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Abstract

We adapt a technique of Kisin to construct and study crystalline deformation rings of G for a finite
extension K /Q,. This is done by considering a moduli space of Breuil-Kisin modules, satisfying
an additional Galois condition, over the unrestricted deformation ring. For K unramified over Q,
and Hodge-Tate weights in [0, p], we study the geometry of this space. As a consequence, we prove
that, under a mild cyclotomic-freeness assumption, all crystalline representations of an unramified
extension of Q,,, with Hodge—Tate weights in [0, p], are potentially diagonalizable.

2010 Mathematics Subject Classification: 11F80 (primary); 11F33 (secondary)

1. Introduction

1.1. Motivation and results. In this paper, we establish new instances
of potential diagonalizability, a notion introduced in [1], which concerns the
geometry of crystalline deformation rings. If K/Q, is a finite extension, then a
p-adic representation of Gx = Gal(K /K) is potentially diagonalizable if, after
possibly restricting to a finite extension of K, it lies on the same irreducible
component of an appropriate crystalline deformation ring as a direct sum of
characters. The significance of this definition comes from one of the main results
of [1], which establishes modularity lifting theorems for conjugate self-dual
representations of a CM number field F, which are potentially diagonalizable at
places of F dividing p.

It is currently unclear whether or not all potentially crystalline representations
are expected to be potentially diagonalizable. While there are no known
counterexamples, positive results have been established in only two situations:
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(1) When K/Q, is unramified and the representation is crystalline with
Hodge-Tate weights contained in the interval [0, p — 1]. See the work of
Gao—Liu [13].

(2) When K/Q, is arbitrary and the representation is two-dimensional and
potentially Barsotti—Tate (that is, potentially crystalline with Hodge—Tate
weights {0, 1}). See the work of Kisin and Gee [14, 22] as well as [15, 3.4.1].

The method used to establish (1) proceeds as follows. First, one replaces K by
a sufficiently large unramified extension so that the reduction modulo p of the
representation in question is a successive extension of characters. One then uses
Fontaine—Laffaille theory to construct a congruence to a representation which
has the same Hodge-Tate weights and which is itself a successive extension
of crystalline characters. Due to K/Q, being unramified and the Hodge-Tate
weights being assumed to lie in [0, p — 1], the relevant deformation rings consist
of a single irreducible component. From this, it is easy to deduce potential
diagonalizability (one has to show that the successive extension of characters can
be replaced by a direct sum, which can be done in complete generality).

If K/Q, ramifies, or the Hodge-Tate weights lie outside [0, p — 1], this
approach does not work; the relevant deformation rings rarely consist of a single
component and Fontaine—Laffaille theory is unavailable. Instead, (2) is proven by
constructing, for R an appropriate Barsotti—Tate deformation ring, a moduli space
of Breuil-Kisin modules £ over Spec R. The morphism £ — Spec R becomes
an isomorphism after inverting p; this reduces the problem of understanding
the components of Spec R to that of understanding the components of £. By
sufficiently controlling the geometry of L, this is further reduced to understanding
the components of the fibre of £ — Spec R over the closed point, which can be
done via explicit calculations.

In this paper, we explore the extent with which this second strategy can be
adapted beyond the Barsotti—Tate situation. In doing so, we obtain new results
towards potential diagonalizability when K /Q, is unramified and the Hodge—Tate
weights are contained in the interval [0, p].

THEOREM 1.1.1. Suppose K/Q, is unramified and V is a crystalline
representation of Gk on a finite-dimensional Q ,-vector space, with Hodge—

Tate weights contained in [0, p]. Assume the mod p semisimplification V of V is
strongly cyclotomic-free, in the sense of Definition 4.3.77. Then V is potentially
diagonalizable.

We also expect our approach will be useful in more general situations (indeed,
since writing this paper, we have adapted the techniques here to apply in ramified
situations; see [4]).
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1.2. Method. The starting point of this paper is the results of Gee—Liu—Savitt
[16]. They consider, for K/Q, unramified, a lattice p : Gx — GLZ(ZI,) inside
a crystalline representation with Hodge—Tate weights in [0, p]. They show that
ifp=p®z FP is reducible, then there exists p’ : Gx — GLZ(Z,,) with the
same Hodge—Tate weights as p, with p’ = p modulo p, and with p’ an extension
of two crystalline characters. The following are two key ingredients that go into
their proof.

e If 91 is the reduction modulo p of the Breuil-Kisin module associated with p,
then they show that 9t is, what we shall call in this paper, strongly divisible.
This means that there exists an IF,[[u]]-basis (e;) of M and integers r; € [0,
p] such that (u"ie;) generate (p(i)TT) over IF,[[u”]]. These r; correspond to the
Hodge-Tate weights of p.

e Since p is reducible, M1 is an extension between two rank-one strongly divisible
Breuil-Kisin modules. Gee-Liu—Savitt compute the relevant extension group
in the category of strongly divisible Breuil-Kisin modules, and show they have
dimension (modulo an error term) less than or equal to the dimension of a space
of crystalline extensions H}(G K> —).

The lift p’ is produced by analysing the Breuil-Kisin modules associated with
crystalline representations that are extensions of two characters, and showing that
such an extension may be chosen so that the Breuil-Kisin module is congruent to
9t modulo p.

This goes part of the way to proving potential diagonalizability of p. However,
it unclear whether or not p and p’ lie in the same irreducible component of a
crystalline deformation ring. We address this by proving that two such crystalline
representations p and p’, with Hodge-Tate weights contained in [0, p], are
contained in the same irreducible component of a crystalline deformation ring if
the Breuil-Kisin modules associated with p and p’ are congruent modulo p. This
is deduced from the following theorem, which summarizes the key new results in
this paper.

THEOREM 1.2.1. Let F be a finite field of characteristic p and Vy a continuous
representation of Gg on a finite-dimensional F-vector space. Let R be the
unrestricted framed deformation ring of Vr with Vi the corresponding universal
deformation.

(1) For h > 0, there exists a projective R-scheme LS" such that, for B a
finite 7. ,-algebra, morphisms Spec B — LS" correspond to Breuil-Kisin
modules My C My of height <h inside the etale p-module Mg associated
with Vg = Vr Qr B.
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(2) There exists a closed subscheme Cfr;’b C LS such that:

(a) The scheme-theoretic image of ,Cc],yq — Spec R corresponds to a
quotlem‘ Rc<rh5 of R with the property that, for E/Q, a finite extension,
: R — E factors through RCryg if and only if Vp = Vp Q@ E is

crystallzne with Hodge—Tate weights in [0, h].

(b) The morphism Efé’ — Spec RCryg becomes an isomorphism after
inverting p.

(c) For B a finite Z,-algebra, the B-valued points of Ecryg correspond to
those My C Mp wzth which, under the identification MzRs W (C*) =
Vs ®, W(C),

(0 —1)(m) € My ®e [7°10 ™" (1) Aint
whenever o € Gg and m € Mp.

(3) Suppose K /Q,, is unramified and h < p. If My corresponds to a B-valued
point ofﬁCrys with B a finite F ,-algebra, then 9 is strongly divisible in the
sense of the bullet point above.

(4) Suppose K/Q, is unramified, h < p, and Vy is cyclotomic-free (this
assumption is unnecessary if h < p—1). Let L° denote the closed subscheme
of Efé’s corresponding to the ideal sheaf generated by nilpotent or p-torsion
elements. Then:

(a) L° is a union of connected components inside [,;”5, and the completed

local rings of L° at its closed points are formally smooth over Z.,,.

(b) For each Hodge type v concentrated in degree [0, p] (that is, for each
collection of Hodge—Tate weights contained in [0, p]), there exists a
union of connected components L® C L° such that if RZ, denotes the
quotient of R corresponding to the scheme-theoretic image of LY —
Spec R, a homomorphism x : R — E factors through R if and only

if Vi = Vr Qg E is crystalline with Hodge type v.

crys

(c) The morphisms L' — Spec R}
inverting p.

ays become isomorphisms after

Part (2) implies any crystalline deformation x of Vg to O with Hodge-Tate
weights contained in [0, p], where O is the ring of integers inside a finite
extension E/Q,, corresponds to an O-valued point of Spec RS”, which factors

crys?
uniquely through £57. Since O is Z,-flat and reduced, this O-valued point

crys”®
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factors through £°. If x’ is another such point that coincides with x on the closed
point of Spec O (that is a crystalline deformation to O whose corresponding
Breuil-Kisin module is congruent modulo p to that corresponding to x), then
both x and x’ factor through the same connected component of £°. By 4(b), both
x and x’ must have the same Hodge-Tate weights. By 4(a), £° is normal, so in
fact x and x’ lie in the same irreducible component.

