Merit Factors of Polynomials Formed by Jacobi Symbols

Peter Borwein and Kwok-Kwong Stephen Choi

Abstract. We give explicit formulas for the L_{4} norm (or equivalently for the merit factors) of various sequences of polynomials related to the polynomials

$$
f(z):=\sum_{n=0}^{N-1}\left(\frac{n}{N}\right) z^{n}
$$

and

$$
f_{t}(z)=\sum_{n=0}^{N-1}\left(\frac{n+t}{N}\right) z^{n}
$$

where $(\dot{\bar{N}})$ is the Jacobi symbol.
Two cases of particular interest are when $N=p q$ is a product of two primes and $p=q+2$ or $p=q+4$. This extends work of Høholdt, Jensen and Jensen and of the authors.

This study arises from a number of conjectures of Erdős, Littlewood and others that concern the norms of polynomials with $-1,1$ coefficients on the disc. The current best examples are of the above form when N is prime and it is natural to see what happens for composite N.

1 Introduction

There are a number of old conjectures of Erdős, Littlewood, Turyn and others that concern the norms of polynomials with $-1,1$ coefficients. See [BC-98], [BC-99], [E-57], [E-62], [L-68], [NB-90], [S-90], [M-94].

Littlewood's conjecture is that it is possible to find p a polynomial of degree n with coefficients $-1,1$ so that

$$
C_{1} \sqrt{n} \leq|p(z)| \leq C_{2} \sqrt{n}
$$

for all z of modulus 1 and for two constants C_{1}, C_{2} independent of n. This is complemented by a conjecture of Erdős that says that the constant C_{2} above cannot be arbitrarily close to 1 . The most significant related results may be found in [K-80] and [B-95].

This latter conjecture of Erdős would be proved by showing that the L_{4} norm of such polynomials is bounded below by $C_{3} \sqrt{n}$ for some $C_{3}>1$. The L_{4} norm is attractive to work with because it computationally far more tractable than the sup

[^0]norm. These problems arose separately in the mathematics community and the engineering community. In the engineering community the problems arose as signal processing questions and here again the L_{4} norm is natural to consider [G-83].

The example, due to Turyn and proved by Høholdt and Jensen [HJ-88], that gives the smallest asymptotic L_{4} norm is of the form

$$
f_{p}(z)=\sum_{n=0}^{p-1}\left(\frac{n+[p / 4]}{p}\right) z^{n}
$$

where $(\dot{\bar{p}})$ is the Legendre symbol and p is prime. (Recall that the Legendre symbol $\left(\frac{n}{p}\right)$ is 1 if n is a quadratic residue $\bmod p$ and is -1 otherwise.) This is discussed in [BC-98] where explicit formulae for these L_{4} norms are given. In the above case the L_{4} norm is asymptotic to $(7 / 6)^{1 / 4} p^{1 / 2}$.

In this paper we extend the analysis to the non-prime case.
Suppose N is odd. Let $\chi(n)$ be a real primitive character modulo N. Then N is a product of distinct primes $p_{1} p_{2} \cdots p_{r}$ with $p_{1}<p_{2}<\cdots p_{r}$ and

$$
\begin{equation*}
\chi(n)=\left(\frac{n}{p_{1} p_{2} \cdots p_{r}}\right) \tag{1.1}
\end{equation*}
$$

where $\left(\frac{n}{N}\right)$ is the Jacobi symbol. We consider the polynomial formed by $\chi(n)$ as

$$
\begin{equation*}
f(z):=\sum_{n=0}^{N-1} \chi(n) z^{n}=\sum_{n=0}^{N-1}\left(\frac{n}{N}\right) z^{n} \tag{1.2}
\end{equation*}
$$

Then $f(z)$ is a polynomial having coefficients either 0 or ± 1. We also consider the shifted polynomial $f_{t}(z)$ by shifting the coefficients of $f(z)$ to the left by t. Thus, if $1 \leq t \leq N$, then

$$
\begin{equation*}
f_{t}(z)=\sum_{n=0}^{N-1}\left(\frac{n+t}{N}\right) z^{n} \tag{1.3}
\end{equation*}
$$

In particular, $f_{N}(z)=f(z)$.
We are particularly interested in the behavior of the growth of the L_{4} norm of these polynomials. For the case that N is a product of twin primes, we are able to derive an exact formula for the L_{4} norm of the unshifted polynomial $f(z)$. A similar formula for the case when $N=p q$ with odd primes $p, q, p=q+4$ and $p \equiv 3(\bmod 4)$ can also be derived. We have the following theorem.
Theorem 1.1 Let $N=p q$ and $f(z)$ be the polynomial defined in (1.2). If $p=q+2$, then

$$
\begin{aligned}
\|f\|_{4}^{4}= & \frac{1}{3}\left(5 N^{2}+9 N+4-(8 N+1)(p+q)\right) \\
& +24 \frac{q^{3}}{N^{2}}\left(2-\left(\frac{2}{p}\right)\right) h_{p}^{2}-24 \frac{p^{3}}{N^{2}}\left(1-\left(\frac{2}{q}\right)\right) h_{q}^{2}+\frac{12}{N^{2}} h_{N}^{2}
\end{aligned}
$$

and if $p=q+4$ and $q \equiv 3(\bmod 4)$ then

$$
\begin{aligned}
\|f\|_{4}^{4}=\frac{1}{3} & \left(5 N^{2}+9 N+4-(8 N+1)(p+q)\right) \\
& +12 \frac{q^{3}}{N^{2}}\left(5-3\left(\frac{2}{p}\right)\right) h_{p}^{2}-36 \frac{p^{3}}{N^{2}}\left(1-\left(\frac{2}{q}\right)\right) h_{q}^{2}+\frac{12}{N^{2}} h_{N}^{2}
\end{aligned}
$$

where $h_{l}:=\sum_{n=1}^{l-1} n\left(\frac{n}{l}\right)$ for odd integer l.
For the general case, we obtain an asymptotic estimation for the L_{4} norm and prove
Theorem 1.2 Let $N=p_{1} p_{2} \cdots p_{r}$ with $p_{1}<p_{2}<\cdots<p_{r}$ and $f_{t}(z)$ is defined in (1.3) with $1 \leq t \leq N$. Then

$$
\begin{equation*}
\left\|f_{t}\right\|_{4}^{4}=\frac{5}{3} N^{2}-4 N t+8 t^{2}+O\left(\frac{N^{2+\epsilon}}{p_{1}}\right) \tag{1.4}
\end{equation*}
$$

