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Abstract

Background. Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental dis-
order associated with increased risk for poor educational attainment and compromised social
integration. Currently, clinical diagnosis rarely occurs before school-age, despite behavioral
signs of ADHD in very early childhood. There is no known brain biomarker for ADHD risk in
children ages 2–3 years-old.
Methods. The current study aimed to investigate the functional connectivity (FC) associated
with ADHD risk in 70 children aged 2.5 and 3.5 years via functional near-infrared spectroscopy
(fNIRS) in bilateral frontal and parietal cortices; regions involved in attentional and goal-
directed cognition. Children were instructed to passively watch videos for approximately
5 min. Risk for ADHD in each child was assessed via maternal symptoms of ADHD, and brain
data was evaluated for FC.
Results. Higher risk for maternal ADHD was associated with lower FC in a left-sided parieto-
frontal network. Further, the interaction between sex and risk for ADHDwas significant, where
FC reduction in a widespread bilateral parieto-frontal network was associated with higher risk in
male, but not female, participants.
Conclusions. These findings suggest functional organization differences in the parietal–frontal
network in toddlers at risk for ADHD; potentially advancing the understanding of the neural
mechanisms underlying the development of ADHD.

Introduction

Attention deficit hyperactivity disorder (ADHD) is a common disorder affecting 7–11% of US
children [1, 2] and affects attentional abilities [3]. The diagnosis of ADHD typically occurs once
children are in school and experience disruption to their academic and social lives [4, 5].However,
recent work looking at DSM-5 symptoms of ADHD in conjunction with temperament has
demonstrated that children with ADHD show early behavioral signs of developmental delay
during the preschool years [6, 7]. Such children often have parents with the disorder. For
example, work linking genetics, heritability, and familial risk of ADHD has found that parents
with ADHD are 50–80% more likely than parents without ADHD to have one or more children
with the diagnosis [8–11]. Accordingly, neurodevelopmental disorders such as ADHD cluster in
families due to shared environment and genes.

A wide variety of treatments for ADHD exist, though the long-term efficacy of these
treatments is limited. 40–50% of individuals diagnosed with ADHD in childhood continue to
meet criteria for ADHD and require treatment in early adulthood [12, 13]. Moreover, 20% of
adults with childhood ADHD still show dysfunction even if they no longer meet criteria for
ADHD [14, 15]. Long-term impairment in childhood ADHD continues into adulthood along
domains of psychosocial, educational, and neuropsychological functioning regardless of medi-
cation or therapy interventions [16]. Further, longitudinal work looking at adult outcomes of
childhood ADHD have concluded that family, behavioral, and neuropsychological factors not
only contribute to later quality of life and success outcomes (i.e., occupational, education
attainment, executive functioning) but are areas of research that will be critical for efficacious
ADHD interventions in the future [17]. It is possible that treatment outcomes could be improved
with a better understanding of the neural underpinnings of ADHD. A better understanding of
dysfunctional neural systems may allow for improved and earlier identification of ADHD by
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providing biomarkers. Moreover, the potential for biologically
informed subtyping based on neural-level individual differences
may allow for the development of more individualized treatments.

One potential avenue for furthering our understanding of
ADHD’s ontogeny is to examine resting-state functional connect-
ivity (FC). FC is the temporal correlation of spatially distant neuro-
physiological events (e.g., [18]). A number of studies have found
differences in FC within the attentional network (e.g., parietal
cortex, lateral and medial frontal cortex) between controls and
patients with ADHD in both children [19, 20] and adults
[21]. Importantly, weaker FC between these specific regions has
been associated with core aspects of ADHD symptomatology
(i.e., poor attention, social functioning difficulty, and impaired
cognitive control) in children and adolescents [22]. Assessing FC
across the attentional network in very young children could be one
avenue for comprehending the development of ADHD symptoms.
Specifically, FC during a resting-state condition is much easier to
measure in younger children compared to task-based activation
(i.e., more potential for exclusion).

Further, there are notable sex differences in ADHDwith respect
to prevalence rates [23, 24] and treatment outcomes [25]. Such
differences at the behavioral level may result from sex differences in
brain activity in response to ADHD risk; however, neuroimaging
studies remain inconsistent in this regard (e.g., [26] and [27]).
Furthermore, due to the lack of neuroimaging data on preschool-
aged children, it remains unknown whether sex differences emerge,
if at all, in children whomay develop ADHD, or if these differences
are present in very young children regardless of ADHD risk.