We deduce Theorem 1.1.1 by combining this observation with the following
lifting result. (Previous results in this vein have been obtained in [11] and [3], with
slight variations on the notion of cyclotomic-free.) This is proven by interpreting
the lifting strategy of Gee—Liu—Savitt from a geometric point of view, using the
formal smoothness obtained in 4(a).

THEOREM 1.2.2. Assume K/Q, is unramified. Let Vy be a continuous
representation of Gk on a finite-dimensional F-vector space. Assume that
every Jordan—Holder factor of Vi is one-dimensional. Suppose that I is a
strongly divisible Breuil-Kisin module associated with Vg. Then Vi admits a
crystalline lift, all of whose Jordan—Holder factors are one-dimensional and
whose corresponding Breuil—Kisin module equals 9 after reducing modulo p.

We conclude this introduction by explaining the proof of Theorem 1.2.1. In
doing so, we also describe the contents of the various sections in this paper.
Parts (1) and (2) are discussed in Section 2. The first is taken from [21, 1.5.1],
and the second relies on a key result of Gee—Liu—Savitt and Ozeki, which asserts
that the condition in (b) when B = Z, is a necessary and sufficient condition for
a Z,-representation of G to be crystalline.

Part (3) is addressed in Section 3 and contains the key technical calculations.
In Section 4, part (4) is proved. The idea is to use part (3) to produce a
homomorphism from the mod p tangent space of Cfr;’b at closed points into
extension groups of strongly divisible Breuil-Kisin modules. The dimensions of
these extension groups have been computed in [3] (generalizing the calculations
mentioned above from [16]). The cyclotomic-freeness assumption allows us to
control the kernel of these maps. We deduce these tangent spaces have dimension
< dim £ [1/p] = dim Spec RS/[1/p] (this can be compared with the bullet
above since these dimensions coincide with dimensions of certain spaces of
crystalline extensions).

Finally, in Section 5, we put all these results together and prove Theorems 1.1.1
and 1.2.2. We also discuss some possible improvements to this strategy (focusing
on removing the dimension assumptions on the Jordan—Holder factors in
Theorem 1.2.2). In the last part, we explain how, in certain nice situations,
the geometries of LY and R} are particularly closely related. We illustrate this

crys
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for two-dimensional representations of K = Q,, recovering some results from
[23] and [27] on two-dimensional crystalline deformation rings of Gg, with
Hodge—Tate weights contained in [0, p].

2. Crystalline deformation rings

2.1. Integral p-adic Hodge theory

2.1.1. Let k be a finite field of characteristic p and let Ko = W (k)[1/p]. Fix K a
totally ramified extension of K of degree e. Also fix a uniformizer 7 of K and a
compatible system 77'/7™ of pth power roots of 77 in an algebraic closure K of K.
Let E(u) € W (k)[u] denote the minimal polynomial of 7 over K.

The ring & = W (k)[[u]] is equipped with a Frobenius ¢, which acts on W (k) as
the usual Witt vector Frobenius and which sends u +— u”. This Frobenius extends
uniquely to a Frobenius on Og, the p-adic completion of S[1/u], which we again
denote by ¢.

Let C be the completion of K with integers O¢. The inverse limit of the system

Oc/p < Oc/p < Oc¢/p < ---

(with transition maps given by x > x?) is denoted by O¢». By construction, the
pth power map on O¢» is an automorphism. The obvious map lim Oc — Oc
is a multiplicative bijection, which allows us to equip O¢» with a valuation v as
follows. If v denotes the valuation on O¢ normalized so that v(p) = 1, then
v’ (x) := v(x*), where x* € O¢ is the image of x under the projection O =
l(iLn Oc¢ — O¢ onto the first coordinate. This makes O¢» a complete valuation ring
with a field of fractions C”. The continuous G g-action on O induces continuous
G g-actions on O and C".

Let Ay = W(O¢»). By functoriality of the Witt vector construction, the
Gk-action on Q¢ transfers to a Gg-action on Aj,s. Likewise, we obtain a
Gk-action on W(C”). We also obtain Frobenius endomorphisms on Aj,; and
W(C") lifting the pth power maps on O and C’. These endomorphisms
commute with the G g-actions.

The compatible system of pth power roots of w € K gives rise to an element
7° € O¢» with v’ (°) = 1/e. The map of W (k)-algebras & — A, sending
u > [7°] (where [-] denotes the Teichmuller map) is an embedding compatible
with the Frobenius on either ring. This map extends to a Frobenius compatible
embedding Og — W(C"), where O¢ denotes the p-adic completion of S[1/u].

2.1.2. Let V be a finitely generated Z,-module equipped with a continuous
Z,-linear action of G . The results of [9] assert that there exists a unique finitely
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generated Og-submodule M C V ®z, W(C *) such that
M ®0, W(C") =V ®;, W(C") (2.1.3)

and such that the W (C")-semilinear extension of the G_-action on V fixes M
and such that the restriction of the trivial W(C")-semilinear Frobenius on V
induces an isomorphism M ®o, , O =: ¢*M — M. The construction of M
is functorial in V. In particular, if V admits a G_-equivariant Z,-linear action
of a Z,-algebra A, then M can be viewed as a module over O¢ 4 = O¢ ®z, A.

DEFINITION 2.1.4. If V is a finite free Z,-module equipped with a continuous
Z,-linear action of Gk, and if M is associated with V|, asin 2.1.2, then V has
E-height < h if there exists a ¢-stable finite free G-submodule 99T C M such that
(i) the induced map ¢*IM = M R, S — M has cokernel killed by E (u)" and
(ii) there is an equality M R O = M.

The association of 2t with a representation of E-height < £ is a fully faithful
functor; see [20, 2.1.12]. In particular, there exists at most one 90t C M as above;
we call this the Breuil-Kisin module associated with V.

2.1.5. As usual, let Z,(1) denote the free rank-one Z,-module consisting of
compatible systems of pth power roots of unity in K. Consider the ring of p-adic
periods B defined in [10]. There is a homomorphism Z,(1) — Bj; sending
& — log([¢)) = Zn%(—])”“(([é] — 1)"/n). Fix a Z,-generator € of Z,(1)
and set ¢ = log([€]). We also write u = [€] — 1 € Ay

As in [8, IIL.1], let Ay, C B be the subring of elements, which can be
written as Y, o x,([7°]"/ p") € By With (x,),>0 a sequence in A converging
p-adically to zero. Then B = Anu[1/pland By, = B} [1/t]. The Frobenius
on A, extends to each of these rings.

If V is a finite free Z,-module equipped with a continuous Z,-linear action of
Gk, then V ®z, Q, is crystalline if and only if the Ko-vector space Deys(V) 1=
(V ®z, Bimax) %% has dimension equal to rankz, V. (The usual definition of a
crystalline representation is made using the period ring Berys. If Ayys C Bar
consists of elements of the form Z@O x,(["]" /n!) with x, € Ay converging
p-adically to zero, then

1 1
B:D’S = Acrys |:;i| and Bcrys = B:;ys |:;i| .
Since v,(n!) < n and n < v,((pn)!), we see that (Any) C Acys C Amax.

Thus ¢ (Bmax) C Beys C Bmax. Using this one, we see that (V ®z, Bha) ¥ =
(V ®Z,, Bcrys)GK')
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2.1.6. Suppose V is a representation of E-height < & with corresponding Breuil—
Kisin module 9. Set D = (9N /uMN) @w ) Ko. This is a Ky-vector space equipped
with a bijective Frobenius ¢*D — D. We claim there exist ¢, G K. -€quivariant
identifications

D ®K0 Bmax = m ®6 Bmax = Vv ®Zp Bmax’ (217)

where Gk, is made to act trivially on D. The right-hand identification follows
from the next lemma since Ay,¢[1/1] is a subring of Byux.

LEMMA 2.1.8. Let V be a representation of E-height < h and 9N the
corresponding Breuil-Kisin module. Write IR for the image of ¢* M — IN.
Then there exists a ¢, Gk, -equivariant identification

1 1
M @e Aint |:—:| =V Qs Aint |:—:| ,
o 0
which recovers (2.1.3) after tensoring with W (C”).

Proof. This follows by applying [5, Lemma 4.26] to the Breuil-Kisin—Fargues
module MY ®e Ains = (M) Qys) Ains- (Note that in loc. cit., & is viewed as a
subring of A, via u — [”]?, which is different from our embedding. This is the
reason why 20t¥ appears rather than 9)1.) O

For the left-hand side of (2.1.7), let O™ C Ky[[u]] denote the subring of power
series converging on the open unit disk, and consider A = ]_[zozo o"(E(m)/E)) €
Ore In [20, 1.2.6], a @p-equivariant inclusion

D ®, O < M’ @ O1¢ (2.1.9)

is constructed, which is an isomorphism modulo u# and which becomes an
isomorphism after inverting @(A). It is also Gg_-equivariant, for the trivial
G k. -action on both sides. Since the inclusion & — Aj;,¢ extends to an embedding
Ore — B* | which maps ¢ (1) onto a unit in B , we obtain the left-hand side

max? max?

of (2.1.7).