Theorem 1.2 immediately implies that if we define the merit factor of a sequence $\left\{x_{n}\right\}_{n=0}^{N-1}$ by

$$
M F=\frac{\|F\|_{2}^{4}}{\|F\|_{4}^{4}-\|F\|_{2}^{4}}
$$

where $F(z):=\sum_{n=0}^{N-1} x_{n} z^{n}$, then from (1.4), we have the merit factor $M F$ of the Jacobi sequence satisfying

$$
\frac{1}{M F}=\frac{2}{3}-4 \frac{t}{N}+8\left(\frac{t}{N}\right)^{2}+O\left(N^{\epsilon} p_{1}^{-1}\right)
$$

It follows that if $N^{\epsilon} p_{1}^{-1} \longrightarrow 0$ when $N \longrightarrow \infty$, then

$$
\frac{1}{M F} \longrightarrow \frac{2}{3}-4 \frac{t}{N}+8\left(\frac{t}{N}\right)^{2}
$$

In particular for t approximately $N / 4$ the merit factors approach 6 which is conjectured by some to be best possible [G-83].

This should be compared with the result of T. Høholdt, H. Jensen and J. Jensen in [HJJ-91]. They showed that the same asymptotic formula but a weaker error term $O\left(\frac{(p+q)^{5} \log ^{4} N}{N^{3}}\right)$ for the special case $N=p q$. So we generalize their result to $N=$ $p_{1} p_{2} \cdots p_{r}$ and also improve the error term.

Additional history of this problem is outlined in [BC-98] and [BC-99].

$2 L_{4}$ Norm for Character Polynomial

Let χ be a non-principal primitive character $\bmod N$. Let

$$
f(z):=\sum_{n=0}^{N-1} \chi(n) z^{n}
$$

be the character polynomial associated to χ. Let $\omega:=e^{2 \pi i / N}$ and $\tau(\chi)$ be the Gaussian sum defined by

$$
\tau(\chi):=\sum_{n=0}^{N-1} \chi(n) \omega^{n}
$$

Since χ is primitive,

$$
\begin{equation*}
f\left(\omega^{k}\right)=\tau(\chi) \bar{\chi}(k) \tag{2.1}
\end{equation*}
$$

for $k=0,1, \ldots, N-1$. Also we have $|\tau(\chi)|^{2}=N$ and $\overline{\tau(\chi)}=\chi(-1) \tau(\bar{\chi})$ (see Chapter 8 in [A-80]). The shifted polynomial $f_{t}(z)$ by shifting the coefficients of $f(z)$ to the left by t is defined as

$$
f_{t}(z):=\sum_{n=0}^{N-1} \chi(n+t) z^{n}
$$

for $1 \leq t \leq N$ and $f_{N}(z)=f(z)$. It is easy to see that

$$
\begin{equation*}
f_{t}\left(\omega^{k}\right)=\omega^{-t k} f\left(\omega^{k}\right) \tag{2.2}
\end{equation*}
$$

for any $0 \leq k \leq N-1$. We are interested in estimating the L_{4} norm of $f_{t}(z)$. It can be shown (see [HJ-88], [BC-98]) that

$$
\begin{equation*}
\left\|f_{t}\right\|_{4}^{4}=\frac{1}{2 N}\left\{\sum_{k=0}^{N-1}\left|f_{t}\left(\omega^{k}\right)\right|^{4}+\sum_{k=0}^{N-1}\left|f_{t}\left(-\omega^{k}\right)\right|^{4}\right\} \tag{2.3}
\end{equation*}
$$

Using (2.1) and (2.2), the first summation above is $N^{2} \phi(N)$. It remains to evaluate the second summation

$$
\sum_{k=0}^{N-1}\left|f_{t}\left(-\omega^{k}\right)\right|^{4}
$$

For $1 \leq t \leq N$ and $0 \leq k \leq N-1$, we have

$$
f_{N-t+1}\left(-\omega^{k}\right)=\omega^{-k} \chi(-1) f_{t}\left(-\omega^{-k}\right)
$$

In particular, we have $\left|f_{t}\left(-\omega^{k}\right)\right|=\left|f_{N-t+1}\left(-\omega^{-k}\right)\right|$ for $0 \leq k \leq N-1$ and hence from now on we may assume $1 \leq t \leq(N+1) / 2$.

We employ an interpolation formula as in [HJ-88], [BC-98] and by (2.8), (2.9) and (2.10) in [BC-99] which is

$$
\begin{equation*}
\sum_{k=0}^{N-1}\left|f_{t}\left(-\omega^{k}\right)\right|^{4}=\frac{16}{N^{4}}(A+B+C) \tag{2.4}
\end{equation*}
$$

where

$$
\begin{gather*}
A=\frac{1}{48} N^{2}\left(N^{2}+2\right) \sum_{a=0}^{N-1}\left|f_{t}\left(\omega^{a}\right)\right|^{4} \tag{2.5}\\
B=-\frac{N^{2}}{2} \Re\left\{\sum_{a=0}^{N-1}\left|f_{t}\left(\omega^{a}\right)\right|^{2} f_{t}\left(\omega^{a}\right) \sum_{k=1}^{N-1} \frac{\overline{f_{t}\left(\omega^{a-k}\right)}\left(\omega^{k}+1\right)}{\left|\omega^{k}-1\right|^{2}}\right\} \\
C=N^{2} \sum_{a=0}^{N-1}\left|f_{t}\left(\omega^{a}\right)\right|^{2}\left|\sum_{k=1}^{N-1} \frac{f_{t}\left(\omega^{a-k}\right)}{\omega^{k}-1}\right|^{2}-\frac{N^{2}}{2} \Re\left\{\sum_{a=0}^{N-1} \frac{f_{t}\left(\omega^{a}\right)^{2}}{}\left(\sum_{k=1}^{N-1} \frac{f_{t}\left(\omega^{a-k}\right)}{\omega^{k}-1}\right)^{2}\right\} .
\end{gather*}
$$

In this section, we will simplify the terms A, B and C by using (2.1) and evaluate them in the next section. Using (2.1) and (2.2), we have

$$
\begin{equation*}
A=\frac{N^{4}\left(N^{2}+2\right) \phi(N)}{48} . \tag{2.6}
\end{equation*}
$$