Because of methodological constraints, little is known of the
neural ontogeny of ADHD. Common task-based neuroimaging
methods used on adults (e.g., magnetic resonance imaging
(MRI)) are often challenging for children under 5 years old, pri-
marily due to very young children moving too much to yield good
data [28, 29–31]. Functional near-infrared spectroscopy (fNIRS) is
a superior neuroimaging technique in very young children, because
it is less influenced by head motion artifacts and is designed for a
successful use in young children [32, 33].

In this context, the current study aimed to investigate the neural
profile associated with risk factors for developing ADHD at the age
of 2–3 years-old. fNIRS was used to assess FC between lateral
frontal and parietal cortices during passive viewing of video clips.
Risk for ADHD was determined via maternal adult symptoms of
ADHD, because previous research has shown thatmaternal ADHD
is more predictive of childhood ADHD symptomology than pater-
nal ADHD [34].We hypothesized that increasedADHD risk would
be associated with weaker FC between the frontal and parietal
cortices, which are typically associated with attentional control.
In addition, we hypothesized that females, in comparison to males,
will show stronger connections in these regions associated with
increased risk for ADHD [27]. Finally, we hypothesized that a risk
factor for ADHD would be associated with a temperament profile.
Following previous work [35, 36], we predicted that ADHD-risk
would be associated with lower scores on the composite score of
effortful control and on the sub-scores of impulsivity, inhibitory
control, frustration, and attentional focus.

Methods

Participants

Seventy children aged 2.5-years-old (N = 37, female = 21) and
3.5-years-old (N= 33, female= 15) were recruited. All participants’

age fell within �6 weeks of the target ages of 30 (2.5 years) or
42 (3.5 years) months. The current sample size is justifiable based
on previous work with functional connectivity, fNIRS, and very
young children (e.g., [37]). All children included in the study had
normal hearing and no known cognitive or neural developmental
delays or abnormalities. Parental consent was obtained prior to the
study. Throughout the procedures, continuous verbal assent was
maintained with all children. The Institutional Review Board for
Research with Human Subjects at the University of Tennessee,
Knoxville, approved this study.

Adult ADHD Self-Report Scale (ASRS-v1.1) Symptom Checklist

The ADHD self-report screening scale (ASRS v1.1) [38, 39] was
given to the biological mother. This scale has been reliably associ-
ated with ADHD diagnoses in both adults and adolescents [38, 40,
41], and has been validated for use with both general and clinical
populations [42]. Parents indicated their personal experience with
symptoms of ADHD based on DSM-IV criteria. The mothers’ total
score from the ASRS served as a metric of their child’s risk for
ADHD, where 0 was no risk and 18 was the highest risk. Scoring
was calculated as a frequency of items that met clinical criteria [38],
and were further converted to z scores. Independent samples t tests
on ADHD risk z scores were conducted between age bins (i.e., 2, 3).

Temperament Scores

Parents also completed a short temperament questionnaire specif-
ically designed for children aged 1–3 years old (Early Childhood
BehaviorQuestionnaire [ECBQ] – Short Form [43]). Temperament
scores were derived from the survey via standard scoring. The
Childhood Behavior Questionnaire, a measure of temperament in
children 3–7 years old, has been used in the past to gauge risk and
predict likelihood of developmental psychopathology in young
children [35, 36].

Apparatus and Materials

The experimental data were recorded using a continuous NIRS
imaging system (TechEn Inc., Milford, MA) at a sampling rate of
25 Hz. The data were measured simultaneously at two wavelengths
(690 nm and 830 nm). The system automatically adjusted light
intensity to provide optimal gain. The optodes were placed over the
dorsolateral prefrontal and parietal cortex (Figure 1). The distance
between source and detector was 30 mm. This probe was scaled for
both a 52 cm (N = 23) and 54 cm (N = 47) hat to account for head
size differences across these two age groups. Among the children
that used the 52 cm hat, 12 were 2.5 year old and 11 were 3.5 year
old. Participants were placed between 63.5 and 65 cm from a
computer monitor. Videos played on a 530mm� 330mmmonitor
with a resolution of 1280 � 960 pixels.

