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1 Overview

The Commercial Users of Functional Programming workshop (CUFP) is an annual

workshop held in association with the International Conference on Functional

Programming (ICFP). The aim of the CUFP workshops is to publicize the use of

functional programming in commercial ventures. Its motto is “functional program-

ming as a means, not an end.

This paper summarizes the presentation of the 2013 event, which took place

in Boston, Massachusetts, continuing the tradition of the Journal to report on

the presentations on a yearly basis (Madhavapeddy et al., 2012; Sperber &

Madhavapeddy, 2013). It sketches the essence of each of the presentations. Curious

readers may wish to peruse the recorded videos from the workshop.1

The 2013 version of CUFP present a record number of talks, a reflection of

the growing popularity of functional programming. The talks also covered a wide

variety of topics, ranging from implementing systems for serving advertisement in

Erlang to medical device automation in scheme.

2 Keynote

Dave Thomas delivered the 2013 keynote, entitled “21st Century Crusades of Knights

of the Lambda Calculus—Lessons from Past Language Crusades.” As former CEO

of OTI, the company responsible for the creation of the Eclipse IDE, he talked

about his experiences with the “language wars” of decades past, dealing mostly with

the introduction of object-oriented programming into the mainstream as well as the

advocacy of logic programming and expert systems. Thomas sprinkled his talk with

anecdotes and history lessons, mixing personal opinions with history-based advice

to the functional programming community.

1 Available at: http://cufp.org/2013/.
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Thomas joked that his qualifications included his proclivity to “infect” organiza-

tions with new technology which they had no intention of actually using. The only

reason he was able to do so was that “it worked.” He was careful to introduce new

technologies only when they helped solve actual problems and when he could find

a team that would make full, productive use of the newly introduced technology.

Next, Thomas suggested that functional programming was experiencing a surge in

popularity because of multicore computing and “big data” applications. He warned,

though, that the goal of a community should be to experience modest success as

massive industrial successes usually creates a “really ugly winner,” attendant with

lots of “really ugly code.” Thomas proceeded to deliver a laundry list of important

considerations for a language to succeed commercially.

2.1 Language interoperability

A new language must be able to make use of prior work. Most companies own a

large legacy code basis. New technologies cannot ignore this code base and operate

in isolation.

For example, Tektronix2 was the first company to commercially deploy Smalltalk

for its oscilloscopes. The project integrated technologies from several “cultures,”

including hardware, firmware, systems software, and application software. It suc-

ceeded only because the Smalltalk implementation was designed to interoperate in

this manner.

2.2 Have an end-to-end story

A software engineer must be able to diagnose a system from one end to the other.

This aspect is especially importainnt when solving “space and time problems.”

Sophisticated JIT run-times, such as Oracle’s HotSpot, are antipatterns in this

context. They make in nearly impossible to understand the run-time behavior of a

system.

2.3 Serialization; data and code portability

Serialization has taken a prominent role in the modern computing environment. The

increasingly distributed nature of most systems necessitates good serialization. Most

of these problems have been solved, and thus new systems should use prior art.

Modern systems need tools that can extract data from the computing environment;

new languages must have fine-grained control of where this data lives. Distribution

also demands easy deployment; a simple way to create deployable executables is a

requirement for a modern language.

2.4 Performance

“Computers like rectangles.” Language designers must put care and thought into

the handling of arrays and their implementation. Doing so solves many problems

2 See http://www.tek.com/
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and avoids the need for fancy optimization. Modern architectures rely on caching

for performance, thus control over data locality is paramount as critical parts of

your application must be kept in cache.

“Stacks are easy to put together but hard to make fast.” Instead, implementors

should use a register model for a virtual machine. Virtual machines also need

intrinsics to take advantage of modern hardware architectures. Intrinsics help future-

proof virtual machines because hardware changes rapidly.

2.5 Adoption

Thomas’s last point concerns perception. He claims that functional languages can

make users feel stupid. While dealing with the already daunting task of understanding

foreign ways of solving problems, newcomers must understand comprehensions,

folds, and monads, which alienates them. More generally, functional languages tend

to erect high barriers to entry.

Conversely, if the functional programming community wishes to see its program-

ming languages adopted, it needs to pay special attention to this problem by focusing

on affordances and education. It needs to empathize with users and understand that

they change at different rates. A recent example is Haskell’s mode for running wrong

programs. Thomas considers this step a healthy development.

Finally, much of a typical functional language gets in the way of the development

of “CRUD (create-read-update-delete) apps,” which is the kind of application

most of the world’s developers are busy writing. Thomas’s point is that functional

programming languages ought to be smaller and more focused than they are now.