Using (2.1) and (2.2) again, we have

$$
\begin{align*}
B= & -\frac{N^{4}}{2} \Re\left\{\sum_{k=1}^{N-1} \frac{\omega^{-t k}\left(\omega^{k}+1\right)}{\left|\omega^{k}-1\right|^{2}} \sum_{n=0}^{N-1} \overline{\chi(n)} \chi(n-k)\right\} \\
= & \frac{N^{4}}{2} \Re\left\{\sum_{k=1}^{N-1} \frac{\omega^{t k}\left(\omega^{k}+1\right)}{\left(\omega^{k}-1\right)^{2}} \sum_{n=0}^{N-1} \chi(n) \overline{\chi(n-k)}\right\} \\
= & \frac{N^{2}}{2} \Re\left\{\sum_{a, b=1}^{N-1} a b \sum_{k=1}^{N-1} \omega^{k(t+a+b)}\left(\omega^{k}+1\right) \sum_{n=0}^{N-1} \chi(n) \overline{\chi(n-k)}\right\} \tag{2.7}\\
= & \frac{N^{2}}{2} \Re\left\{\sum_{a, b=1}^{N-1} a b \sum_{k=0}^{N-1}\left(\omega^{k(1+t+a+b)}+\omega^{k(t+a+b)}\right) \sum_{n=0}^{N-1} \chi(n) \overline{\chi(n-k)}\right\} \\
& -\frac{N^{4}(N-1)^{2} \phi(N)}{4},
\end{align*}
$$

because

$$
\begin{equation*}
\frac{1}{\omega^{j}-1}=\frac{1}{N} \sum_{n=1}^{N-1} n \omega^{j n} \tag{2.8}
\end{equation*}
$$

for $j=1,2, \ldots, N-1$.

For the term C, the second term in (2.5) equals

$$
\begin{aligned}
& =-\frac{N^{2}}{2} \Re\left\{\sum_{a=0}^{N-1} \overline{f_{t}\left(\omega^{a}\right)^{2}}\left(\sum_{k=1}^{N-1} \frac{f_{t}\left(\omega^{a-k}\right)}{\omega^{k}-1}\right)^{2}\right\} \\
& =-\frac{N^{4}}{2} \Re\left\{\sum_{a=0}^{N-1} \chi^{2}(a)\left(\sum_{k=1}^{N-1} \frac{\omega^{k t} \overline{\chi(a-k)}}{\omega^{k}-1}\right)^{2}\right\} \\
& =-\frac{N^{4}}{2} \Re\left\{\sum_{a=0}^{N-1} \chi^{2}(a)\left(\frac{1}{N} \sum_{n=1}^{N-1} n \sum_{k=1}^{N-1} \overline{\chi(a-k)} \omega^{k(t+n)}\right)^{2}\right\}
\end{aligned}
$$

from (2.1) and (2.8). Using (2.1) again, this is equal to

$$
\begin{aligned}
= & -\frac{N^{4}}{2} \Re\left\{\sum_{a=0}^{N-1} \chi^{2}(a)\left(\frac{\tau(\chi)}{N} \sum_{n=1}^{N-1} n \chi(n+t) \omega^{a(t+n)}-\frac{N-1}{2} \overline{\chi(a)}\right)^{2}\right\} \\
= & -\frac{N^{4}}{2} \Re\left\{\frac{\overline{\tau(\chi)}^{2}}{N^{2}} \sum_{n, m=1}^{N-1} n m \chi(n+t) \chi(m+t) \sum_{a=0}^{N-1} \chi^{2}(a) \omega^{a(n+m+2 t)}\right\} \\
& -\frac{N^{4}}{2}\left(\frac{N-1}{2}\right)^{2} \phi(N)+\frac{N^{4}(N-1)}{2} \Re\left\{\frac{\overline{\tau(\chi)}}{N} \sum_{n=1}^{N-1} n \chi(n+t) f\left(\omega^{t+n}\right)\right\} \\
= & -\frac{N^{2}}{2} \Re\left\{\overline{\tau(\chi)}^{2} \sum_{n, m=1}^{N-1} n m \chi(n+t) \chi(m+t) \sum_{a=0}^{N-1} \chi^{2}(a) \omega^{a(n+m+2 t)}\right\} \\
& -\frac{N^{4}(N-1)^{2} \phi(N)}{8}+\frac{N^{4}(N-1)}{2} \sum_{\substack{n=1 \\
(n+t, N)=1}}^{N-1} n .
\end{aligned}
$$

Similarly, the first term in (2.5) equals

$$
\begin{align*}
= & N^{2} \sum_{a=0}^{N-1}\left|f_{t}\left(\omega^{a}\right)\right|^{2}\left|\sum_{k=1}^{N-1} \frac{f_{t}\left(\omega^{a-k}\right)}{\omega^{k}-1}\right|^{2} \\
= & N^{4} \sum_{a=0}^{N-1}\left|\chi^{2}(a)\right|\left|\sum_{k=1}^{N-1} \frac{\omega^{k t} \overline{\chi(a-k)}}{\omega^{k}-1}\right|^{2} \\
= & N^{3} \sum_{n m=1}^{N-1} n m \chi(n+t) \overline{\chi(m+t)} \sum_{a=0}^{N-1}\left|\chi^{2}(a)\right| \omega^{a(n-m)} \tag{2.10}\\
& +\frac{N^{4}(N-1)^{2} \phi(N)}{4}-N^{4}(N-1) \sum_{\substack{n=1 \\
(n+t, N)=1}}^{N-1} n
\end{align*}
$$

and hence from (2.5), (2.9) and (2.10)

$$
\begin{align*}
C=- & \frac{N^{2}}{2} \Re\left\{\overline{\tau(\chi)}^{2} \sum_{n, m=1}^{N-1} n m \chi(n+t) \chi(m+t) \sum_{a=0}^{N-1} \chi^{2}(a) \omega^{a(n+m+2 t)}\right\} \\
& +\frac{N^{4}(N-1)^{2} \phi(N)}{8}+N^{3} \sum_{n m=1}^{N-1} n m \chi(n+t) \overline{\chi(m+t)} C_{N}(n-m) \tag{2.11}\\
& -\frac{N^{4}(N-1)}{2} \sum_{\substack{n=1 \\
n+t, N)=1}}^{N-1} n
\end{align*}
$$

where $C_{k}(l)$ is the usual Ramanujan sum defined as

$$
C_{k}(l)=\sum_{\substack{n=0 \\(n, k)=1}}^{k-1} e^{\frac{2 \pi i n l}{k}}
$$

We remark that formulas (2.3), (2.4), (2.6), (2.7) and (2.11) hold for any nonprincipal primitive character. In the next section, we will confine our consideration to the Jacobi symbol.