Procedure

A session required two trained researchers: one to administer the
passive watching paradigm and one to run the fNIRS machine. A
blackout curtain was then positioned to cover half of the opening
between the parental seating area and the child testing area to
reduce artifact due to lighting. One researcher was stationed behind
an occluder, where the fNIRS acquisition computer and machine
were located behind the child. The other researcher sat off to the
right side of the child, outside of their peripheral vision, to redirect
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them to the screen if they looked away and to provide a whispered
reminder to “be quiet and calm” and “watch the video”.

Passive Watching Paradigm

Weused a passive watching paradigm because it has been suggested
that passively viewing a video is roughly analogous to rest in young
children [44]. In the passive video-watching task, participants were
given the following instructions: “You will be watching some
movies. While you are watching, I want you to be still and calm,

so you will need to be very still and calm before I start the movies.
Remember to keep your eyes on the screen while the movies are
playing.” Three to five soothing videos were randomly chosen, each
with instrumental music that was temporally synchronized with the
movement within each video. The volume of auditory components
of the video was stationary and set to be clearly audible over the
noise produced by the fNIRS machine (68–70 dB) from where the
participants sat. Each video lasted 45–90 s (Figure 2).

No child received all video clips. A white central fixation was
presented on a black screen between videos, and recordings from
this time were not included in the concatenated data analyses. This
task resulted in an accumulated recording of 4 min for each
participant while viewing sessions lasting between 270 and 450 s.
Given that an intertrial central fixation was used to reorient chil-
dren to the screen and transition to the next video segment, some
individual variability in the overall recording session duration did
occur.While using this passive viewing paradigm, it is important to
note that collecting resting-state measures in very young children
has been challenging (e.g., [45]). Care was taken to extensively pilot
the video stimuli used in this study to ensure moderate interest
from children without inducing excitement or over-engagement.
Stimuli were chosen based on soothability and potential to syn-
chronize with classical music. All music selections had slow tempo
and were synchronized with motion in the video to avoid violation
of expectations or brain activity related to perceptual asynchrony
(e.g., [46]).

fNIRS Data Preprocessing

We obtained at least 30 s of recording prior to the first video, and
only data from the passive viewing task were included in further
analyses. Raw fNIRS signals were first resampled to 4 Hz and
converted to changes in optical density. The measured intensity
data of the two wavelengths were then converted to relative
HbO2 (i.e., oxygenated hemoglobin) and HbR (i.e., deoxygenated
hemoglobin) concentration changes using the modified Beer–
Lambert law [47]. In order to extract the individual FC measures,
we took a robust correlation approach and implemented the iterative

Figure 1. Probe and channel abbreviations. Note. fNIRS probe placement in the
International 10–10 System, represented by gray dots in the current schematic. Blue
text represents landmarks (i.e., nasion [Fpz], left preauricular [T3], and right preauri-
cular [T4]). Positioning of the 18 optodes, consisting of 6 sources (orange circles) and
12 detectors (blue squares), creates 16 channels (numbered in black text). Abbrevi-
ations: BA: Broadman Area; L: Left; R: Right; lPF: left parietal cortex; rPC: right parietal
cortex; lFC: left frontal cortex; rFC: right frontal cortex.

Figure 2. Still shots taken from the five passive-viewing paradigm videos.
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autoregressive least-square technique (see associated literature for
more details [48]). A false discovery rate (FDR) correction was
further applied by calculating the robust correlation coefficient of
the temporally whitened signals. No participants were excluded
from analyses (i.e., inclusion criteria after pre-processing of SNR
≥80% on at least 11/16 channels). A study by Santosa et al. [48]
showed the robustness of this algorithm and demonstrated that it
yields more reliable estimates to serially correlated errors and
statistical outliers due to motion artifacts compared to other
approaches (i.e., “Temporal Derivative Distribution Repair” [49]).

Statistical Analyses

At the behavioral level, we investigated the association between the
composite and subscale sub scores from the ECBQ and the ADHD
risk scores by conducting partial Pearson correlation analyses
where age was controlled for. Two sample t tests were conducted
on all subscales and composite scores to test for differences between
the two age groups.

Using the fNIRS data, we tested the effects of ADHD risk, sex,
and their interaction on FC, with age added as a covariate, by
conducting analyses of covariance. The two age groups were com-
bined in all analyses because they did not differ in ADHD risk or
sex. A FDR correction (i.e., function FDDR in AnalyzIR toolbox)
was further applied to correct to reduce false discovery rate in FC
(e.g., [37]). We only considered HbO2-to-HbO2 correlations,
because there is little variability in HbR and there is a continuing
debate on whether HbR is informative in FC analyses [50]. All first
and second level statistical analyses were implemented in
MATLAB™ version 2020a as part of an open-source AnalyzIR
toolbox [51].