“What we need is a collection of little right languages instead of a smaller collection

of partly right and partly wrong kitchen-sink languages.”

3 Analyzing PHP statically

Julien Verlaguet (Facebook) presented Hack (Verlaguet & Menghrajani, 2014), a

statically typed dialect of PHP.

Hack runs on Facebook’s PHP virtual machine, HHVM; its compiler is imple-

mented in OCaml. Much of the HHVM team’s efforts are focused on this “developer

experience,” with a special emphasis on a rapid feedback cycle. In particular, the

goal is to waste no time between saving a source file and having the results show

up on the screen.

Due to the large size of Facebook’s deployed software, performance is critical.

Even a small performance improvement, say improving CPU utilization by 1%, can

have a significant cost impact. PHP has been difficult to optimize due to its dynamic

nature, requiring an ever more sophisticated virtual machine.

To address this gap between PHP and feasible optimizations, Hack is statically

typed yet compatible with PHP. Indeed, Hack code can interoperate with legacy

PHP code without imposing any run-time penalty. Thus, developers can adopt Hack

on an incremental basis, similar to gradually typed language though without their
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safety (Siek & Taha, 2006; Tobin-Hochstadt & Felleisen, 2006). Hack also comes

with type inference, minimizing notational overhead, and further aiding adoption.

Hack’s type system is interesting in its own right. It handles a large number of

idioms from the dynamically typed world. At the same time, it provides sufficiently

strong static guarantees to catch a significant number of errors during type checking.

Facebook’s Hack comes with a web-based integrated development environment

(IDE). In order to provide autocompletion and code-navigation features in the IDE,

Hack’s type checker is compiled to JavaScript via js of ocaml (Vouillon & Balat,

2014) and runs alongside the IDE in the web browser.

In keeping with the stated goals, the response time from the compiler is nearly

instantaneous. The type checker processes even thousands of files within a second,

which makes for an impressive live demo. The Hack compiler uses a number of

resident background processes. A master process delegates work to a number of

child processes, which communicate via shared memory in a lock-free fashion. This

architecture allows Hack to eagerly type check files before a user could even type the

requisite commands. This is particularly important for large changes, for example,

when a developer switches git branches.

A vast amount of Hack’s code is in OCaml. The latter is ideal for symbolic

computation, has excellent performance and can be compiled to JavaScript. The

main challenge with the choice of OCaml is the lack of native multicore support. To

address this gap, the Facebook team engineered its own multiprocess architecture.

4 OpenX and Erlang Ads

Anthony Molinaro (OpenX) shared his perspective on his employer’s ad exchange

technology. The advertising technology company developed its original software in

PHP, but it transitioned to Erlang. As the company’s platform grew, the weaknesses

of its software became quite apparent. In addition to architectural issues—a poor

choice of databases, the lack of HTTP load balancing—the application run-time

grew to be an expensive aspect of OpenX’s day-to-day operations. Additionally,

OpenX wanted improved support for concurrent and low latency operations.

Molinaro decided that Erlang was a good fit for the problem space of highly

concurrent systems with soft real-time requirements. He prototyped a first imple-

mentation within a few months. This experience left him quite satisfied and he

started to evangelize it to his coworkers. In response, the engineering team began to

find additional projects that were suitable for Erlang

• OpenX moved from the Cassandra data-management stack to the Erlang-

based Riak.
• The developers added Erlang-based services for various elements of their stack.
• They also created a DSL for selecting ads so that the application logic could

be interpreted by both Erlang and Java-based systems.
• OpenX implemented a data-service layer, abstracting the database.
• Erlang Solutions wrote an API router for OpenX.

OpenX currently has around 15 services written in Erlang, around 8 in Java, and a

mix of Python and PHP for front-end tasks.
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Molinaro emphasized the architectural choices that enabled the introduction of

Erlang:

• OpenX’s cloud-based systems use generic hardware, automate bootstrapping,

are package-oriented and fault-tolerant.

• OpenX’s software infrastructure use many cross-language tools. Thrift (Slee

et al., 2007), Protocol Buffers (Google Inc, 2014), and the Light Weight

Event System3 all contribute to a language-agnostic environment. An in-

house system called “Framework” provides scaffolding or code layouts and

provides support for building deployable packages from code. Framework also

enforces versioning and reproducibility across languages.

• OpenX’s architecture is service oriented. Every component has a single pur-

pose; overall, the components are loosely coupled.