3 Real Primitive Character Modulo $p q$

Lemma 3.1 If $1 \leq k \leq N$, then

$$
\sum_{\substack{n, m=1 \\ k+n+m \equiv 0}}^{N-1} n m=\frac{N}{6}\left(N^{2}-6 N-1+6 k+3 N k-3 k^{2}\right)
$$

Proof This is Lemma 2 in [BC-98].
Lemma 3.2 Let $p_{1}, p_{2}, \ldots, p_{r}$ be distinct primes and $\chi=\chi_{1} \chi_{2} \cdots \chi_{r}$ where χ_{j} are non-principal characters modulo p_{j}. Let $N=p_{1} p_{2} \cdots p_{r}$. Then

$$
\sum_{k=0}^{N-1} \omega^{k l} \sum_{n=0}^{N-1} \chi(n) \overline{\chi(n-k)}= \begin{cases}N & \text { if }(l, N)=1 \tag{3.1}\\ 0 & \text { otherwise }\end{cases}
$$

Proof Let $\omega_{q}=e^{\frac{2 \pi i}{q}}$. Then

$$
\begin{aligned}
& \sum_{k_{1}=0}^{p_{1}-1} \cdots \sum_{k_{r}=0}^{p_{r}-1} \omega_{p_{1}}^{k_{1} l} \cdots \omega_{p_{r}}^{k_{r} l} \sum_{n_{1}=0}^{p_{1}-1} \cdots \sum_{n_{r}=0}^{p_{r}-1} \chi_{1}\left(n_{1}\right) \overline{\chi_{1}\left(n_{1}-k_{1}\right)} \cdots \chi_{r}\left(n_{r}\right) \overline{\chi_{r}\left(n_{r}-k_{r}\right)} \\
& \quad=\prod_{j=1}^{r} \sum_{k_{j}=0}^{p_{j}-1} \omega_{p_{j}}^{k_{j} l} \sum_{n_{j}=0}^{p_{j}-1} \chi_{j}\left(n_{j}\right) \overline{\chi_{j}\left(n_{j}-k_{j}\right)} \\
& \quad=\prod_{j=1}^{r}\left\{p_{j}-\sum_{k_{j}=0}^{p_{j}-1} \omega_{p_{j}}^{k_{j} l}\right\}
\end{aligned}
$$

because

$$
\sum_{n_{j}=0}^{p_{j}-1} \chi_{j}\left(n_{j}\right) \overline{\chi_{j}\left(n_{j}-k_{j}\right)}= \begin{cases}p_{j}-1 & \text { if } p_{j} \mid k_{j} \\ 0 & \text { otherwise }\end{cases}
$$

Hence the summation in (3.1) equals N if $(l, N)=1$ and 0 otherwise.
From (2.7), we have if $p_{1}, p_{2}, \ldots, p_{r}$ are distinct primes and $\chi=\chi_{1} \chi_{2} \cdots \chi_{r}$ with non-principal characters χ_{j} modulo p_{j}, then

$$
\begin{equation*}
B=\frac{N^{3}}{2} \sum_{\substack{a, b=1 \\(a+b+t+1, N)=1}}^{N-1} a b+\frac{N^{3}}{2} \sum_{\substack{a, b=1 \\(a+b+t, N)=1}}^{N-1} a b-\frac{N^{4}(N-1)^{2} \phi(N)}{4} \tag{3.2}
\end{equation*}
$$

by Lemma 3.2.
Lemma 3.3 If $N=p q$ then we have

$$
\begin{equation*}
\sum_{\substack{a, b=1 \\(a+b, N)=1}}^{N-1} a b=\frac{1}{12} N\left(3 N^{2}-7 N-2\right) \phi(N) \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{\substack{a, b=1 \\(a+b+1, N)=1}}^{N-1} a b=\frac{1}{12} N(N-1)(3 N-4) \phi(N) \tag{3.4}
\end{equation*}
$$

Proof Write

$$
\begin{equation*}
\sum_{\substack{a, b=1 \\(a+b, N)=1}}^{N-1} a b=\sum_{a, b=1}^{N-1} a b-\sum_{\substack{a, b=1 \\ a+b \equiv 0}}^{N-1} a b-\sum_{\substack{a, b=1 \\(\bmod p)}}^{N-1} a b+\sum_{\substack{a+b \equiv 0 \\ a+b=1 \\(\bmod q)}}^{N-1} a b \tag{3.5}
\end{equation*}
$$

We then apply Lemma 3.1 to the last three summations. Formula (3.4) can be proved in the same way.

Now from (3.2)-(3.4), if $t=N$ and $N=p q$, then we have

$$
\begin{equation*}
B=-\frac{1}{12} N^{4}(N+2) \phi(N) \tag{3.6}
\end{equation*}
$$

Lemma 3.4 If $N=p q$, then we have

$$
\begin{equation*}
\sum_{\substack{a=1 \\(a, N)=1}}^{N-1} a=\frac{1}{2} N \phi(N) \tag{3.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{\substack{a=1 \\(a, N)=1}}^{N-1} a^{2}=\frac{1}{6} N(2 N+1) \phi(N) \tag{3.8}
\end{equation*}
$$

Proof The proof is similar to Lemma 3.3.