We can now formulate the main result of [20]. See also [24, 1.2.1].
PROPOSITION 2.1.10 (Kisin). If V is a Gg-stable Z,-lattice inside a crystalline
representation with Hodge—Tate weights in [0, h], then V is of E-height < h.

(Our Hodge—Tate weights are normalized so that the cyclotomic character has
weight —1.) Furthermore:
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(1) Derys(V) CV ®z, B is identified with D under (2.1.7).

(2) Tensoring (2.1.9) with the map O"¢ — K given by u v+ m identifies
M? / E ()M with an O-lattice inside Deys(V)g = Derys(V) Qk, K. Via
the inclusion Bu.x ®k, K — Bar we identify Dy (V)g = (V Qq, Bgr)C*
and, under this identification, the surjection IM? — Dewy(V)g induces a
map of M? N E (u)'IMN into

F'Doys (V)i i= (V ®q, 1'B3r) %",

which becomes surjective after inverting p.

Not every finite E-height representation is crystalline; indeed in [12, 1.1.13],
it is shown that V has finite E-height if and only if Vg, is semistable, where
K, = K(m'/?") for a suitably large m. The starting point of this article is a
description identifying which finite E-height representations are crystalline. To
explain this, fix a representation V of finite E-height with associated Breuil—
Kisin module 91. Using Lemma 2.1.8 or (2.1.3), we obtain a ¢, G_-equivariant
identification

MRs W(C) ZV ®z, W(C). (2.1.11)

The G g-actions on V and W (C") therefore transfer to a ¢-equivariant G g-action
on M s W(C).

THEOREM 2.1.12 (Gee-Liu—-Savitt, Ozeki). Let V be a finite free Z,-module with
a continuous Z,-linear action of G . Then the following are equivalent:

(1) V ®z, Q, is crystalline with Hodge—Tate weights in [0, h].

(2) V is of E-height < h and the Gg-action on M @s W(C®) induced from
(2.1.11) is such that (6 — 1)(m) € M Qe [0~ (1) Ayt for every m € I
ando € Gg.

That (1) implies (2) is essentially [16, 4.10], while the converse is proven in
[26, Theorem 21]. As both these results are not formulated as we need (and also
because they assume that p > 2), we devote the rest of this section to a proof
of the theorem. Our argument that (1) implies (2) is essentially the same as that
in [16], but our proof of the converse differs from Ozeki’s.

Proof that (2) implies (1) in Theorem 2.1.12. In fact, we prove something
stronger. Namely, consider V and 9 as in 2.1.6 and suppose the G g-action
on V is such that, when transferred to 9 ® s Bmax via (2.1.7),

(6 — 1)(m) € M Q¢ [7"]Ains (2.1.13)
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forevery m € M and o € Gg. Then we show V ®z, Q, is crystalline. For this, it
suffices to show the G g-action is trivial on D. To this end, let Sp.x C O™ denote
the subring W (k)[[u, u¢/p]1 N O"e. Clearly, the inclusion 08 — B maps Spax
into An.. Recall that a power series Y a;u’ with a; € K lies in O if and only
if v,(a;) +ir — O for any r > 0. This series is contained in Sy, if furthermore
v(a;) +i/e > 0. By taking r = 1/e, we see Spa[1/p] = O"2, and so we can
choose a W (k)-lattice D° C D so that every d € D° can be written as y_ s;m; with
5;i € Spax and m; € M. If s € Spux and o € G, then (6 — 1)(s) € ([7°]/P) Amax
since G acts trivially on the constant term. From this and (2.1.13), we deduce
that

b
[n ] Amax
p

(0 — D) =) (0(s) —s)o(m) + Y _ si(o(m;) —m) € M Qe

forany d = ) s;m; € D°. There exists anm € Z such that ¢ ~'(D°) C (1/p™)D".
Thus o™ (D°) C (1/p™)D° for n > 1. Since the G g-action is g-equivariant, we
have

nm+1

n - n [7°]
(0 —D@d) =¢"((6 — D)) €¢ (93? Qs — » Amax>

byp"
C’:Ut@@ ]

pnm+] ax
whenever d € D°. However, [7°]7"/p"™*+! € pP"~"m=1A .. and so, since A,y is
p-adically complete, it must be that (o — 1)(d) = 0. O

Now we show (1) implies (2). One of the advantages of using B} is that its

topology is better behaved than that of Bcrys. In particular, we have the following
lemma.

LEMMA 2.1.14. Equip B . with the topology making (p"Amsx)n>0 a basis
of open neighbourhoods of 0. Then B is complete and any principal ideal
aBt C B isclosed.

max max

X

Proof. Completeness is immediate since A, is p-adically complete. To check
aBt isclosed, consider a sequence b; € aB! convergingtob € B . We must

show b € aB .. Since B} is a domain, it suffices to show b;/a converges in
B . This follows from [8, IIL.2.1], which asserts that if ||x|| = inf,ncea,. P
then p~"|lx[l[lyll < [lxy|l. Hence [|(b:/a) — (b;/a)|l < (p/llal)1b: — b; |, and so

+
as B is complete, b; /a converges. ]

For o € G, consider €(0) € Z,(1) defined by €(0), = o (x'/?")/7'/P
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LEMMA 2.1.15. Suppose V ®z, Q, is crystalline and that M is the Breuil-Kisin
module associated with V. Define a differential operator N over 9 = u(d/du) on
M e O"¢[1/1] = D @k, Oe[1/A] by asserting N'(d) = 0 for all d € D. Then

om) = YNy TR

n=0

form € M @s O"¢[1/p(A)] and o € G.

Proof. Since M’ @ O"¢[1/p(M)] = D®x, O"[1/¢(A)], it is enough to consider
m = fd withd € D and f € O"¢[1/¢())]. By definition, N"(fd) = 9"(f)d.
By (1) of Proposition 2.1.10, we identify D = D.(V) and the G-action on V
fixes D; hence o (fd) = o (f)d. The lemma therefore reduces to checking that
—1 n
Z ( Og([e‘(a)])) 5 (F) (2.1.16)
n!

n>=0

converges in B to o(f). It suffices to consider f = u'. Then o(f) =
[e(o)!]u’. On the other hand, using that 9" (u’) = (—i)"u’, we see (2.1.16) equals
exp(log([e(0)]))u’. If this sum converges, it will do so to [e (o) ]'u’, which proves
the lemma.

To show convergence, it is enough to show (log([e(c)])")/n! lies in A« and
in this ring converges p-adically to zero. Note that log([e(0)]) = «t for some
o € Z,. The proof of [8, II1.3.9] shows that € pAn«if p > 2and ¢ e P2 A
if p = 2. Convergence of (log([e(0)])")/n! then follows because p"/n! € Z,
converges p-adically to zero when p > 2, and p>/n! converges p-adically to
zero when p = 2. O

Proof that (1) implies (2) in Theorem 2.1.12. 1t suffices to prove, for m € @(9)
ando € Gg, that (0 — 1)(m) € MY @g [7°]” wAjns. Since Ajye[1/u] is Gg-stable,
Lemma 2.1.8 ensures that (¢ — 1)(m) € M? @ Aums[1/1].

On the other hand, we know from the previous lemma that

(o — 1)(m) =ZN”(m)®M. (2.1.17)
w1 n!

Since d 0 ¢ = py o 3, the operator A satisfies N'¢ = pp/N/, and so

N (m) € ¢ (N (‘m ®s O™ BD)

for n > 1. By the definition of N, we have N’ (0 ®¢ O"¢[1/9(1)]) C M Qg
uO"e[1/A]. Therefore N (m) € M¢ e [7°]7 B, Since log([€(0)]) € t Apax =

WA max (the equality follows from [8, 111.3.9]), each term of (2.1.17) is contained
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in M’ Qg [7°17w B, Lemma 2.1.14 implies the entire sum (2.1.17) is contained

in M s [P uBt

max*

To complete the proof, it suffices to show that
1 byp + byp
Aing ; N[ 1P uB, =[] wAjys.

