLE 2. Corollary 5 and the formula [9, p. 145]

(12)
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give rise to more identities. For example, we obtain for k = 1 trivially Bn = Bn, and

»l+*2=n

U 2 3
»l+*2+»3=«

|n(n - 2)5n_! + n(n - l)Bn_2

= - ? ( » - 1)(« - 2 ) ( n - 3) - n ( " - 2)(" -o

- —n(n - l)(n - 3)5n_2 - n(n
D

Similarly, one can also evaluate the sum

However the formula will be a little bit lengthy.

COROLLARY 6 . Leta-ai-\ \-ak with a i , . . . ,ak € Zp, and let k € N and
n > 0. Then

flW(ai+ ••• + <**)= V f "
i + . ~ ^ i = n w i - • • -**

where thesum is taken over all nonnegative integers i\,... ,ik such that n = i\ + - • -+ik,

and where I . I = (n\)/(i\\.. .ik\) is the multinomial coefficient.

PROOF: This follows as in the proof of Corollary 5. D

EXAMPLE 3. From Equation (12) and Corollary 6, we have

2. k = 2 : For a = c*i + a2,

3. k = 3 : For a = ai + a2 + 0:3,
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*11*2>*3^0
»l+'2+*3=n

= -(n - l)(n - 2)5n(a) - -n(n - 2)(2a - 3)Bn_i(a)

+ -n(n — l)(a - l)(a - 2)£?n_2(a0-

4. The sums of products of Bernoulli polynomials in Corollary 6 can also be

evaluated by a slightly longer calculation.

LEMMA 7 . For any integer i \ , . . . ,ik > 0 with n = i\ + • • • + ik we have

] < 1, that is ( U ) € Zp.
^l,••• ,tk/\p Vi,--- ,ikj

PROOF: Put n = ii + • • • + ik. We must show that

ordp (ii\... ifc!) < ord (n!),

f n \
since I . . = (ra!)/(ii!.. .i*,!). Using [1 to denote the greatest integer function,

V i , - . - ,tkj
we have

1=1

= ordp (n!),

because [x] + [y] < [x + y] for all real x,y. This completes the proof. D

A proof of the following lemma can be found in [7, Chapter 2].

LEMMA 8 . If n is a positive integer with p - 1 \ n, then \Bn/n\ < 1.

To state our results we shall require some notation. Let Afc(n) denote the number
of sets of nonnegative integer solutions (i\,... ,ik) to the equation

i\ + • • • + ik — n for s o m e p - 1 | it, I = 1 , . . . , k.

THEOREM 9 . For all n > 0 we have

. " . W...5i ) t eZp.
;

PROOF: By Corollary 5, we have

_ ^ / n
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From Lemma 7

«—» / n \ .

< max \Bi, .£ • • - - " « f c l k \ v •

Applying Lemma 8 to the right side of this inequality, one finds

max \Bi ...Bi\ < max | i i . . . i f c |

Using the result that i\... ik € Zp for all i i , . . . , i^ > 0, we have

max |ii...ifcL < 1,
«l+---+tfc=n ^

which completes the proof for all n > 0. Q

Part 1 of the following theorem was first introduced by Mahler [8]. He was inter-
ested mainly in functions of one variable, for the purpose of making the similarities and
the differences between real and p-adic functions more intelligible. Also, in [8, Chapter
12], he extended some of the function theory of one variable to the case of functions of
two variables.

THEOREM 1 0 . (Mahler expansion and base for C(Z£ -> Cp).) Let C(Z* -> Cp)

be the set of all continuous functions Z£ —> Cp. Let J = (ji,... ,jk) be multi-index of

the k-tuples of nonnegative integers, and \3\ = ji + • • • + jk •

1. If f e C(Z£ -> Cp) has the Mahler expansion

<Jk,

where J runs through the k -tuples of nonnegative integers, then

°J = E • • • E (-i)|J|-(ii+-+ifc) (jl)... (jk) fin ik).
i1=0 ik=0 \ l l / \ z * : /

2. The function

forms an orthonormal basis of C(Zp -¥ C p ) .
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PROOF: The set < I 11 I : m, n > 0 and (x,y) € TLV\ is an orthonormal

basis of C(Zp -> C p ) , topologised by the sup-norm. Similarly, < I 1 I . . . I . I > is an

orthonormal basis of C(Z£ -» C p ) , topologised by the sup-norm (see [11]). D

From this we deduce the following example.

EXAMPLE 4. Let a be a p-adic number satisfying \a\ < p 1 ^ 1 "? ) . Then for x\,... ,xk

€ ZD we have
oo oo

J J f c=0 J i=0
oo oo .

exp[a(xi + • • • + Xk)) = 2-> • • • 2_( (expa —1)J1 { • ) • • • [ • ) •
3k=0 i i=0 J l Jfc

PROOF: TO see Part 1, the binomial theorem, readily shows that

mk mi

Jk=O h=0

for m i , . . . ,mfc e N. Now continuity (see [7, Chapter 2]) proves Part 1.

Since |a|p < p 1 /^-?) and xi-\ 1- xk € Z p ,

exp(a(xi + • • • + Xk)) = (expa) X l + " + I f c

(see [11]). Hence Part 1 gives Part 2. D

EXAMPLE 5. Let ( b e a root of unity of order p , a prime number p / 2. Then

{ 1 if / = 0 (modp),

- 1 if 1 ^ 0 (modp),

0 otherwise.

PROOF: Let
oo

f(x) = ^2xn = 1 + x + • • • + xn H .
n=0

P-1
For C 6 Cp , let C be a primitive p-th root of unity. We set F(x) := ]~[ / (C" 1 ) - It is

a=l
thus easy to see that

oo

1=0
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where

i l , . . . , t p _ l > 0

For \x\ < 1, f(x) converges to 1/(1 — x). One also sees that

P - 1 -, i „ T

= (1 - x) (1 + xp + x2p + • • • + xnp + • • •).

The result now follows upon equating the coefficients of xl on both sides of the above
equation. D

COROLLARY 1 1 . Let f et cetera, be as in Theorem 10. Then

PROOF: Note that

hv W n -r 1

for all n > 0 (see [8, 10, 11]). Thus the result follows from Theorem 10. D
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