It remains to compute the term C using (2.11). Suppose χ is real and $t=N$. Then the first term in (2.11) equals

$$
\begin{aligned}
& =-\left(\frac{-1}{N}\right) \frac{N^{3}}{2} \sum_{n, m=1}^{N-1} n m\left(\frac{n m}{N}\right) C_{N}(n+m) \\
& =-\left(\frac{-1}{N}\right) \frac{N^{3}}{2} \sum_{n, m=1}^{N-1} n(N-m)\left(\frac{n(-m)}{N}\right) C_{N}(n-m) \\
& =-\frac{N^{4}}{2} \sum_{n=1}^{N-1} n\left(\frac{n}{N}\right) \sum_{m=1}^{N-1}\left(\frac{m}{N}\right) C_{N}(n-m)+\frac{N^{3}}{2} \sum_{n, m=1}^{N-1} n m\left(\frac{n m}{N}\right) C_{N}(n-m) \\
& =-\frac{N^{5}}{2} \sum_{n=1}^{N-1} n\left(\frac{n}{N}\right)\left(\frac{n}{N}\right)+\frac{N^{3}}{2} \sum_{n, m=1}^{N-1} n m\left(\frac{n m}{N}\right) C_{N}(n-m) \\
& =-\frac{N^{5}}{2} \sum_{\substack{n=1 \\
(n, N)=1}}^{N-1} n+\frac{N^{3}}{2} \sum_{n, m=1}^{N-1} n m\left(\frac{n m}{N}\right) C_{N}(n-m) .
\end{aligned}
$$

Hence from this together with (2.11) and (3.7), we have

$$
\begin{align*}
C=\frac{3}{2} & N^{3} \sum_{n, m=1}^{N-1} n m\left(\frac{n m}{N}\right) C_{N}(n-m) \tag{3.9}\\
& +\frac{N^{4}}{16}\left(N(N-1)^{2} \phi^{2}(N)-4 N^{2} \phi(N)-8(N-1)\right) .
\end{align*}
$$

The last step is to evaluate the summation

$$
\sum_{n, m=1}^{N-1} n m\left(\frac{n m}{N}\right) C_{N}(n-m)
$$

Since $C_{N}(l)$ is a multiplicative function of N (see Section 8.3 of [A-80]) and also if p is a prime, then

$$
C_{p}(k)= \begin{cases}-1 & \text { if }(p, k)=1 \\ p-1 & \text { if }(p, k) \neq 1\end{cases}
$$

so if $N=p q$, then

$$
\begin{align*}
\sum_{n, m=1}^{N-1} n m\left(\frac{n m}{N}\right) C_{N}(n-m)= & \sum_{n, m=1}^{N-1} n m\left(\frac{n m}{N}\right) C_{p}(n-m) C_{q}(n-m) \\
= & N \sum_{\substack{n=1 \\
(n, N)=1}}^{N-1} n^{2}-p \sum_{\substack{n, m=0 \\
n-m \equiv 0 \\
(\bmod p)}}^{N-1} n m\left(\frac{n m}{N}\right) \tag{3.10}\\
& -q \sum_{\substack{n, m=0 \\
n-m \equiv 0}}^{N-1} n m\left(\frac{n m}{N}\right)+h_{N}^{2} .
\end{align*}
$$

Lemma 3.5 Let p and q be primes greater than 3 and $N=p q$. If $p=q+2$ then

$$
\begin{equation*}
\sum_{\substack{n, m=0 \\ n \equiv m \\(\bmod p)}}^{N-1} n m\left(\frac{n m}{N}\right)=\frac{1}{12} N^{2}\left(q^{2}-1\right)+2 p^{2}\left(1-\left(\frac{2}{q}\right)\right) h_{q}^{2} \tag{3.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{\substack{n, m=0 \\ n \equiv m \\(\bmod q)}}^{N-1} n m\left(\frac{n m}{N}\right)=\frac{1}{12} N^{2}\left(p^{2}-1\right)-2 q^{2}\left(2-\left(\frac{2}{p}\right)\right) h_{p}^{2} \tag{3.12}
\end{equation*}
$$

If $p=q+4$ and $q \equiv 3(\bmod 4)$ then

$$
\begin{equation*}
\sum_{\substack{n, m=0 \\ n \equiv m \\(\bmod p)}}^{N-1} n m\left(\frac{n m}{N}\right)=\frac{1}{12} N^{2}\left(q^{2}-1\right)+3 p^{2}\left(1-\left(\frac{2}{q}\right)\right) h_{q} \tag{3.13}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{\substack{n, m=0 \\ n \equiv m \\(\bmod q)}}^{N-1} n m\left(\frac{n m}{N}\right)=\frac{1}{12} N^{2}\left(p^{2}-1\right)-q^{2}\left(5-3\left(\frac{2}{p}\right)\right) h_{p}^{2} \tag{3.14}
\end{equation*}
$$

Proof We only give a proof for (3.11). The proof for (3.12)-(3.14) is similar.

$$
\begin{align*}
& \sum_{\substack{n, m=0 \\
n-m \equiv 0(\bmod p)}}^{N-1} n m\left(\frac{n m}{N}\right) \tag{3.15}\\
& =\sum_{a, b=0}^{q-1} \sum_{\substack{n, m=0 \\
n-m \equiv 0}}^{p-1}(n+p a)(m+p b)\left(\frac{n+p a}{p q}\right)\left(\frac{m+p b}{p q}\right) \\
& =\sum_{\substack{n, m=0 \\
n-m \equiv 0(\bmod p)}}^{p-1}\left(\frac{n m}{p}\right) \sum_{a, b=0}^{q-1}(n+p a)(m+p b)\left(\frac{n+p a}{q}\right)\left(\frac{m+p b}{q}\right) \\
& =p^{2} \sum_{\substack{n, m=0 \\
n-m \equiv 0 \\
(\bmod p)}}^{p-1}\left(\frac{n m}{p}\right) \sum_{a, b=0}^{q-1} a b\left(\frac{n+p a}{q}\right)\left(\frac{m+p b}{q}\right) \\
& =p^{2} \sum_{a, b=0}^{q-1} a b \sum_{n=1}^{p-1}\left(\frac{n+p a}{q}\right)\left(\frac{n+p b}{q}\right) \\
& =p^{2}\left\{\sum_{a, b=0}^{q-1} a b \sum_{n=0}^{p-1}\left(\frac{n+p a}{q}\right)\left(\frac{n+p b}{q}\right)-\sum_{a, b=0}^{q-1} a b\left(\frac{p a}{q}\right)\left(\frac{p b}{q}\right)\right\} \\
& =p^{2} \sum_{a, b=0}^{q-1} a b \sum_{n=0}^{p-1}\left(\frac{n+p a}{q}\right)\left(\frac{n+p b}{q}\right)-p^{2} h_{q}^{2} .
\end{align*}
$$