While architectural choices enabled the use of Erlang, Malinaro reiterated that it

was important to find a project with which to showcase the technology.

5 Redesigning the computer for security

Tom Hawkins (BAE Systems) spoke to us about the Darpa-funded SAFE project,4.

The SAFE project aimed to co-design

• a new application language, Breeze;

• a new systems programming language, Tempest;

• a new operating system; and

• a new processor.

The goal of SAFE was “security at every level,” for defense in depth. SAFE focused

on hardware-enforced security, considering dynamic checking in software as too

expensive.

The SAFE model requires fine-grained information flow control, implemented in

hardware. Words of data in SAFE are called atoms comprising 64-bits of metadata

and a 64-bit payload. Atom metadata contains type and label information, used by

the hardware to perform access and integrity checks. Every bit of data in SAFE

belongs to an atom; metadata can always be recovered.

The assembly language is quite traditional, with a few high-level constructs to

make programming the SAFE architecture convenient. It is implemented as an

EDSL in Haskell, using the host language as a macro language. A monad captures

the program description.

Tempest is an imperative language with automatic register allocation, and an

optimizing compiler. It, too, uses the SAFE EDSL assembler as a back end. Tempest

is itself an EDSL in Haskell. This arrangement makes it straightforward to in-line

SAFE assembler.

Hawkins concluded with a handful of lessons

3 http://www.lwes.org/
4 http://crash-safe.org/
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• Designing a higher-order language with information flow control is hard.

• Starting with the systems programming language is better than with an

assembler. While a valuable building block, programming directly in assem-

bly language is unproductive. Furthermore, having a higher-level language

isolates the software and hardware teams. The hardware team can change

the instruction-set architecture without rewriting all the software, and the

programming language team does not have to anticipate all hardware features.

• EDSLs are excellent for bootstrapping language-intensive systems. Most

importantly, they are also highly reusable components.

• EDSLs demand that engineers are comfortable with the host language. They

are also more difficult to debug than programs in an external DSL.

• Concrete syntax remains important. It is probably best to switch from abstract

syntax to concrete syntax when a language gains modularity, because then the

switch can be made without disruption.

(Finally, Hawkins jokingly declared that the optimal number of PL researchers

on any given project is somewhere between two and seven.)

6 End-to-end reactive programming

Jafar Hussain of Netflix discussed the company’s use of functional programming

techniques, in particular, reactive programming. Netflix enabled its move toward

reactive programming when its development team modularized the company’s

software stack. The middle tier and UI used to be highly coupled, causing numerous

problems, especially inefficient calls between components.

Netflix developers roughly fell into two groups: “Cloud people” and “UI people.”

Due to its massive scale, the company decided that all developers had to “think at

scale.” Hence, any switch posed the challenge of how to get UI engineers to think

at scale. Netflix answered the question by providing “UI comforts,” a reactive API.

The next challenge was exploiting parallelism. Hussain stated that this parallelism

had to come easily, because no developer could be trusted with locks. He went

on to describe the Observable monad, the central data structure used to compose

Netflix’s subsystems.

Observable is part of Netflix’s Java port of Rx.NET (Christensen & Husain,

2013). Briefly, it is a vector version of the Continuation monad with the null-

propagation semantics of the Maybe monad and the error propagation semantics of

the Either monad. It is composed in a functional fashion, and has clean cancellation

semantics. Observable can be used in either synchronous or asynchronous settings.

At Netflix, Observable is used as the singular data structure for both cloud and

UI developers. It is applied with ease to problems in either setting, and it provides a

uniform API around which applications are structured. The video of Hussain’s talk

includes two demonstrations of how the API smooths over the differences between

cloud and UI programming, with a uniform structure for both. The first example

shows an implementation of social notifications, a classic “long polling” example.

The second example is an autocomplete system for search. The interested reader is

referred to the video for details.
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Like other speakers, Hussain emphasized the need for evangelism. He recom-

mended practicing public speaking and a particular focus on “soft skills.” In his

own experience, he honed his speaking skills in a short time, and he was then able

to clearly articulate the benefits and importance of a particular technology to his

target audience. Hussain’s group also developed interactive training exercises that

illustrated the benefits of reactive programming. These exercises helped colleagues

develop an intuition of how to use reactive constructs. During the process, the

group’s members were almost always available to help.

Netflix has turned its Java and JavaScript libraries for reactive programming into

open-source projects.5

7 Medical device automation using message-passing concurrency in scheme

Vishesh Panchal (Beckman Coulter, Inc.) gave a talk on his team’s use of scheme to

automate a molecular diagnostic device. His talk included a video of such a device

playing a piece of music by actuating its motors.