Results

Behavioral Analyses

The two groups of children of 2.5 and 3.5 years of age did not
significantly differ in their ADHD risk scores [t (66) = �.214,
p = .831] nor frequency of sex [X2 = .672, p = .413]. Information
about the number of parents in the household (single or dual),

highest level of parental education, household income per year,
number of siblings in the home, and childcare currently being
utilized for the participant during the day is provided in Table 1.

Based on standard scoring, eight mothers exceeding the clinical-
cutoff score for ADHD, indicating a likely clinically meaningful
range of risk scores. Of their biological children, four children were
2.5 years-old (female = 4) and four children were 3.5 years-old
(female = 1). In addition, risk was not associated with any house-
hold/family demographics.

Next, we investigated the relationship between risk and tem-
perament, in the whole sample. Two of the 15 subscales from the
ECBQ were statistically different between age bins at an uncor-
rected level [fear, t (66) = 2.23, p = .029; and inhibitory control, t
(66) = �2.02, p = .048]. Parents reported less fear and greater
inhibitory control in older children compared to younger children.
However, these differences were not retained after applying a
Bonferroni correction for multiple comparisons (Table 2)
[26]. ADHD risk level correlated with several temperament sub-
scales: inhibitory control, R=�.328, p= .006; frustration, R= .288,
p = .016; activity level, R = .400, p = .001; high intensity pleasure,
R= .292, p= .014; perceptual sensitivity,R= .276, p= .021; sadness,
R = .248, p = .039; and surgency, R = .298, p = .012; Bonferroni
corrected p-values.

ADHD Risk and Sex Effects on Functional Connectivity

fNIRS results showed significantmain effects of ADHD risk and sex
as well as a significant interaction between these two factors
(Figure 3, Tables 3–5).

With regards to the main effect of sex, females had one signifi-
cant connectionwith higher FCwithin left frontal cortex, compared
to males. In comparison to females, males showed higher FC in a
widespread network largely covering the right frontal and bilateral
parietal cortices (Figure 3A). Figure 3B depicts the main effect of
ADHD risk on FC. Higher ADHD risk was associated with lower
FC between (a) the left frontal cortex and both left and right parietal
cortices, (b) the right frontal and right parietal cortices, and (c) the
right and left parietal cortices (Table 4).

Lastly, Figure 3C depicts the interaction between sex andADHD
risk (Table 5). In detail, male participants showed decreased FC

Table 1. Family Information in each study sample.

2.5-years-old (n = 37) 3.5-years-old (n = 33)

Male Female Male Female

Household Size Single Parent 1 3 1 1

Dual Parent 15 18 16 14

Highest Parent Education High School or equivalent 2 2 0 2

Associates or Technical Training 2 5 2 2

Bachelors 3 6 5 2

Master’s Degree 4 4 3 6

Doctoral Degree 5 4 7 3

Household Income Per Year < $18,650 1 0 0 0

$18,650–$75,900 7 12 3 7

$75,900–$153,000 4 5 10 5

> $153,000 4 3 4 3
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in a widespread bilateral network between the prefrontal and
parietal cortices as ADHD risk increased. In contrast, no significant
association between FC and ADHD risk was detected in female
participants.

Discussion

To our knowledge, the current study is the first to demonstrate that
ADHD risk may be associated with changes in FC in children as
young as 2.5 years old. Specifically, this is the first investigation of
maternal ADHD symptom expression as it relates to differences in
brain connectivity in their biological toddlers. Our results showed a
main effect of ADHD risk with reduced FC between bilateral
parietal and frontal cortices, with higher ADHD risk. Furthermore,
a significant sex-by-ADHD risk interaction suggested that this was
mainly driven by males. That is, the interaction of sex-by-ADHD
risk demonstrated with higher risk for ADHD was associated with
weaker connections between frontal and parietal cortices in males
only. We also found an overall main effect of sex regardless of

ADHD risk indicating that females had higher connectivity within
the left frontal cortex compared to males, and that males showed
widespread higher connectivity between right frontal and bilateral
parietal cortices in comparison to females. This finding may indi-
cate that males and females at higher risk for ADHD might be
demonstrating different neural profiles in early life.