If $p=q+2$ then

$$
\begin{aligned}
\sum_{n=0}^{p-1}\left(\frac{n+p a}{q}\right)\left(\frac{n+p b}{q}\right)= & \sum_{n=0}^{q+1}\left(\frac{n+2 a}{q}\right)\left(\frac{n+2 b}{q}\right) \\
= & \sum_{n=0}^{q-1}\left(\frac{(n+2 a)(n+2 b)}{q}\right) \\
& +\left(\frac{a b}{q}\right)+\left(\frac{(2 a+1)(2 b+1)}{q}\right)
\end{aligned}
$$

The first summation on the right hand side of (3.16) (see [BEW-98, p. 58]) is

$$
= \begin{cases}q-1 & \text { if } a \equiv b \quad(\bmod q) \\ -1 & \text { otherwise }\end{cases}
$$

Hence, the first term in (3.15) is

$$
\begin{aligned}
&= p^{2}\{- \\
& \quad \sum_{a, b=0}^{q-1} a b+q \sum_{\substack{a, b=0 \\
a \equiv b \\
(\bmod q)}}^{q-1} a b+\sum_{a, b=0}^{q-1} a b\left(\frac{a b}{q}\right) \\
&\left.+\sum_{a, b=0}^{q-1} a b\left(\frac{(2 a+1)(2 b+1)}{q}\right)\right\} \\
&= p^{2}\left\{-\left(\frac{q(q-1)}{2}\right)^{2}+q \sum_{a=0}^{q-1} a^{2}+h_{q}^{2}+\left(\sum_{a=0}^{q-1} a\left(\frac{2 a+1}{q}\right)\right)^{2}\right\} \\
&= \frac{N^{2}}{12}\left(q^{2}-1\right)+p^{2}\left(3-2\left(\frac{2}{q}\right)\right) h_{q}^{2} .
\end{aligned}
$$

This proves (3.11).
So, if $p=q+2$, then

$$
\begin{aligned}
\sum_{n, m=1}^{N-1} n m & \left(\frac{n m}{N}\right) C_{N}(n-m) \\
= & \frac{N^{2}}{12}\left(4 N^{2}-5 N(p+q)+6 N-(p+q)+2\right) \\
& \quad-2 p^{3}\left(1-\left(\frac{2}{q}\right)\right) h_{q}^{2}+2 q^{3}\left(2-\left(\frac{2}{p}\right)\right) h_{p}^{2}+h_{N}^{2}
\end{aligned}
$$

From (3.9), we obtain

$$
\begin{aligned}
C= & \frac{N^{4}}{8}\left(N^{3}+3 N^{2}+3 N+1-\left(2 N^{2}+N+1\right)(p+q)\right) \\
& -3 N^{3} p^{3}\left(1-\left(\frac{2}{q}\right)\right) h_{q}^{2}+3 N^{3} q^{3}\left(2-\frac{2}{p}\right) h_{p}^{2}+\frac{3}{2} N^{3} h_{N}^{2}
\end{aligned}
$$

Therefore, using this, (2.4), (2.6) and (3.6), we have if $p=q+2$, then

$$
\begin{aligned}
\sum_{k=0}^{N-1}\left|f\left(-\omega^{k}\right)\right|^{4}= & \frac{N}{3}\left(7 N^{2}+15 N+8-(13 N+2)(p+q)\right) \\
& +48 \frac{q^{3}}{N}\left(2-\left(\frac{2}{p}\right)\right) h_{p}^{2}-48 \frac{p^{3}}{N}\left(1-\left(\frac{2}{q}\right)\right) h_{q}^{2}+\frac{24}{N} h_{N}^{2}
\end{aligned}
$$

and

$$
\begin{aligned}
\|f\|_{4}^{4}= & \frac{1}{3}\left(5 N^{2}+9 N+4-(8 N+1)(p+q)\right) \\
& +24 \frac{q^{3}}{N^{2}}\left(2-\left(\frac{2}{p}\right)\right) h_{p}^{2}-24 \frac{p^{3}}{N^{2}}\left(1-\left(\frac{2}{q}\right)\right) h_{q}^{2}+\frac{12}{N^{2}} h_{N}^{2}
\end{aligned}
$$

Similarly, if $p=q+4$ and $q \equiv 3(\bmod 4)$ and instead of using (3.11) and (3.12) in Lemma 3.5, we employ (3.13) and (3.14), then we obtain

$$
\begin{aligned}
\sum_{k=0}^{N-1}\left|f\left(-\omega^{k}\right)\right|^{4}= & \frac{N}{3}\left(7 N^{2}+15 N+8-(13 N+2)(p+q)\right) \\
& +24 \frac{q^{3}}{N}\left(5-3\left(\frac{2}{p}\right)\right) h_{p}^{2}-72 \frac{p^{3}}{N}\left(1-\left(\frac{2}{q}\right)\right) h_{q}^{2}+\frac{24}{N} h_{N}^{2}
\end{aligned}
$$

and

$$
\begin{aligned}
&\|f\|_{4}^{4}= \frac{1}{3} \\
&\left(5 N^{2}+9 N+4-(8 N+1)(p+q)\right) \\
&+12 \frac{q^{3}}{N^{2}}\left(5-3\left(\frac{2}{p}\right)\right) h_{p}^{2}-36 \frac{p^{3}}{N^{2}}\left(1-\left(\frac{2}{q}\right)\right) h_{q}^{2}+\frac{12}{N^{2}} h_{N}^{2}
\end{aligned}
$$

This proves Theorem 1.1.

4 Asymptotic Estimate for Real Primitive Character

Let χ be a real primitive character modulo N with odd N. Then $N=p_{1} p_{2} \cdots p_{r}$ with $p_{1}<p_{2}<\cdots<p_{r}$ and

$$
\chi(n)=\left(\frac{n}{p_{1}}\right)\left(\frac{n}{p_{2}}\right) \cdots\left(\frac{n}{p_{r}}\right) .
$$

In view of (2.4), we need to estimate the term A, B and C. The term A has been evaluated in (2.6). We now consider the term B using formula (3.2). We first prove the following lemma.