This follows from the next two facts. The first is that if a € Aj,e N [7°]7 B}, then

a € ["]? Ajy. This is proven with B} replaced by Bl in [25, Lemma 3.2.2].

max crys
Using that (B ) C B ., we deduce the same applies for B/ . The second

fact is that if a € Ay N My" B} . then a € u"A;y. It suffices to prove this when
n = 1. The homomorphism 6 : Ays — Oc given by Y [x;1p' — Y. x/p' extends
to 0 : Bf ~— C and, since 0(¢" (1)) = 0, we must have 6(¢"(a)) = 0 for all
n > 0. The claim then follows from [10, Proposition 5.1.3], which states that

{a € Ajr | 9" (a) € ker6 forall n > 0} = pAy. O

2.2. The locus of crystalline Breuil-Kisin modules

2.2.1. Let A be an Artin local ring with finite residue field I of characteristic p.
Suppose V, is a finite free A-module equipped with a continuous A-linear
Gk -action.

Since A is a finite Z,-module, as in 2.1.2 we obtain an Og 4 = O¢ ®z,
A-module M, equipped with an isomorphism ¢*M, — M such that there exists
a ¢, Gg_-equivariant identification (2.1.3). Since V, is A-free, M, is Og 4-free;
see [22, 1.2.7]. For any A-algebra B, set My = M, ®, B and Vy = V, ®4 B.

DEFINITION 2.2.2. For any A-algebra B, define L5"(Vp) to be the set of finite
projective Sz = G ®,4 B-submodules My C Mp satisfying Mz Qs O = Mp
and, if 90t% denotes the image of ¢*Mp under p* Mg — My, satisfying

Ew)"My C M4 C Mp.

If B — B’ is a map of A-algebras and M € L5"(Vp), then My ®5 B’ is a finite
projective G p-submodule of My and p* (MR B’) — (IMpRp B’) has cokernel
killed by Eh (NOte f)ﬁB ®GB GB’ = SUIB ®GB (63 Rp B) = D:RB Rp B) Since
O ®s My @z B)) = My @5 B’, we have that My @5 B’ € L5(Vy). Thus
B +— LS"(Vp) is a functor on A-algebras.

The functor £5" was introduced by Kisin. In [21, 1.3], he proves the following
proposition.
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PROPOSITION 2.2.3 (Kisin). The functor B + LS"(Vy) is represented by
a projective A-scheme ,th. If A — A is a map of Artin local rings with
finite residue field, then there are functorial isomorphisms Ejh ®4 A= [,ih.
Furthermore, th is equipped with a very ample line bundle, which is similarly
Sfunctorial in A.

2.2.4. Now suppose V, is a finite free A-module equipped with a continuous
A-linear action of Gg. Apply the previous discussion to Vylg, . If B is
an A-algebra and Mz € L5"(Vp), then (2.1.3) induces a ¢, Gg_-equivariant
isomorphism

My ®e W(C") = My Qo W(C") = Vp ®z, W(C). (2.2.5)
The G g-action on Vz and W (C”) provides an action of G on Mz s W(C").

DEFINITION 2.2.6. For any A-algebra B, let LS" (V) denote the set of 9y €

crys

LS"(Vy) such that the G g-action on Mz @ W (C”) given by (2.2.5) satisfies
(0 — 1)(m) € M ®s [7" 19" (1) Ain

forallm € My and all 0 € Gg. Again B — L'fr;‘s(VB) is a functor on A-algebras.

We shall prove that B +— Eﬁ;‘s(VB) is represented by a closed subscheme of
L5 First, we need some lemmas.

LEMMA 2.2.7. Let Q be a flat Z,-module and A a Z,-algebra with p" A = 0O for
some n > 0. For any x € A ®z, Q, there exists a smallest ideal 1(x) C A such
that x € 1(x) ®z, Q.

Proof. We shall show there exists a smallest Z ,-submodule M (x) C A such that
M (x) ®z, Q contains x. Then 7 (x) will be equal to the ideal generated by M (x)
over A; if J C A is an ideal such that x € J ®z, O, then M(x) C J and so
I(x)cCJ.

We use that ®z, 0 commutes with finite intersections since Q is Z,-flat.
Choose a finitely generated Z,-submodule M C A with x € M ®z, Q. Since
p"A = 0, M has finite length and so contains only finitely many Z,-submodules.
Thus, if M(x) is the intersection of all M" C M with x € M’ ®z, Q, then
x € M(x) ®z, Q. If M" C A is any other Z,-submodule with x € M" ®z, O,
then x € (M" N M) ®z, Q and so M(x) C (M" N M) C M". Therefore M (x) is
as desired. O
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In the proof of the following lemma, we use that both [77°] and ¢! () are units
in W(C”). This can be seen by observing that modulo p both are nonzero in C”.

LEMMA 2.2.8. Let B be an A-algebra and My € LS" (V). There exists a unique
ideal I C B such that, for any A-algebra homomorphism B — B’, My Qp B’ €
L5 (Vg) if and only if B — B’ factors through B — B/I.
Proof. Consideration of Teichmuller expansions shows that if x € W(C") and
px € Ay, then x € Ajyy. Therefore the G-module Q := W(C®)/Ajy is Z,-flat,
and so

0— B ®z, At —> B’ ®z, W(C") — B’ ®z, @ — 0

is exact. Since My := M ®p B’ is finite projective over Sy, applying NMp Vs,
to the above exact sequence yields a sequence

0— Mp s Ains = Mp Qs W(C") = Mp ®s O — 0,

which is again exact. Thus Mp € Efr;’s(VBr) if and only if, for every m € My
and every o € G, the image of

(o0 — 1)(m)
("]~ (1)

inMp s Q is zero. In fact, since M is generated over B’ by the image of Np,
we need only consider m contained in the image of Mz — My

As My is finite projective over Gp, there is an isomorphism Mz & Z =
(B ®z, ©)" for some Gp-module Z. Thus we obtain an inclusion Mp Qs Q —
(B®z, Q)". If e; denotes the standard basis of (B®z, Q)" then, for every m € M
and 0 € Gy, the image of ((c — 1)(m)/[7"]g¢~! (1)) under M s W(C*) —
Mz Qs O — (B ®z, Q)" can be written as

Za(m, o,i)e;

for some a(m,o,i) € B ®z, Q. Let I(m,0,i) C B be the smallest ideal
such that a(m, 0,i) € I(m,0,i) ®z, Q (which exists by Lemma 2.2.7) and let
I =), ,:1(m, o,i). The discussion from the previous paragraph shows that /
is as required by the lemma. O

€My Rs W(C)

PROPOSITION 2.2.9. There exists a closed A-subscheme L" of LS" which

A,crys
represents the functor B = L5 (V).

Proof. To any morphism Spec B — LS" of A-schemes, we associate M €
LS"(Vy) and so an ideal I C B as in Lemma 2.2.8. The uniqueness in
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Lemma 2.2.8 implies that if B — B’ is an A-algebra homomorphism, then I
is the ideal of B’ generated by the image of Iz. Thus the association B — I
defines a coherent sheaf of ideals on £5". Let ﬁfiws be the corresponding closed
A-subscheme of £S". Since a morphism Spec B — LS" of A-schemes factors

through £5" __if and only if 7 = 0, and this occurs if and only if Mz € LS" (Vp),

A,crys crys

it follows that L£3", represents B L5 (V). O
2.2.10. Now let A be a complete local Noetherian ring with residue field F and
maximal ideal m,. Let V, be a finite free A-module equipped with a continuous
action of G.

COROLLARY 2.2.11. There exists a projective A-scheme ﬁihcrys, which, for each
i > 1, represents the functor B + £§§‘S(VA ®a B) on A-algebras B with
m', B = 0.

Proof. Set A; = A/m',. The projective schemes Ei’?crys form an inverse system of
schemes over A;, and so a formal scheme over A. The very ample line bundles on
each Efih restrict to an inverse system of very ample line bundles on the Ei’fcrys.
As a consequence of [18, Théoreme 5.4.5], this formal scheme arises from a
projective A scheme as required. O

2.2.12. Suppose C is a local finite flat Z,-algebra and V¢ is a finite free
C-module equipped with a continuous C-linear action of Gg. Then there is an
Occ = O ®z, C-module M¢ equipped with an isomorphism ¢*M¢c — Mc
and a ¢, G, -equivariant identification M¢c ®o, W(C") = Ve ®z, W(C"). In
the obvious way, we make sense of the sets L5"(V¢) and L) (Vc). Thus
Me € LSN(Ve) if Me C M is a p-stable projective S = & ®z, C-module so
that Me ®s O = M and so that *Me — M has cokernel is killed by E (u)".
Further, M¢ € LS (Vc) if the G k-action on Me @ W(C”) = Ve ®, W(C) is
such that

(0 —1)(m) € Me e [7°19 ™" (1) Aint
forallo € Gg and m € M.