Consistent with our hypotheses, the current data indicate that
increased ADHD risk was associated with reduced FC between
frontal and parietal cortices, though this finding was restricted to
males. This may seem contradictory with other studies that have
reported such relationships in females (e.g., [52]). Rosch et al. [52]
reported that girls, but not boys, with ADHD aged 8–12 showed
atypical FC between the striatum and frontal regions, with it being
related to delay discounting. However, another study done on
children in the same age range reported the inverse with increased
frontal-limbic striatum connectivity among boys with ADHD only
[53]. Given fNIRS does not allow to collect information on subcor-
tical regions, it is difficult to provide a clear explanation on the
reasons of such discrepancies and whether they are based on
different methodologies or whether higher ADHD risk impacts
the brain in females at an older age. Future studies done on larger
samples of young children should be conducted to test these
discrepancies.

However, it is important to note that the sex-by-ADHD risk
interaction findings reported in the current study are not incon-
sistent with previous studies (see [53]). A recent EEG study
conducted by Kim et al. [54] reported that male patients with
ADHD showed altered cortical network in the high beta band,
which suggests that these attenuated network inefficiencies may
lead to suboptimal information processing and affect symptoms
of ADHD, such as inattention and hyperactivity. Other EEG
studies pointed out that adult males with ADHD showed
increased theta activity, but not females, indicating that distinct
mechanisms may underpin adult ADHD in males and females
[55, 56]. Together, this underscores the need for sex-specific
investigation of ADHD, as patients may have distinct neural
signatures, even at an early age.

While not a main question of the current study, the main effect
of sex was also investigated given the report of sex differences in FC
using resting-state functional MRI data in typically developing
children [57]. In a sample of 7–18-year-old children, females
showedmore broadly distributed stronger connections in compari-
son to males, particularly in the left hemisphere [58], which is also
what our data showed (Figure 3A). However, we also reported
larger FC in males than females. This is in line with the study by
Satterthwaite et al. [57] which reported sex differences within
several brain networks, including the ventral attention network.
Furthermore, they showed thatmales demonstratedmore between-
network connectivity than females. The sex differences observed in
the current study and in these other studies may likely be a function
of the developmental ranges assessed or the methodology, as fNIRS
is unable to cover the whole brain and clearly identify distinct brain
networks, especially at such a young age during which brain devel-
opment is in full progress. Altogether, our findings support that sex
differences in FC, regardless of ADHD risk status, are present at a
very early age.

Limitations

The current data should be considered in light of some limitations.
First, our sample size is modest. However, given the importance of
early development and the difficulty in obtaining neuroimaging

Table 2. Descriptive statistics for each age sample.

Demographics 2.5 years old 3.5 years old

N 37 33

Female (%) 57.80% 46.90%

Survey Data M sd M sd p*

ASRS V1.1

Maternal ADHD Risk 3.757 3.338 3.750 3.756 0.831

ECBQ

Activity Level 4.863 0.821 4.766 0.878 0.486

Attentional Focus 4.629 0.907 5.041 0.701 0.065

Attentional Selectivity 4.714 0.765 4.921 0.824 0.187

Cuddliness 5.087 0.864 5.478 0.913 0.168

Discomfort 2.947 1.251 2.634 1.104 0.338

Fear 2.999 1.141 2.472 0.837 0.029*

Frustration 4.222 1.211 3.747 1.121 0.077

High Intensity Pleasure 5.469 0.845 5.264 0.934 0.262

Impulsivity 3.943 1.112 3.917 0.966 0.905

Inhibitory Control 3.924 1.027 4.325 0.843 0.048*

Low Intensity Pleasure 4.999 0.732 5.039 0.946 0.990

Motor Activation 2.848 1.102 2.598 0.985 0.506

Perceptual Sensitivity 4.692 0.848 4.400 0.876 0.129

Positive Anticipation 5.777 1.022 6.109 0.693 0.175

Sadness 3.296 0.778 3.092 0.865 0.570

Shyness 3.678 1.195 3.459 1.091 0.241

Sociability 5.653 1.073 5.598 0.820 0.791

Soothability 4.587 1.070 4.503 0.948 0.761

Negative Affect 3.526 0.716 3.237 0.623 0.082

Surgency 5.146 0.604 5.131 0.526 0.761

Effortful Control 4.684 0.638 4.960 0.632 0.089

*Uncorrected p-values, *p < 0.05
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data in very young children, even a modest sample is informative.
Second, the current sample is predominantly homogenous along
demographics dimensions (e.g., upper middle class Caucasian fam-
ilies, and dual family households), which potentially reduces the
generalizability of the findings. Such limited variability reduces the
likelihood that the current findings can be attributed to demo-
graphic variability; however, the role of demographic variables will
need to be examined explicitly in future research.