Lemma 4.1 For any $1 \leq t \leq N$, we have

$$
\begin{equation*}
\sum_{\substack{a, b=1 \\(a+b+t, N)=1}}^{N-1} a b=\frac{1}{4} N^{3} \phi(N)+O\left(N^{3+\epsilon}\right) . \tag{4.1}
\end{equation*}
$$

For any $1 \leq t \leq N$, then

$$
\begin{equation*}
\sum_{\substack{n \leq N \\(n+t, N)=1}} n=\frac{1}{2} N \phi(N)+O\left(N^{1+\epsilon}\right) \tag{4.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{\substack{n \leq N \\(n+t, N)=1}} n^{2}=\frac{1}{3} N^{2} \phi(N)+O\left(N^{2+\epsilon}\right) \tag{4.3}
\end{equation*}
$$

Here all the implicit constants are independent of t and N.

Proof The summation in (4.1) is

$$
\begin{align*}
& =\sum_{a, b=1}^{N-1} a b \sum_{\substack{d|N \\
d| a+b+t}} \mu(d) \tag{4.4}\\
& =\sum_{d \mid N} \mu(d) \sum_{a+b+t \equiv 0, b=1}(\bmod d)
\end{align*}
$$

Using Lemma 3.1, we have

$$
\begin{aligned}
\sum_{\substack{a, b=1 \\
a+b+t \equiv 0}}^{N-1} a b= & \sum_{n, m=0}^{\frac{N}{d}-1} \sum_{\substack{a, b=0 \\
n, m)}}^{d-1}(a+d n)(b+d m) \\
= & d^{2} \sum_{n, m=0}^{\frac{N}{d}-1} n m \sum_{\substack{a, b+t=0}}^{d-1} 1+\frac{N^{2}}{d^{2}} \sum_{\substack{a, b=0 \\
a+b+t \equiv 0 \\
a+b+t \equiv 0 \\
(\bmod d)}}^{d-1} a b \\
& +2 d \sum_{n, m=0}^{\frac{N}{d}-1} n \sum_{\substack{a, b=0}}^{d-1} b \\
= & \frac{N^{4}}{4 d}-\frac{N^{3}}{2 d}+O\left(N^{2} d\right) .
\end{aligned}
$$

It follows now from (4.4) that

$$
\begin{aligned}
\sum_{\substack{a, b=1 \\
(a+b+t, N)=1}}^{N-1} a b & =\frac{N^{4}}{4} \sum_{d \mid N} \frac{\mu(d)}{d}-\frac{1}{2} N^{3} \sum_{d \mid N} \frac{\mu(d)}{d}+O\left(N^{2} \sum_{d \mid N} \mu^{2}(d) d\right) \\
& =\frac{1}{4} N^{3} \phi(N)+O\left(N^{3+\epsilon}\right) .
\end{aligned}
$$

The proofs of (4.2) and (4.3) are similar.

Therefore, using (3.2) and Lemma 4.1,

$$
\begin{equation*}
B \ll N^{6+\epsilon} \tag{4.5}
\end{equation*}
$$

We next estimate the term C using formula (2.11). The summation in the first term of (2.11) is

$$
\begin{align*}
& =\sum_{n, m=1}^{N-1} n m \chi(n+t) \chi(m+t) C_{N}(n+m+2 t) \\
& =\sum_{n, m=1}^{N-1} n m \chi(n+t) \chi(m+t) \sum_{\substack{d|n+m+2 t \\
d| N}} d \mu\left(\frac{N}{d}\right) \\
& =N \sum_{\substack{n, m=1 \\
n+m+2 t \equiv 0 \\
(\bmod N)}} n m\left(\frac{n+t}{N}\right)\left(\frac{m+t}{N}\right) \tag{4.6}\\
& \quad+O\left(\sum_{\substack{d \mid N \\
d<N}} d\left|\sum_{\substack{n, m=1 \\
n+m+2 t \equiv 0}}^{N-1} n m\left(\frac{n+t}{N}\right)\left(\frac{m+t}{N}\right)\right|\right)
\end{align*}
$$

because $c_{k}(l)=\sum_{d|k, d| l} d \mu(k / d)$ (see Section 8.3 in [A-80]).
The error term in (4.6) is

$$
\begin{aligned}
& \ll \sum_{\substack{d \mid N \\
d<N}} d\left|\sum_{a, b=0}^{\frac{N}{d}-1} \sum_{\substack{n, m=0 \\
n+m+2 t \equiv 0}}^{d-1}(n+a d)(m+b d)\left(\frac{n+a d+t}{N}\right)\left(\frac{m+b d+t}{N}\right)\right| \\
& \ll \sum_{d \mid N} d^{3}\left|\sum_{\substack{n, m=0 \\
d<N}}^{d-1}\left(\frac{n+t}{d}\right)\left(\frac{m+t}{d}\right) \sum_{a, b=0}^{\frac{N}{d}-1} a b\left(\frac{n+a d+t}{N / d}\right)\left(\frac{m+b d+t}{N / d}\right)\right| \\
& \ll \sum_{d \mid N} d^{3}\left|\sum_{\substack{n+m=0 \\
d<N}}^{\substack{n-m=0}}\right| \sum_{a=0}^{d-1} a\left(\frac{n+a d+t}{N / d}\right)\left|\times\left|\sum_{b=0}^{\frac{N}{d}-1} b\left(\frac{m+b d+t}{N / d}\right)\right|\right.
\end{aligned}
$$

We next employ Polya's inequality for character sums (see Theorem 13.15 in [A-80]), namely, if ψ is any nonprincipal character modulo k, then for all $x \geq 2$ we have

$$
\sum_{m \leq x} \psi(m) \ll k^{\frac{1}{2}} \log k
$$

Using this inequality and the partial summation formula, we have for any square-free odd integer k and any integer l,

$$
\left|\sum_{a=0}^{k-1} a\left(\frac{a+l}{k}\right)\right| \ll k^{\frac{3}{2}} \log k
$$

and hence the error term in (4.6) becomes

$$
\begin{aligned}
& \ll \sum_{\substack{d \mid N \\
d<N}} d^{3} \sum_{\substack{n, m=0 \\
n+m+2 t \equiv 0}}^{d-1} \frac{N^{3}}{d^{3}} \log ^{2}(N / d) \\
& \ll N^{3} \sum_{\substack{d \mid N \\
d<N}} d \log ^{2}(N / d) \\
& \ll \frac{N^{4+\epsilon}}{p_{1}}
\end{aligned}
$$