2.2.13. Let C be an A-algebra that is finite flat over Z,. A morphism Spec C —
St Spec C;, where C; = C/p'C. Forany i > 1,

,Cférys gives morphisms E Aerys ™
there is a j such that m,C C p’C, and so, by Corollary 2.2.11, such a system
of morphisms gives rise to M¢, € LG (Ve,) with Me, = M, Oc,,, C;. The

limit M¢e = Lln M, is a projective S¢-submodule of M¢ = Lln M, defining an
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element of £5"(V). Under the identification
Me ®@s W(C") = Ve @z, W(C),

the Gk action on M ®s W(CP) is such that, for each i > 1 and each m € M,
o € G, the images of the elements

(o0 — 1)(m)

["lo~" (1)
in M, ®s W(C®) are contained in M¢, ®s Ajy. Since C is finite free as a
Z,-module M, is projective, and hence free, over &. This implies these elements
are contained in M @g Ainr: since M is free over G, it suffices to show that if
x € W(C") is congruent to an element of Aj; modulo p’ for every i > 1, then

x € Ajy. Considering the Teichmuller expansion of x shows this statement holds.

Conversely, any M € L (Vc) gives rise to a unique C-point of Ei”cws.

<h

LEMMA 2.2.14. The morphism ﬁA,Crys

after inverting p.

— Spec A becomes a closed immersion

Proof. One argues exactly as in [21, 1.6.4]. As explained in loc. cit., any point of
L= ,Cihcrys valued in a finite local Q,-algebra B is induced from a C-valued point
for a finite flat Z ,-algebra C C B. We claim this implies £(B) — (Spec A)(B)
is injective. Indeed, given two B-valued points of £ inducing the same B-valued
point of Spec A, the above produces a finite flat Z,-algebra C C B so that both
B-valued points factor through Spec B — Spec C. The last sentence of 2.1.4
implies L/ (Vc) consists of at most one element, and so 2.2.13 implies both
B-valued points of £ are induced from the same C-valued point.

Taking B = E for any finite extension £/Q, shows that the proper morphism

[,ihcws ®z, Q, — Spec A[1/p] is injective on closed points, and at these closed

points induces an isomorphism of residue fields. Taking B = E[e]/(€*) shows
that at these closed points this morphism also induces an injection of tangent
spaces. We conclude it is a closed immersion. O

PROPOSITION 2.2.15. Let A} denote the quotient of A corresponding to the
<h
A,crys

scheme-theoretic image of L — Spec A. Then, we have the following:

<h
A,crys

(1) The morphism L
inverting p.

— Spec A5l becomes an isomorphism after

(2) For any finite Q,-algebra B, a map A — B factors through Af&‘s if and

only if Vg = V4 ®4 B is crystalline with Hodge—Tate weights contained in
[0, R].
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Proof. Part (1) follows from Lemma 2.2.14. As a consequence, as B is a finite
Q,-algebra, a map A — B factors through Afé’s if and only if A — B is induced
from a B-valued point of ,Ci’irys.

In proving (2), we may assume B is local. As in the proof of Lemma 2.2.14,
any B-valued point of Ef_}f:rys is induced from a C-valued point with C finite flat

over Z,. This in turn gives rise to an M € Lgs(vc). The fact that the G g-action
on M ®z, W(C *) satisfies our usual condition implies, after Theorem 2.1.12,
that Ve = Va4 ®4 C is a Z,-lattice inside the crystalline representation V¢[1/p]
whose Hodge-Tate weights are contained in [0, #]. Thus the same is true for
Ve = Vcll/pl ®cpi/p B-

For the converse, suppose A — B is such that Vy = V4, ®,4 B is crystalline with
Hodge-Tate weights contained in [0, &]. Then there is a finite flat Z ,-algebra
C C B so that A — B factors through C. As V¢ ®gz, Q, is a Gg-stable
Qp-subspace of Vi, Ve ®z, Q, is also crystalline with Hodge-Tate weights
contained in [0, ~]. Theorem 2.1.12 implies there exist a Breuil-Kisin module

Mc and a ¢, Gk, -equivariant identification
Me ®s W(C") = Ve Qz, w(C"

such that (o — 1)(m) € M s [7°]9 () Ajy for every o € Gg and every
m € Mc. By functoriality, ¢ is an S-module, but it need not be projective.
However, in the penultimate paragraph of the proof of [21, 1.6.4] it is shown
that, at the cost of enlarging C, one can arrange that )¢ is projective over Sc.
Thus A — B arises from a C-point of £ for some C C B finite flat over Z,, and
therefore from a B-point of £. We conclude that A — B factors through Afr;ls. O
REMARK 2.2.16. (1) The fact that 9t need not be S-projective, even though
Ve is projective as a C-module is related to the fact that the functor from
finite E-height representations to Breuil-Kisin modules is not exact.

(2) There is one instance in which V. being C-projective implies 9 is
Gc-projective. This is when C is the ring of integers of a finite extension
of Q,. See for example [16, Proposition 3.4] for a proof. In particular,
if E/Q, is finite and V is a Gg-stable Og-lattice inside a crystalline
representation of G, then the Breuil-Kisin module associated with V is

an element of Efry”S(V).

3. Strong divisibility

For the rest of the paper, we assume K is an unramified extension of Q,,.
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3.1. Strong divisibility

3.1.1. Let F be a finite field of characteristic p and Vf a finite free F-module
equipped with a continuous F-linear action of Gg__.

DEFINITION 3.1.2. Let £§§(VF) denote the set of M e LSP(Vg) for which
there exist a k[[u]]-basis (m;) of 91 and integers r; such that (v m;) forms a
k[[u”]]-basis of o (M). We call 901 satisfying this condition strongly divisible.

We are going to relate ﬁsgD” (Vr) with ﬁfryps(‘/[p). (Note that the latter set only
makes sense when the Gg_-action on Vy extends to a continuous G g-action.)
Before doing so, we record how some basic operations on Vg respect ESgD” (Vr)
and [,fw’;( Vi).

LEMMA 3.1.3. Let Vr be as above and suppose Wr is another continuous
representation of Gk, on an F-vector space. Suppose I € [,SSDP (V¥) and

N e [/ép(WF)

(1) Suppose there exists a surjective p-equivariant map of k[[u]]-modules
[0 — N Then M € L (We).

(2) Suppose there exists an injective @-equivariant map of k[[u]]-modules
[N — M with u-torsion-free cokernel. Then N € ﬁsgDp(W]F).

Proof. This follows from part (1) of [2, 5.4.6]. I

LEMMA 3.1.4. For any finite extension ¥ of T, the rule M — N Qr [’ defines a
map

ﬁgh(V]F) — Egh(VHr ®[[r ]F/)
Further, M € LY (Ve) if and only if its image lies in L3 (Ve @p F). If Vi
admits a G g-action, then likewise M € Eé&S(VF) if and only if its image lies in
L5 (Ve @p ).

crys

Proof. The only part that does not follow immediately from the definitions is
that M Q& F' € L5 (Ve @ F') implies M € L5 (Vi). For this, note that the
inclusion M — M Qp [’ is p-equivariant with u-torsion-free cokernel. Thus we
can apply (2) of Lemma 3.1.3. O

LEMMA 3.1.5. For any unramified F-valued character  of G, there is a
bijection

LS"(Vg) > LV @ F()),
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which identifies EsgDp(VF) with EsgDp(VF ®r F(¥)) and, if Vr admits a G g-action,
identifies Eﬁ;’S(VF) with Ej;ls(VF ®r F(y)).

Proof. First, we note there existsa y € (k ®r, F)* such that o (y) = Y (o)~ ly for
all 0 € Gg, due to the assumption ¥ is unramified. Using y, we can describe the
etale ¢-module associated with Vi(v¥) := Vg Qr F(¢) in terms of that associated
with Vg. To do this, consider the F-linear map Vg — Vp(¥) givenby v — v ® 1.
Applying ®;, W(C") induces an identification

Vi ®z, W(C") = Va(¥) ®z, W(C), (3.1.6)

which is ¢-equivariant when both sides are equipped with the Frobenius that
is trivial on Vg and Vr(y). If M C V¢ ®g, W(C®) is the etale @-module
associated with Vg, then its image M (yr) under this map is a finitely generated
Og¢-submodule of (Vp ®p F(¥)) ®z, W(C") on which Frobenius acts by an
isomorphism and on which Gg_ acts on by the character . Via the inclusion
k — C’, we can view y as an element of C” ®r, F and so may consider
yM@) C Ve(¥) ®z, W(C"). The Gg_-action on yM () is then trivial and,
since
e()/y € (k®p, F)* C &5,

the Frobenius on yM (1) is still an isomorphism. Hence y M (1) equals the etale
@-module associated with Vp ().