In general, the purpose of a molecular diagnostic device is to detect the presence

of specific strands of DNA/RNA in a sample. It is a complex machine, complete

with temperature and motor control, sensors, barcode readers and a spectrometer,

plus a total of 19 mother boards. Operators use a thin, stateless client to interface

with the device.

The server software is written in scheme. It implements Erlang’s message-passing

concurrency model. This library can create, inspect, and update Erlang-style records.

It also provides Erlang’s supervisor structure to isolate hardware failures. Based on

the library, the instrument server is decomposed into several processes, all arranged in

a supervisor tree. These processes communicate by passing messages. The server also

has an event manager that logs events and handles subscriptions to event streams.

The use of message passing renders several common run-time errors impossible;

others are mitigated by the use of supervisor trees, enabling principled handling of

such failures at every layer in the software stack.

Scientists program the device with a EDSL hosted in scheme. The language’s

implementation greatly benefits from scheme’s hygenic macros, first-class functions,

and continuations. In addition, scheme’s arbitrary precision arithmetic was important

for the numerous numeric computations needed.

The DSL greatly increases the flexible use of the diagnostic devices. Since

scientists are the ultimate users of this DSL, not programmers, the language is

highly specialized; it provides constructs for specifying high-level goals that are

familiar to scientists. The video presentation includes a number of examples that

demonstrate the direct translation of a scientific process into programs in this DSL.

Panchal conclusion consists of the following set of lessons

• Message passing is a useful model for reasoning about the semantics of

systems. Erlang/OTP’s fault isolation leads to concise programs, employing

5 https://github.com/Netflix
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only a small amount of defensive code. Concision often implies ease of testing.

It is not a silver bullet, however, especially when dealing with concurrency and

concurrency bugs. For these concerns, it remains crucial to use timeouts and

supervisor trees to detect problems.

• Supervisor trees come with little “prior art.” Developers are on their own.

• Automated unit testing is crucial throughout the process.

• Hiring into this unique environment remains difficult.

• Existing quality metrics (e.g., bug density) do not carry over to languages such

as scheme due to the terseness of the programs.

• Gluing together components written in different DSLs allows programmers to

mix the good bits from both scheme and Erlang at will.

• DSLs also enable rapid prototyping by non-expert programmers.

Finally, it is noteworthy that the software also passes the FDA’s scrutiny.6

8 Enabling micro-service architectures with scala

Kevin Scaldeferri (Gilt Groupe) reported on the experience of building a large

system from a large number of small services.

The Gilt Groupe is an Internet clothing retailer employing highly user-specific

targeting. The company employs several schemes to drive sales, mostly centered

around time- and quantity-limited offerings, which renders their web traffic rather

uneven, with massive spikes around sales periods. By implication, their revenue is

distributed along the same spikes and valleys, meaning stability during traffic spikes

is an imperative.

The software system at Gilt used to be a largely monolithic Ruby-on-Rails appli-

cation. Scaldeferri explained that, with a growing application, and a growing number

of engineers, there were seemingly intractable software engineering challenges with

this model. The setup also caused a number of production issues.

The team decided to switch to a “micro-service” architecture, splitting their ap-

plication into a large number of well-defined, self-contained services. The transition

began by factoring the Rails application into a few core infrastructure systems, using

HTTP to communicate with each other. Within four years, these services numbered

300. Each micro-service was converted to Scala.

Scaldeferri outlined uses of “reactive” programming in this context, with many

examples focusing on real-time updating. Such updates were constructed using

Play (Typesafe Inc, 2014b) and Akka (Typesafe Inc, 2014a) actors.

During this transition, the engineering group developed several architectural

components to support this large number of services in production.

Builds. The group constructed plug-ins for Scala’s Simple Build Tool (SBT) to

abstract over build, configuration, and dependency management.

6 The US Food and Drug Administration (FDA) is the regulating body for medical devices in the United
States.
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Configuration. A Zoo keeper cluster stores configurations, which can be overridden

locally. Configurations are deserialized into to Scala data structures with strict

validation.

Testing. Due to the complex set of dependencies testing remains challenging in

micro-service architectures. Gilt’s code base now uses the “cake pattern” exten-

sively in testing to fully or partially satisfy dependencies that would otherwise

be handled by another service in their production environment. The group uses

Scala’s traits, also known as mixins, to implement the cake pattern.

Delivery. A key part of Gilt’s deployment strategy is to deliver systems on a

continuous basis. Twenty to thirty services are deployed automatically on a typical

day.