Thus

$$
\begin{align*}
& \sum_{n, m=1}^{N-1} n m \chi(n+t) \chi(m+t) C_{N}(n+m+2 t) \\
& \quad=N \sum_{\substack{n, m=1 \\
n+m+2 t \equiv 0}}^{N-1} n m\left(\frac{n+t}{N}\right)\left(\frac{m+t}{N}\right)+O\left(\frac{N^{4+\epsilon}}{p_{1}}\right) . \tag{4.7}
\end{align*}
$$

In the same manner, we can prove that the summation in the third term of (2.11) is

$$
\begin{align*}
& =\sum_{n, m=1}^{N-1} n m \chi(n+t) \chi(m+t) C_{N}(n-m) \\
& =N \sum_{\substack{n, m=1 \\
n \equiv m \\
(\bmod N)}}^{N-1} n m\left(\frac{n+t}{N}\right)\left(\frac{m+t}{N}\right)+O\left(\frac{N^{4+\epsilon}}{p_{1}}\right) \tag{4.8}\\
& =N \sum_{\substack{n=1 \\
(n+t, N)=1}}^{N-1} n^{2}+O\left(\frac{N^{4+\epsilon}}{p_{1}}\right) \\
& =\frac{1}{3} N^{3} \phi(N)+O\left(\frac{N^{4+\epsilon}}{p_{1}}\right)
\end{align*}
$$

using (4.3) in Lemma 4.1. Now it remains to consider the main terms in (4.7). If
$1 \leq t \leq \frac{N-1}{2}$, then

$$
\begin{align*}
& \sum_{\substack{n, m=1 \\
-2 t \equiv 0}}^{N-1} n m\left(\frac{n+t}{N}\right)\left(\frac{m+t}{N}\right) \\
& =\left(\frac{-1}{N}\right) \sum_{\substack{n o d \\
n}}^{N-m=1} \substack{n+m+2 t=0 \\
(n+t, N)=1} \tag{4.9}\\
& =\left(\frac{-1}{N}\right)\left\{\sum_{\substack{n=1 \\
(n+t, N)=1}}^{N-2 t} n m(N-n-2 t)+\sum_{\substack{n=N-2 t+1 \\
(n+t, N)=1}}^{N-1} n(2 N-n-2 t)\right\} \\
& =\left(\frac{-1}{N}\right) \frac{1}{6} \phi(N)\left(N^{2}+6 N t-12 t^{2}\right)+O\left(N^{2+\epsilon}\right)
\end{align*}
$$

by (4.2) and (4.3). It can be easily verified that (4.9) is also true for $t=\frac{N+1}{2}$. Thus, from (2.11), (4.2), (4.7), (4.8) and (4.9), the term C is

$$
C=\frac{1}{8} N^{7}-\frac{1}{2} N^{6} t+N^{5} t^{2}+O\left(N^{7+\epsilon} / p_{1}\right)
$$

and hence

$$
\sum_{k=0}^{N-1}\left|f\left(-\omega^{k}\right)\right|^{4}=\frac{7}{3} N^{3}-8 N^{2} t+16 N t^{2}+O\left(N^{3+\epsilon} / p_{1}\right)
$$

from (2.4), (2.6) and (4.5). Finally, Theorem 1.2 follows from this and (2.1) and (2.3).

References

[A-80] T. M. Apostol, Introduction to Analytic Number Theory. Springer-Verlag, Berlin, 1980.
[B-95] J. Beck, Flat polynomials on the unit circle—note on a problem of Littlewood. Bull. London Math. Soc. 23(1991), 269-277
[BEW-98] B. C. Berndt, R. J. Evans and K. S. Williams, Gauss and Jacobi Sums. In: Canadian Mathematical Society Series of Monographs and Advanced Texts, Wiley-Interscience, New York, 1998.
[BC-98] P. Borwein and K. K. Choi, Explicit Merit Factor Formulae for Fekete and Turyn Polynomials. Under submission.
[BC-99] , Merit Factors of Character Polynomials. J. London Math. Soc., to appear.
[E-57] P. Erdós, Some unsolved problems. Michigan Math. J. 4(1957), 291-300.
[E-62] P. Erdős, An inequality for the maximum of trigonometric polynomials. Ann. Polon. Math. 12(1962), 151-154.
[CGP-98] B. Conrey, A. Granville and B. Poonen, Zeros of Fekete polynomials. In press.
[G-83] M. J. Golay, The merit factor of Legendre sequences. IEEE Trans. Inform. Theory 29(1983), 934-936.
[HJ-88] T. Høholdt and H. Jensen, Determination of the merit factor of Legendre sequences. IEEE Trans. Inform. Theory 34(1988), 161-164.
[HJJ-91] T. Høholdt, H. Jensen and J. Jensen, The merit factor of binary sequences related to difference sets. IEEE Trans. Inform. Theory 37(1991), 617-626.
[K-80] J-P. Kahane, Sur les polynômes à coefficients unimodulaires. Bull. London Math. Soc. 12(1980), 321-342.
[L-68] J. E. Littlewood, Some Problems in Real and Complex Analysis. Heath Mathematical Monographs, Lexington, Massachusetts, 1968.
[M-94] H. L. Montgomery, Ten Lectures on the Interface Between Analytic Number Theory and Harmonic Analysis. CBMS 84, Amer. Math. Soc., Providence, RI, 1994.
[NB-90] D. J. Newman and J. S. Byrnes, The L ${ }^{4}$ norm of a polynomial with coefficients ± 1. Amer. Math. Monthly 97(1990), 42-45.
[S-90] B. Saffari, Barker sequences and Littlewood's "two-sided conjectures" on polynomials with ± 1 coefficients. Séminaire d'Analyse Harmonique. Année 1989/90, Univ. Paris XI, Orsay, 1990, 139-151.

Department of Mathematics and Statistics
Simon Fraser University
Burnaby, BC
V5A 1S6

Department of Mathematics
The University of Hong Kong
Pokfulam Road
Hong Kong

[^0]: Received by the editors August 19, 1999; revised March 30, 2000.
 Research of P. Borwein is supported, in part, by NSERC of Canada. K. K. Choi was a Pacific Institute of Mathematics Postdoctoral Fellow and the Institute's support is gratefully acknowledged.

 AMS subject classification: 11J54, 11B83, 12-04.
 Keywords: Character polynomial, Class Number, $-1,1$ coefficients, Merit factor, Fekete polynomials, Turyn Polynomials, Littlewood polynomials, Twin Primes, Jacobi Symbols.
 (c)Canadian Mathematical Society 2001.