We can then describe a map L5 (Vg) — LS"(V()) by sending 9 ¢ M
onto yOM(¥) C yM(y), where M(y) equals the image of 9 under (3.1.6).
Clearly, this is a bijection. When h = p, it also clearly identifies £§Dp (Vr) and
LS (Ve(y)). Finally, if Vi admits a Gg-action and 9 € L£5"(Vi), then the
G g-action on yIN(¥) ®s W (C") identifies with the G g-action on I @ W(C”)
twisted by . It follows that L5/ (Vr) and L5 (Ve (¥)) are also identified. [
3.1.7. Note that for any F-algebra B, the argument above shows that, for
any finite free B-module Vp equipped with a continuous G g-action, there are
functorial bijections

L5(Ve) = LG (Vs ®5 B(Y)) and  L¥(Vp) = LYV @5 B(Y)).

Finally let L /K be an unramified extension corresponding to a finite extension
[/k of residue fields. Set L, = LK. If &, := W([[u]] is embedded
into W(C”) as with &, by mapping u onto [r"], then we can make sense of
Egh(VF|G,‘m) as in Definition 2.2.2, replacing K and K., by L and L. Its
elements are modules over S, 5 = &, ®z, F. We write f: & — & for the
inclusion induced by the inclusion k£ C /.
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LEMMA 3.1.8. (1) There is a map
5 LS (V) — L5 (Velg,)

sending M € LS"(Vg) onto M Qs ; Sp. If M € LSP(Vg), then
M e L5V (V) if and only if f*M = M Qs &, € L5f (Velg, ) If
Vi admits a G g-action, then this map sends L} (Vz) into L] (Vr|g,).

(2) If Vg is a G -representation, then restriction of scalars along f (that is, by
viewing an & -module I as an &S-module using f : & — &) describes
a map

for L"(Ve) — L (Indg'™ V).

Proof. The fact that there are maps f* and f, is explained in [2, 6.2.1 and 6.2.4].
The additional statements regarding the image of f* are all clear (for the
observation that 9 ®g &, is strongly divisible implies 901 is strongly divisible,
argue as in Lemma 3.1.4 by considering the inclusion 9 — M ®g S, whose
cokernel is torsion-free). ]

3.2. Strong divisibility in the irreducible case

3.2.1. If K" denotes the maximal tamely ramified extension of K then, since
K is totally ramified over K, K' N K., = K. Thus the restriction map from
Gal(KK'/K,) to the tame quotient Gal(K'/K) of G is an isomorphism.
As such, any tamely ramified G g-representation is uniquely determined by its
restriction to Gk, and conversely, any tamely ramified representation of Gg_
(that is one which factors through Gal(K /K. K")) extends uniquely to a tame
representation of Gg. In particular, this applies to irreducible representations of
G and Gg_, on F-vector spaces since both are tamely ramified.

PROPOSITION 3.2.2. Suppose that Vr is irreducible as a G g-representation.
Then L) (Ve) = LS2(Ve).

crys

Before giving a proof, we make the following observation.

3.2.3. As we are working with p-torsion coefficients, the condition for
M e LS(V) to lie in L (Vr) can be simplified. The v’-valuation of [r"]
modulo p is 1/e while the v"-valuation of ¢~!(x) modulo p is 1/(p — 1). Thus
m Rs [nb]¢71(M)Ainf =M ®k[[u]] 1, where I C Oct> is the ideal ul/e+l/(p71)(/)cb‘
As K/Q, is assumed unramified, ¢ = 1 and so M € L5"(Vp) is contained
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in L] (Vg) if and only if the induced G g -action on M @e W (C”) = M @y C”
is such that

(O' — 1)(}’71) € E)ﬁ ®k[[u]] I/tp/(pil)OCb

for every 0 € Ggx and m € 9.

Proof of Proposition 3.2.2. Using Lemma 3.1.4, we can assume I is sufficiently
large so that [2, 2.1.2] applies. Thus there is an unramified extension L/K such
that Vy = Indgf Wr for a one-dimensional G, -representation Wr. In particular,

~ GK\
V]FlG[(oo = IndGL: W]FlG[_oO'

3.2.4. We claim that if 9t € L£S7(Vg), then there exists an 9N € L£57(Wg) so
that 9t C f£.9T with IMM[1/u] = (f£.DV)[1/u]. This is essentially [2, 6.3.1] except
that in loc. cit., 0 is assumed to be strongly divisible, an assumption that turns
out to be unnecessary. To prove the claim, consider the map Vilg, — Wr
corresponding to Vp = Indgf Wr under Frobenius reciprocity. Lemma 3.2.5
produces a g-equivariant surjection f*9 — 91 for some 9 € LSP(Wyp). Via
the usual adjunction between f, and f*, we obtain a nonzero map

M — fof M —> £,

which is easily checked to be p-equivariant. This map must be injective since
a nonzero kernel would induce a nonzero Gg_-subspace of Vg. It must be an
isomorphism after inverting u because both 2t and f,91 have the same rank as
k[[u]]-modules.

LEMMA 3.25. Let 0 > Wg — Vg — Zy — 0 be a Gg_-equivariant exact
sequence. If M € LS"(Vg), then there exist 20 € LS"(Wg) and 3 € LS'(Zy)
together with @-equivariant exact sequence

0O W->M—->3—->0
which identifies with 0 — Wy — Vi@ — Zz — 0 after base-changing to W (C").

Proof. Since the equivalence between G g__-representations and etale ¢-modules
is exact, there is a ¢-equivariant exact sequence 0 - Ny — Mp — Pr — 0 of
etale p-modules, which identifies with 0 — Wy — Vr — Zp — 0 after base
change to W(C”). Take 20 = 9 N Ny and 3 = Im(OMN) C Py. It is clear that both
are @-stable projective Sp-modules. It is also clear that u"3 C 3¢ since the same
is true of 9, and so 3 € L5(Zp). Since 3 is u-torsion-free, 20 = u"9M N Np.
As 3¢ = MY N N, we conclude "0 C 2. O

https://doi.org/10.1017/fms.2020.12 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2020.12

R. Bartlett 22

3.2.6. Return to the proof of Proposition 3.2.2 and fix M € LSP(Wr) as
in 3.2.4. Since Wy is one-dimensional, we can describe 1 explicitly. We may
suppose that [, the residue field of L, admits an embedding into F. In this case,
Srr =I[u]ll ®, F = H@eHomml, «.r) Fllu]]l, where the identification is such that
[ acts on the Oth component of the product through 6: / — F. Viewing 91 as an
F[[«]]-module via the diagonal embedding into &, r, it follows from [2, 6.1.1]
that 91 admits an F[[u]]-basis (€9)9€Home «.p satistying

@(egop) = xu"ey (3.2.7)

for some x € [®r,F and integers ry > 0. Since N € LSP (W), we have ry € [0, p].
This basis is chosen so that [ acts on ey through 6.

3.2.8. By twisting Vf, and so Wy, by an unramified character, which is harmless
by Lemma 3.1.5, we may assume that x in (3.2.7) equals 1. Under this assumption,
[2, 6.5.1] says that a finite free Gp-submodule 2 C f, M satisfying N[1/u] =
(f:D[1/u] is an element of ngDp(VF) if and only if:

(1) If m € M then p(m) € M, and if (m) € u?*'9M then m € uM.

(2) For every F-linear combination Y  age, which is contained in 9%, and every
0 < r < p, the F-linear combination

E Qg€y

ro=r mod p
is contained in ) also.

Observe that u”9 C 9M¢ C M implies (1). Indeed, if p(m) € u?*'ON, then
o(m) € uIM?. If e; is a k[[u]]-basis of M, then m = Y w;e; for o; € k[[u]] and
p(m) =Y @(a;)@(e;); by definition, the ¢(e;) form a k[[u]]-basis of I, so if
@(m) € uM* we must have each ¢(¢;) divisible by u. This implies each «; is also
divisible by u.

Another consequence of (1) is that ue, € 90 for every 6 € Homy, (/, ). This is
explained in the second paragraph after [2, 6.5.1].

3.2.9. To finish the proof, we have to show that if 9t € L£SP(Vg) is contained
in f,91, then (2) is satisfied if and only if 9 € Eéy’;(vlp). The Gg-action on
Vr induces a continuous C° ®r, F-semilinear g-equivariant action of Gk on
Ve ®p, C* = M @y C°. Conversely, any such semilinear G -action induces
a Gg-action on Vi extending the Gk _-action. Thus 3.2.1 implies there is at most
one such semilinear G g-action. This semilinear action of Gg can be written

explicitly as follows:
o (e)) =1(0)" ey, 0 € Gy, (3.2.10)
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where ©, = ZE{’H P'rooyi and n(o) € O is the unique (p"Fr! — 1)th root of
o (u)/u whose image in the residue field of O¢» is 1. To verify this, it suffices to
check this does indeed define a group action, that this action is continuous, that it
induces the trivial action of G on (f,9V)[1/u] = 9M[1/u], and is p-equivariant.
The first three are straightforward to check, and checking the ¢-equivariance
comes down to the identity

o @)n()® = u""n(o)’ ",

which follows since
[:Fp1—1 [:Fp1—1
i+1 LF,]1—1 [
POgop, = Z p’+ Tgopi = (p[ pl=1 Dry + Z p’rgowi.

i=0 i=0

Therefore this must be the Gg-action coming from that on Vy. To check the
condition from 3.2.3, we shall need the following lemma.