9 Functional infrastructures

Antoni Batchelli (PalletOps) described the Pallet platform for the automated gener-

ation of infrastructure software.7

Pallet allows users to write programs that build and operate computing envi-

ronments, both locally and in the cloud. It provides abstractions to write plans

that describe configuration actions independently of the target platform. It then

translates those plans to shell scripts. While a shell script generated from a plan is

specific to a particular target platform, the plan itself is target-independent. Pallet

currently knows about several flavors of Linux and Unix systems.

The central entity in a Pallet configuration is a plan function, which is a pure

function that generates a plan object. The plan object can be inspected, that is, the

user may query the plan in various ways. For example, the user can find out what

actions a plan would trigger on a particular platform.

Pallet also optimizes plans. For example, it can coalesce many small actions into

a single large one if the target operating systems supports this optimization. The

user can assemble plans into phases that run on servers. Plans can be abstracted

over servers to instantiate entire families of similar installations.

The implementation of Pallet uses Clojure and exploits Clojure’s multi-methods

to specialize actions in plans. While the dynamic typing of Clojure is an enabling

factor for many parts of Pallet, developers sometimes wish for static typing.

Batchelli concluded by noting that, over time, Pallet put a growing emphasis on

data instead of functions to allow the inspection and manipulation of plan objects.

10 Realtime map/reduce at twitter

Sam Ritchie (Twitter, Inc.) described Summingbird, a new open-source system for

computing aggregates in real time.

Summingbird is a declarative, Scala-hosted EDSL for expressing map/reduce-

style aggregates over streaming data. It bridges the gap between streaming and

batch computation, enabling developers to write logic once and deploy it in a

7 http://palletops.com/

https://doi.org/10.1017/S0956796815000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000052


10 M. Eriksen et al.

combination of batch- and streaming-computation systems. An important goal of

Summingbird is to improve developer productivity by solving the systems problems

in one place, so that the run-time handles efficient execution as well as scaling

resources usage up and down based on need.

Summingbird’s core operation is an “associative plus” operation, the Monoid. Its

underlying data structure is practical for aggregation. The associativity of Monoids

makes computations parallelizable in a straightforward way. According to Ritchie,

many common data structures and aggregations that are Monoids, including sets,

lists, maps, hyper-log logs, Bloom filters, moments, count-min sketch, and more.

It is common to deploy Summingbird in a dual batch/real-time configuration. The

batch portion, working off of log files or ground truth data, computes the aggregate

up to a given time stamp; a real-time streaming system maintains a sliding window

of the same aggregate. Clients query both of these stores, merging the results.

This style of deployment is desirable because it cleanly separates two concerns: the

batch system aggregates over the entire data set, optimizing for throughput and

the streaming system has a much smaller fixed window of computation, computing

updates with lower latency.

Ritchie’s central example concerns tweets. When Twitter displays a tweet, it shows

a list of web sites that embed this tweet, an act that is based on impression data.

The list is ordered by popularity. The Summingbird implementation consumes events

of the form (TweetId, (URL, Count)). The event denotes three facts: the tweet

TweetId is reachable Count times. This fits neatly into the model of Summingbird,

as these tuples are trivially summable. To deal with the large number of web sites,

Twitter uses a Count-Min sketch to reduce the memory requirements for keeping

the counts.

11 Functional probabilistic programming

Avi Pfeffer (Charles River Analytics) introduced the Figaro language for probabilistic

programming (Pfeffer, 2009).

The aim of functional probabilistic programming is to “democratize” building

probabilistic models. A motivating example imagines that someone has some

information and wants to derive answers from this information, keeping track of the

uncertainty of the answers. The solution is to create a joint probability distribution

over the variables, assert the evidence, and probabilistically infer the answer.

A common approach to probabilistic functional programming uses generative

models. Variables are generated in order such that later values may bind (depend

on) previous values. Developing such a model is not a simple task and is an active

area of research.

Expressions in functional probabilistic programming languages are computations

that produce values with uncertainty. Consider the following example from Pfeffer’s

talk

let student = true in

let programmer = student in
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let pizza = student && programmer in

(student, programmer, pizza)

let student = flip 0.7 in

let programmer = if student flip(0.2) else flip(0.1) in

let pizza =

if student && programmer

flip(0.9)

else

flip(0.3) in

(student, programmer, pizza)

Such programs are best understood via a sampling semantics. That is, the program

is run many times. Each outcome has some probability of being generated, the

program thus defines a probability distribution over outcomes. Since the language

itself is Turing complete, it is capable of expressing a wide range of models.