Third, the current study did not comprehensively or directly
assess the risk for ADHD and therefore, the current findings
should be interpreted cautiously. Maternal ADHD symptoms
were selected as a risk proxy as they have been previously used
as a contributing factor to childhood ADHD symptomology
[59]. Additionally, we examined temperament scales that have
been associated with ADHD risk in other samples (e.g., [7]).
Previous works have found that the effortful control composite
score and the sub-scores of impulsivity, inhibitory control, frus-
tration, and attentional focus were distinguishing temperamental
factors in youth with ADHD [35, 36]. However, there are limita-
tions to the use of temperament scales. While we found that, as
predicted, inhibitory control and frustration were significantly
associated withmaternal risk as predicted, impulsivity, attentional

focus, and effortful control were not associated with maternal
ADHD symptoms. Moreover, activity level, high intensity pleas-
ure, perceptual sensitivity, sadness, and surgency were also sig-
nificantly associated with maternal ADHD symptoms. Future
work might utilize additional and more comprehensive assess-
ments of familial risk, such as a sample of clinically diagnosed
mothers, or longitudinal data following children until an age
where ADHD diagnosis is possible. Moreover, other psychopath-
ology, such as depression and anxiety, was not assessed in either
mothers or participants. Future work should directly assess psy-
chopathology in the participants and gather substantially more
data from parental and familial sources to assess risk for devel-
oping ADHD. These factors limit the degree to which we can be
confident that the observed neural findings are specifically related
to ADHD.

Last, the cross-sectional nature of the study is a limitation. Not
all children in our risk group will go on to get a diagnosis of ADHD
(e.g., [60, 61]). Determining whether the current findings are truly
relevant to the risk of developing ADHD will require longitudinal
work that explicitly tracks clinically relevant outcomes (e.g., devel-
oping ADHD). However, the current findings will be useful in
guiding the development of this type of study.

Figure 3. Significant effects of ADHD risk and sex on FC. Note. In panel A, cooler colors reflect higher FC in females than in males, and warmer colors reflect higher FC in males than
females. In panels B and C, cooler colors indicate negative R values and therefore lower FC in relation to higher risk for ADHD. In Panel C, all FC links displayed are in males only.
Location of the nodes is illustrative only, based on approximateMNI coordinates for the current probe (i.e., channels 1–16; see Figure 1). Themidpoint location between each source
and detector was calculated in AtlasViewerGUI within the Homer3 software package in MATLAB. BrainNet Viewer was used to visualize significant FC.
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Conclusion

Overall, ADHD risk in the current study is associated with FC
changes in male toddlers. The data suggest that male children, but
not female children, as young as 2.5 years-old may show altered FC
profiles in the attentional network in association with ADHD risk.
These data suggest the use of fNIRS in very young children may be
useful in providing information about early risk for psychopath-
ology. Neuroimaging work in very young children can and should
inform future work on developmental trajectories to psychiatric
diagnoses, including ADHD, clinical assessment, and intervention.

Data Availability Statement. Due to the sensitive nature of the questions
asked in this study, survey respondents were assured raw data would remain
confidential and would not be shared with identifying information. Deidentified
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meta-analysis.
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Table 3. Main Effect of Sex on FC: Differences in FC between males and
females.