LEMMA 3.2.11. For o € G, let m = m(0) be such that o (u)/u € Z,(1) is a
Z,-generator of p"Z,(1). Then, for n = 0,

14+m+v,(n)
b n p i

V(o) —1) =

p—1

Proof. This easily reduces to the well-known calculation that v”(e — 1) =
p/(p — 1) for any Z,-generator € € Z,(1); see for example [10, Section 5.1.2].
O

We have to show that (2) is equivalent to asking that (o — 1)(m) € I Sy
u?’P=1Q¢» forevery m € M and o € G (see 3.2.3). When m = u'ey fori > 1,
this follows easily from Lemma 3.2.11 since

o(u)

o= Dden = ((T) (o) — 1) w'ey) = (@)D _ 1) (uley).

To complete the proof, we consider elements Y aye, € 9 with oy € F. We
compute that

(0 — DO agep) _ Z (n(cr)@g — 1> we
n(o) —1 N n(o) —1 o%0

=Y (1 +n(0) + - n@)* ey
= ngageg + Z,Bgueg for some By € Oc.
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The last equality follows because n(o) — 1 € u?’?~'O¢» by Lemma 3.2.11, and
sol +n(e)+ -+ 1) = O = ry modulo u?”’?~'Oc. Since ue, € M
for every 6, it follows that ((c — 1)(Q_ apeq))/(n(o) — 1) € M Qyqpuyy Oc» if and
only if

ZI‘QO[@EQ e M.

Since v”(n(0)—1) > p/(p—1), with equality when o is chosen so that o (1) /u is a
Z,-generator of Z,(1), we conclude that (6 — 1)(_ ageq) € M w7~ O
for every m € 91 and 0 € Gy if and only if for every F-linear combination
> ey € M, we have Y roagey € M. It is easy to check the latter condition is
equivalent to 2. O

3.3. Strong divisibility in general

PROPOSITION 3.3.1. Suppose Vr admits a continuous F-linear G g -action. Then
ﬁfw’;(VF) - L’SgDp (V). (Unlike in the irreducible case, this inclusion is not always
an equality. The problem arises from the possibility that Vg may admit two
different G g-actions extending a given G g_-action. Here is an example. Suppose

Vr admits an F-basis (f1, f») so that

1 c(o)
o(fi, f2) = (fi, ) (0 X_l(0)>
cyc

for a 1-cocycle c(o). We compute that

1 o@'/?YHe(o)
o(fi,u" ) = (fi.u/"7 ) o@/rh
0 = Xeye (0)
There exists cocycle ¢ such that c(o) = 0 for o € Gg_,; this occurs when Vg is
a tres ramifie extension (see [17, 5.4.2]). In this case, the matrix representing o
on (fi,u'’P=1 f,) is the identity when o € Gg_, so M, the Gp-span of f, and
u'/P=1 £, is contained in the etale ¢-module associated with V. Since

o(fi,u' P )y = (fi,u' P ) ((1) 0) ,

it is easy to see that M € L (V). However, I & ,Cfryls(VF) since u'/?='c(o) is
not contained in u?’?~'Oc:. The point is that Vi does not arise as the reduction

modulo p of a crystalline representation with Hodge—Tate weights in [0, 1].)

To prove this, we will need to understand how £S<Dp and Efry’; behave in short
exact sequences.
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332. Let0 - Wy — Vg — Zy — 0be a Gg_-equivariant exact sequence and
let M € LSP(Vi). Lemma 3.2.5 provides a ¢-equivariant exact sequence

0> W—->M—>3—->0 (3.3.3)

with 20 € LS"(Wy) and 3 € L5"(Zg). Choosing an Gg-splitting of (3.3.3) allows
us to identify 9t = 20 @ 3 as Gy-modules so that

o = (pay + [ 0 93, ¢3)

for some f € Hom(3,20)[1/u]. Here Hom(3,20) denotes the module of
Gp-linear homomorphisms 3 — 20. Since 9¢ C 9N, we must have f(3%) C 0
and so, as u”3 C 3%, it follows that f € (1/u”) Hom(3, 20).

We equip Hom(3, 20) with the Frobenius ¢ given by ¢(g) = papogogs ' Since
any two splittings of (3.3.3) differ by an element g € Hom(3, 20), by choosing
a different splitting, we replace f by f + (¢ — 1)(g). If as usual Hom(3, 20)¢
denotes the Gp-submodule of Hom(3, 20)[1/E] generated by ¢(Hom(3, 20)),
then

u” Hom(3, 20) € Hom(3, 20)¢ C ui!’ Hom(3, 20). (3.3.4)

Furthermore, we can G g-equivariantly identify (Hom(3, 20) Qi C)¢~' =
Hom(Zp, Wr) (the G -action on Hom(Zy, Wr) being givenby f > oo foo™!)
via the identifications (3 ®k[[u]] Cb)(p:l = Z]F and (Qﬁ ®k[[u]] Cb)(p:l = W[E‘

PROPOSITION 3.3.5. In the situation of 3.3.2:
(1) If M € L (Vi), then W € L (We) and 3 € L (Zg).

) IfW € ﬁsglf(WF) and 3 € EsgDp(Z]F), then M € EsgD”(V]F) if and only if there
exists g € Hom(3, 20) such that

f+ (¢ — 1)(g) € Hom(3, 20).

Proof. Part (1) is a consequence of Lemma 3.1.3, while (2) follows from
[3, Lemma 4.1.3]. ]

3.3.6. Now suppose 0 — Wp — Vg — Zr — 0 is an exact sequence of
G -representations. As in 3.3.2, for any 91 € £S7(Vy), there is an exact sequence
0— 20 — 9 — 3 — 0 so that, after choosing a splitting of this sequence
and identifying 9t = 20 @ 3, we have pogn = (pay + f o @3, ¢3) for some
f € (1/u?) Hom(3, 20).

AsO— Wy - Vg = Zzr — 0and 0 — 20 — 9 — 3 — 0 become identified
after applying ®;.C’°, we obtain compatible g-equivariant G g-actions on
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M iy €5 W’ iy C* and 3” ppugy C°-. Under the identification 9 = 20 @ 3,
the action of 0 € Gk can be written as

om = (0w + fo 003, 03)
for some f, € Hom(3, 20) Qg C” satisfying the following conditions:

(1) Since ogy is a group action, we must have f,, = f, + o9y o f; 0 03_].
If we equip Hom(3, 20) Q. C° with the G-action given by o (f) =
omo fooz ! then this says that o — f, is a I-cocycle valued in Hom(3,
) Ry C- Since the G g-action on Vi is continuous, o > f, must also
be a continuous cocycle.

(2) Since the Gg,__-action on Vg is induced by the trivial action on 91, we must
have oo (m) = m for every m € 9 and 0 € Gg_. Thus we must have
f>(m) =0 wheneverm € 3 ando € Gg_,.

(3) Since oy, is @-equivariant, we must have (¢ — 1)(f,) = (o — 1)(f) for any
[oNS] GK.

PROPOSITION 3.3.7. In the situation of 3.3.6:
(1) If M € LSL(Vr), then 2 € LSP (Wg) and 3 € LSP (Zr).

crys crys crys
Q) IfW e Efry’;(W]F) and 3 € Efryps(Z]F), then M e Efw’g(VF) if and only if

fg € HOm(B, W) Okl Mp/pilocb fOl" every o € Gg.