Figaro’s central data type is called Element[T], i.e., the class of probabilistic

models over type T. Element[T]s may be stochastic or non-stochastic. A number

of atomic elements are defined, e.g., Constant, Flip, Uniform, and Geometric.

These data types are combined to form compound elements. For example, the

compound element, If(Flip(0.9, Uniform(0, 10), Normal(1.0, 0.3)) is the

uniform distribution from 0–10 90% of the time, and the normal distribution with

mean 1.0 and a standard deviation of 0.3 the remainder of the time.

Figaro uses a probability monad to track state, with Constant representing the

monadic unit, and Chain(T, U) the monadic bind. Most of Figaro’s elements are

implemented in terms of this monad.

Figaro is an Scala-hosted EDSL that allows for distributions over any data type.

It has an expressive constraint system, and it comes an extensible library of inference

algorithms containing many popular algorithms. Using its host language, Figaro can

be used as a library with any JVM-based programming language.

Figaro is an open-source project (Charles River Analytics, 2014).

12 Building a commercial development platform Haskell

Gregg Lebovitz (FP Complete) reported on the FP Haskell Center, a web-based

IDE for Haskell.

FP Complete aims to improve Haskell adoption and support the Haskell com-

munity in the process. Its primary goal is to make Haskell accessible to ordinary

developers via educational materials and tools. In addition to free tools, they offer

“commercial grade” development tools.

The FP Haskell Center greatly simplifies using Haskell. It is a ready-to-use

integrated development environment for Haskell. The IDE consists of

• a web front end;

• a Haskell back end, implementing project management;
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• integration with the compiler to achieve instant developer feedback, mostly in

the form of error reporting;

• a help and documentation system;

• git-based version control;

• a build system; and

• an execution and deployment platform.

The IDE is itself built almost entirely in Haskell, using libraries and frameworks,

available on Hackage. The front end uses Yesod (Snoyman, 2012) and Fay,8 a

proper subset of Haskell that compiles to JavaScript. The back end continuously

precompiles the user’s code so that the bytecode can be run instantaneously within

the IDE.

13 Common pitfalls of functional programming and how to avoid them: A mobile

gaming platform case study

Yasuaki Takebe (GREE, Inc.) spoke about the use of functional programming in

a large, mobile gaming platform (37 million users, mostly in Japan, 2000 games,

2600 employees). Historically, his company built mobile games in web programming

languages such as PHP or Ruby. Recently, GREE began using Haskell for some of

its back-end systems. Takebe described one of these projects, a management system

for their in-house key-value storage system.

The systems task is to manage and scale capacity in the company’s storage clusters.

It might, for example, increase the cluster size due to hardware faults or to access

spikes.

Takebe presented a few Haskell-specific implementation issues.

Memory leaks due to lazy evaluation. The front-end server kept a list of active

threads in a TVar for monitoring purposes. Operations to remove threads from

this list were evaluated lazily, and could thus create a large memory leak.

Race conditions. A race condition between dequeuing items and an asynchronous

exception thrown by a timeout handler caused the loss of data.

Performance degradation. The GREE team used the HTTP-conduit library to per-

form health checks of various servers. In a minor version update, this library

started to fork new threads for each HTTP request, leaving the caller with the

responsibility to perform explicit resource management. As a result, the program

ran with as many threads as there had been health checks, causing a resource

leak.

The GREE team decided to improve their testing practices to battle these

problems. Using standard Haskell tools, especially QuickCheck (Claessen & Hughes,

2011) and HUnit (Herington, 2014), they developed a harness within which they

could start their servers and test them in situ. They developed over 150 systems tests

with more than 5,000 assertions.

8 https://github.com/faylang/fay/wiki
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Next they started to document the issues they ran into in order to share their

experiences and prevent future mistakes of the same kind. While they put significant

effort into this process, few developers bothered reading them. In response, the team

started enforcing a useful subset of the rules via HLint (Mitchell, 2014).

Finally, the group focused on proactive education. They set up a brown-bag lunch

where they covered Haskell and Scala topics. They also ran a class for new graduates

in which students solved problems from project Euler in Haskell.

Takebe reported that some of GREE’s major software component had been

converted to Haskell and considered the project a success. He urged attendees to

pay particular attention to the “superstructure” of a language: its community, the

documentation, and the tool chain. Takebe expressed his belief that these aspects

were the sine qua non of introducing FP in a setting such as GREE.