Channel Pair Regions R t p*

2 3 lPFC<�>lPFC �0.222 �2.062 0.044

2 15 lPFC<�>rPC 0.109 2.025 0.048

3 12 lPFC<�>lPC 0.068 2.074 0.043

4 7 rPFC<�>rPFC 0.075 2.155 0.036

4 11 rPFC<�>rPFC 0.117 2.020 0.049

4 12 rPFC<�>lPC 0.093 2.090 0.042

4 16 rPFC<�>rPC 0.110 2.861 0.006

5 12 rPFC<�>lPC 0.088 2.014 0.049

6 10 rPFC<�>lPC 0.113 2.124 0.038

6 11 rPFC<�>rPC 0.143 2.501 0.016

6 12 rPFC<�>lPC 0.127 3.049 0.004

7 10 lPFC<�>lPFC 0.092 2.416 0.019

7 11 lPC<�>rPC 0.088 2.045 0.046

7 12 lPFC<�>lPFC 0.070 2.231 0.030

7 15 lPC<�>rPC 0.087 2.570 0.013

8 12 rPC<�>lPC 0.078 2.812 0.007

8 15 rPC<�>rPC 0.080 2.053 0.045

9 10 lPFC<�>lPFC 0.089 3.021 0.004

9 11 lPC<�>rPC 0.087 2.139 0.037

9 12 lPC<�>lPC 0.108 3.518 0.001

9 15 lPC<�>rPC 0.091 2.768 0.008

10 13 lPC<�>rPC 0.095 2.048 0.046

10 14 lPC<�>rPC 0.105 2.476 0.017

10 15 lPC<�>rPC 0.117 2.243 0.029

12 14 lPC<�>rPC 0.138 3.202 0.002

12 15 lPC<�>rPC 0.113 2.392 0.020

13 15 rPC<�>rPC 0.169 2.774 0.008

13 16 rPC<�>lPC 0.086 2.733 0.009

14 15 rPC<�>rPC 0.151 2.821 0.007

14 16 rPC<�>lPC 0.093 2.130 0.038

Note. Positive values represent: Males > Females while negative values represent: Females >
Males. All analyses were controlled for age; *FDR corrected p-values.
Abbreviations: rPC = Right Parietal Cortex; lPC = Left Parietal Cortex; rPFC = Right Prefrontal
Cortex; lPFC = Left Prefrontal Cortex.

Table 4. Main Effect of ADHD on FC.

Channel Pair Regions R t p*

2 16 lPFC<�>rPC �0.031 �2.154 0.036

3 15 lPFC<�>rPC �0.061 �2.537 0.014

6 15 rPFC<�>rPC �0.054 �2.060 0.044

13 16 lPC<�>rPC �0.039 �2.580 0.013

Note. All analyses were controlled for age; *FDR corrected p-values.
Abbreviations: rPC = Right Parietal Cortex; lPC = Left Parietal Cortex; rPFC = Right Prefrontal
Cortex; lPFC = Left Prefrontal Cortex.

Table 5. Sex by ADHD Risk Interaction.

Channel Pair Regions R t p*

1 2 lPFC<�>lPFC �0.204 �2.008 0.050

2 4 lPFC<�>rPFC �0.206 �2.584 0.013

2 6 lPFC<�>rPFC �0.190 �2.324 0.024

2 14 lPFC<�>rPC �0.131 �2.585 0.013

2 15 lPFC<�>rPC �0.109 �2.069 0.044

3 14 lPFC<�>rPC �0.108 �2.442 0.018

3 15 lPFC<�>rPC �0.118 �2.386 0.021

3 16 lPFC<�>rPC �0.087 �2.360 0.022

4 5 rPFC<�>rPFC �0.210 �2.035 0.047

4 14 rPFC<�>rPC �0.126 �2.701 0.009

4 15 rPFC<�>rPC �0.117 �2.070 0.043

5 15 rPFC<�>rPC �0.112 �2.059 0.045

6 9 rPFC<�>lPC �0.061 �2.258 0.028

6 11 rPFC<�>rPC �0.134 �2.390 0.021

6 14 rPFC<�>rPC �0.125 �2.947 0.005

6 15 rPFC<�>rPC �0.166 �3.138 0.003

6 16 rPFC<�>rPC �0.116 �2.861 0.006

7 12 lPC<�>rPC �0.071 �2.303 0.025

10 12 lPC<�>lPC �0.170 �2.151 0.036

12 10 lPC<�>lPC �0.170 �2.151 0.036

14 15 lPC<�>rPC �0.112 �2.133 0.038

Note. All effects are specific to the male participants. No significant effects were detected in
females. All analyses were controlled for age; *FDR Corrected p-values.
Abbreviations: rPC = Right Parietal Cortex; lPC = Left Parietal Cortex; rPFC = Right Prefrontal
Cortex; lPFC = Left Prefrontal Cortex.
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