14 Building scalable, high-availability distributed systems in Haskell

Jeff Epstein (Parallel Scientific) spoke about the use of Haskell in a high-availability

(HA) distributed system for managing resources in a large (10k + nodes) cluster

manager. For undisclosed reasons, the team determined that existing solutions, Zoo

Keeper among them, were not up to the task. They therefore set out to build their

own implementation of Paxos (Lamport, 1998) in Haskell.

The job of a cluster manager is to present a consistent view of the cluster’s state

and to recover from failures quickly. While the Haskell implementation employs

purely functional data structures employed—the state of a cluster, for example,

is represented by a purely functional graph—the code itself has an imperative

appearance because of the inherently imperative nature of the domain.

The code uses Cloud Haskell (Epstein et al., 2011) for distribution management.

Cloud Haskell is an actor-style message-passing system, similar to Erlang. It is

a particularly good fit for this particular project as its model of independent,

communicating processes meshes well with Paxos.

The Haskell implementation of Paxos is a general purpose library on top of

Cloud Haskell. Each component of the algorithm—the client, acceptor, proposer,

learner, and leader—are Cloud Haskell processes. Their implementation consist

of about 1.5kLOC of Haskell, closely matching the pseudocode in Lamport’s

original paper. This kind of near-transliteration increases the confidence in the

implementation’s correctness. The team is now working on adopting modifications

from the literature (Chandra et al., 2007) to improve the library’s performance.

As has often been the case, Haskell’s lazy evaluation poses problems. In this case,

the lazy evaluation caused space leaks in low-level networking code. Distribution

is a natural barrier to laziness since messages must be serialized across process

boundaries. In contrast, Haskell’s strong typing is a great aid for re-factoring

tasks. Also, since Cloud Haskell provides a platform for distribution, the language

makes it easy to develop and debug distributed systems on a single machine. Since

such systems generally, and Paxos especially, is sensitive to non-determinism, it is

imperative to use a deterministic scheduler during development, which allows to test
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the system in a reliable and meaningful manner, with the possibility of reproducing

errors in a deterministic fashion.

15 IQ: Functional reporting

Edward Kmett (S&P Capital) discussed the company’s use of functional program-

ming. He started with the introduction of Scala and followed up with a presentation

of Ermine (Compall, 2014), a new Haskell-like language for their domain.

Kmett’s team used Scala and FP techniques in a “portfolio analytics” engine, a

product used for performance and risk attribution across financial portfolios. The

old version of the portfolio analytics engine was written in Java. It was hard to

extend, and required all data to be in memory. They rewrote this code in Scala and

introduced monoids for simple parallelization, solving both the performance and

extensibility problem. Reducers were used to derive structure from containers, in a

parallel manner across monoidal structures. Kmett noted how this rewrite removed

all the obvious “wiring” from their code. This project really helped sell the use of

Scala and, more generally, FP to the rest of the company.

Ermine is a Haskell-like language, developed to build a generic reporting and

visualization framework. It is a JVM-based language and will be used in multiple

products. Like the portfolio analysis engine, Ermine is a response to problems with a

prior implementation—this one in Scala. Specifically, writing monadic code in Scala

can be quite painful as it is easy to overflow the stack without trampolining.

Ermine has a Haskell-like type system, but with row types, constraint kinds, and

rank-N types. It also provides a built-in database support subsystem. Row types are

useful in this context as they provide a powerful mechanism to describe the structure

of data. The type system models constraints with “has”, “lacks” and “subsumes”.

To support development, Ermine comes with a structured code editor; the editor

prevents programmers from creating code with type errors. In addition, the language

now has a declarative reporting layer that can push reports into various back ends.

16 Enterprise scheduling with Haskell at skedge.me

Ryan Trinkle (skedge.me) presented skedge.me’s cloud-based scheduling platform.

The company’s software handles complex “enterprise” scheduling for, among

others, retailers. For example, Sephora, a makeup company, uses skedge.me to

schedule appointments with customers. The skedge.me software is integrated into

Sephora’s site via an iframe; it is styled seamlessly to look like a part of the host

site.

Originally, skedge.me consisted of 43,000 lines of code in Groovy on Rails. The

codebase had several major intractable issues: time zone problems, double bookings,

recurring events not firing notifications, and delayed notifications. The application

also had severe performance issues. Worst of all, the application was inflexible. It

was nearly impossible to respond to customers’ requests; on occasion, they had

to ask their customers to change the way they conducted business to combine a

skedge.me model with the host site.

https://doi.org/10.1017/S0956796815000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000052


CUFP’13 scribe’s report 15

After careful deliberation, the team decided to rewrite skedge.me in Haskell.

Trinkle had worked with Haskell previously, though not to build a web site. The team

began by constructing a monad, RawDB, to maintain ACID (Atomicity, Consistency,

Isolation, Durability) guarantees during transactions.

The revised system consists of three layers. The RawDB layer tracks effects and can

automatically retry operations on temporary failure. The DB monad is built on top of

RawDB monad and provides a high-level “CRUD” interface. This layer makes heavy

use of algebraic data types, and performs caching and validation. The final layer

before the application code is the security layer. It implements security policies for

various customers. Implementing security turns out to be tricky due to the myriad

ways in which the product can be configured by customers. For example, they may

define roles (e.g., “owner,” “staff,” “customer”) that make sense only within their

environment; the verbs of the product, too, may be configured (e.g., appointments

may be joined or rescheduled) depending on the environment. Thus both sides of

the security equation—nouns and verbs—can change from instance to instance. The

skedge.me software uses Haskell’s type class facility to model these security policies.

These help map customer-specific customizations into a standard schema that can

be manipulated on a component-by-component basis. This technique affords the

team a great deal of static guarantees from type checking, a critical property when

implementing security sensitive systems.

The team’s code base makes heavy use of Hackage, linking in 71 unique libraries

from the repository. An additional 87 are brought in from the transitive dependency

graph. The team considers Hackage to be a well organized repository. Because most

libraries are purely functional in nature, they are easy to vet for quality.

Trinkle finally noted that, while Haskell provided a great platform for “building

code for the long run,” the team also made good use of the language for quick-

and-dirty hacks, e.g., for importing data from the old system. Even for such hacks,

however, Trickle emphasized the strong support from the type system. Concerning

libraries, Trinkle’s team replaced just one library due to bugs. While Haskell might

have fewer libraries when compared to other, more popular languages, those that

are available, are of higher quality.

17 Wolfram: Programming map/reduce in mathematica

Paul-Jean Letourneau (Wolfram) closed this year’s CUFP with his talk on imple-

menting MapReduce in Mathematica. Specifically, Letourneau described

HadoopLink (Letourneau, 2013), an integration of Mathematica and Hadoop.

In Mathematica, everything is an expression. Expressions are rewritten until the

process reaches a fixed point. Expressions are also data structures, similar to Lisp’s

S-expressions. As such Mathematica follows a familiar LISP mantra of “programs

are data.” Homoiconicity abounds, which allows a Mathematica program to ma-

nipulate expressions, e.g., to perform rebinding, which is powerful for distribution.

Letourneau’s video presents some examples of impressively short Mathematica

programs. Following Theo Gray, “everything is a one-liner in Mathematica . . .
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for a sufficiently long line”, including an image constructed recursively. In short,

Mathematica as “a gateway drug to declarative programming.”

HadoopLink allows for nearly seamless distribution of Mathematica programs:

mappers and reducers both are ordinary Mathematica functions, stitched together

by a Hadoop link object for input and output. The programs can be defined on a

single page; HadoopLink takes care of the rest.

Letourneau concluded his talk with the impressive example of a simple genome

search engine. This problem lends itself particularly well to map/reduce style

computation. The program, including large data sets, is definable within a single

Mathematica session. Turning it into a distributed implementation is indeed a

seamless process.

18 Conclusion

CUFP 2013 was a watershed event. It put an incredible breadth, depth, and broad

applicability of functional programming on display. This was not only true of the

papers presented at the workshop, but also of the many submissions rejected due to

time constraints.

The program was rich in every dimension covered: techniques, languages, and

industries. We had talks from Internet companies, the biotech industry, the medical

device industry, gaming, and the financial industry. Languages in use varied from

EDSLs, to academic stalwarts, to home-grown languages. It seems that language

considerations have taken a front-seat in modern engineering practices.

As the numerous talks on service-oriented architectures show, the process of

decomposing a monolithic application into many, smaller services has been a

fertile field for adopting functional programming. Teams use the transition as an

opportunity to re-implement smaller parts of the system in new languages, which

are better suited than the old ones. In other words, the strategy enables the use of

functional programming an incremental and controlled manner. The advantages of

functional programming come across in a small setting, without having to take large

risks.

Finally, we would like to thank Simon Thompson and Francesco Cesarini for

organizing this year’s tutorials. Ashish Agarwal organized the evening BoF sessions.

We would also like to thank the ICFP organizers for their assistance in Boston. We

also thank Matthias Felleisen for his editorial help creating this report, and David

Sheets for scribing during the conference.
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