Proof. For the second statement, combine 3.2.3 with 3.3.6. For the first, as 0 —
W — M — 3 — 0becomes G g-equivariant after applying @ W (C”), it is clear
that (o — 1)(2) € 3 Ququuy u”/""'O¢» for z € 3. Thus 3 € EC%PS(V]F). If n € 20,
then (o — 1)(n) € M Ry u”/7 'O N W Ry C”; this intersection equals

W Ry /P~ O because 3 is u-torsion-free, and so 2 € Ecgr;’s(V]F) also. O

Proof of Proposition 3.3.1. Using Lemma 3.1.4, we can replace F by a finite
extension. As explained in the beginning of the proof of Proposition 3.2.2, this
allows us to assume each Jordan—Holder factor of Vi is induced from a one-
dimensional representation over an unramified extension of K. Using (1) of
Lemma 3.1.8, we may then replace K by a suitably large (but finite) unramified
extension so that every Jordan—Holder factor of Vg is one-dimensional. Under
this assumption, we argue by induction on the length (equivalently the dimension)
of V]F

The base case of the induction is handled by Proposition 3.2.2. Thus we can
assume Vf fits into a G g-equivariant exact sequence 0 - Wg — Vg — Zp — 0
with Zp one-dimensional over F and Wy # 0.
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Asin 3.3.2,if 9 € LSP(Vg), we obtain an exact sequence 0 — 20 — O —
3 — 0 with 20 € LSP(Wr) and 3 € LSP(Zr). By choosing a splitting of this
sequence, we identify 9t = 20 @ 3 as Sp-modules, with Frobenius given by

o = (pay + f 0 93, 03)

for some f € (1/u”)Hom(3,20). As in 3.3.6, the Gg-action on MM Ry C”
induced by the G g-action on Vy may be written as

oo = (o + f5 003,03)

for some f, € Hom(3, ) Q. C” satisfying (¢ — 1)(f,) = (6 — D(f). If
M e LSP(Vp), then 0 € LS2.(Wy), 3 € LSP(Zy), and

crys crys crys

fa € HOIH(S, QH) ®k[[u]] Mp/pilocb (338)

by Proposition 3.3.7. By induction, 20 € L5’ (Wg) and 3 € L5/ (Zg). By
Proposition 3.3.5, M € EsgD”(VF) if and only if

f € Hom(3, 20) + ¢ (Hom(3, 20)).

Using (3.3.4) and (3.3.8), we see (¢ — 1)(f5) = (o — 1)(f) € Hom(3, 20)
u?’P~'O¢». Thus the proposition follows from the following claim. 0

CLAIM. Any f € (1/u”) Hom(3, 20) satisfying (o — 1)(f) € Hom(3, 20)
u?’P~'O¢» must be contained in Hom(3, 20) + ¢(Hom(3, 20)).

Proof of claim. We argue by a further induction, this time on the length of Wp.
Recall that by assumption, every Jordan—Holder factor of Wr is one-dimensional.
Thus the base case is when both Wy and Zy are one-dimensional. In this case, as
explained in 3.2.6, 20 and 3, respectively, admit F[[«]]-bases (wr)reHome «.F) and
(Zr)reHome (k,F) SO that

O(Wrop) = XU Wz,  @(Zroy) = YU 2,

for x,y € (k ®, F)* and r;,s, € [0, p]. The F[[u]]-linear homomorphism
F. : 3 — 2 sending z,» + 0 for 7" # t and z; — w, is Gg-linear since it
is compatible with the k-action on 3 and 20 (by construction, k-acts on z, and
w, by 7). Thus F, € Hom(3, 2J) and together the F, form an F[[u]]-basis of
Hom(3, 20) satisfying ¢(Fyo,) = xy'u"F, fort, = r, — s, € [—p, p]. Since
the G g-actions on 3 ®y, C” and 20 Q. C” are as in (3.2.10), we also have

that
[k:F -1

o(F;) = r](a)(')’Ff, O, = Z twwip".
i=0
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To prove the claim, it suffices to consider f = (ZO>i2—p a;u’)F,. Then (o —1)(f)
equals

> au () ),

0>i=—p @

(recall that (o) is a (p*™r! — 1)th root of o (1) /u). Choose o so that o (1) /u is a
Z,-generator of Z,(1). Since

O, + (p*F' — 1)i =1, — i modulo p,

Lemma 3.2.11 implies the v”-valuation of (a) is p/(p — 1) if ¢, —i is not divisible
by p,and is > p?/(p — 1) otherwise. Hence

(,)t_'_(p[k:]l?pj_l)i)) =p/(p—1)+1i if pdoesnotdivide t, —i

va i
(u'(n(o) > pz/(p —1)+i otherwise.

Since p*(p — 1) +i > p/(p — 1) fori > —p it follows that
(¢ — 1)(f) € Hom(3, 20) @y u”? ' Oc»

if and only if a; = 0 except possibly if i = t.; in other words, if and only if
f € Hom(3, 20) + ¢(Hom(3, 20)).

Now we prove the inductive step. Let 0 — Wi — Wy — W2 — 0 be
an exact sequence of Gg-representations. As in 3.3.2 and 3.3.6, we can write
0 = W' @ W with W' € LS2(W), so that gy = (P + & © Yoy, Pay2) for

crys
some g € Hom(20?%, 20"), and so that oy = (091 + g, © Oy, Ogy2) for some

g, € HomQ0%, ") @y 4”7 Oc». Applying Hom(3, —), this allows us to
identify § := Hom(3, 20) with ! @ $?2, where $)' = Hom(3, 2J'), so that
@5 = (Pg1 + Z 0 @s2, 02, 05 = (051 + 85 0052, 02)

where g € Hom($)?, ') sends h — g o h and where g, € Hom(5%, ') Qi
u?’P~'O¢» sends h +— g, o h. If we write f = (fi, f») € (1/u?)(H' @ H?) then,
as (o5 — D(f) € 9 Qg 4”77 Oc», we have
(052 — D(f2) € 5 @y """~ O
(051 — D(f1) + 8 0052 (f2) € H' Oklful O

By our inductive hypothesis, we deduce f, = f, + f,’ with f, € $?% and e
©($H?). Thus, we can write

= =8, H+EUD, 1)

=y =z
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with z € ¢(8). Since ¢($) C u="$, we have (6 — 1)(z) € H Qg 4”77 Ocs.
Thus (o — 1)(y) € 9 iy u”/P~'Oc». We also see y € u~"$. This means that
to prove the result for f, it suffices to do so for y, that is, we can assume in the
above that f;' = 0. Thus, f> € $% and s0 02(f>) € $H* Qxuy Oc»- Since

g, € Hom($H%, 9") @iy 4”7 'O,

it follows that §a 002 (fz) S 5:_)1 ®k[[u]] Mp/pilOCb. Thus (O‘y)l — 1)(f1) S ﬁl ®k[[u]]
u??"'Oc and so f; € H' + ¢(H') by induction also. We conclude that f €
N+e®) CH+e®). O

4. Local structure of Eé;’s in the unramified case

4.1. Commutative algebra

LEMMA 4.1.1. Let A be a local Noetherian Z,-algebra with A[1/p] # 0 and
residue field of characteristic p.

(1) If p C All/p] is a maximal ideal and q denotes its preimage in A, then
dimA; <dimA — 1.

(2) If the residue field of A is finite, then A/q is finite over Z, and the residue
field of Ay is finite over Q,,.

Proof. The inclusion A/q — A[l/pl/p becomes an isomorphism after
inverting p, and so dimA/q < 1 by [19, 10.5.1]. Since A/q is a domain
and not a field (its residue field has characteristic p), it must be that dim A/q = 1.
Thus dim A, < dim A — 1. For (2), by the above, A/(q, p) is zero-dimensional.
Thus A/(q, p) is an Artin local ring with finite residue field; so it is finite over IF,.
As such A/q is finite over Z, (see [28, Tag 031D]) and so A[1/p]/p = A4/qAq
is Q,-finite. O]

LEMMA 4.1.2. Let A be a Noetherian local Z,-algebra with finite residue field.
Suppose that A is reduced, Z,-flat, and Nagata (see [28, Tag 032E]). If my,
denotes the maximal ideal of A and j > 1, then there exists a finite flat 7.,-algebra
C such that A — A/mi factors through a map A — C.

Proof. If A is Z,-flat, then so is its my-adic completion. If A is Nagata and
reduced, then its m4-adic completion is reduced; see [28, Tag 07NZ]. Thus we
may assume A is my4-adically complete.

For every maximal ideal p C A[1/p], Lemma 4.1.1 shows that A/(p N A) is
finite flat over Z,,. As A[1/p] is Jacobson (see [28, Tag 02IM]), the intersection of
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its maximal ideals equals its nilradical, and this is zero because A is reduced and
Z,-flat. Thus ()(p N A) = 0, the intersection running over all maximal ideals in
A[1/p]. The same is true if the intersection runs over a suitably chosen countable
subset {py, p2, ...} of all maximal ideals in A[1/p]. (The Artin—Rees lemma
implies p = ﬂn>1(p + m’,) and so the intersection of the ideals in {p + m'}}, 4,
which consists of countably many distinct ideals, equals the intersection of the p.
Thus there exists a countable subset {p;};>; of the p’s, and integers n; > 1, such
that (M p = (), (p; + m’}). Since p; C p; + my, we have (p = (\p;.) The
q = ﬂi::l (p; N A) then form a decreasing sequence of closed ideals in A whose
intersection is zero. It follows from [6, III, Section 2, Proposition 8] that there
exists an n such that g, C m’,. Setting C = A/q, proves the lemma. O

4.2. Hodge types and connected components

4.2.1. Let B be an arbitrary Z,-algebra and 9 a finite projective & z-module
equipped with a map ¢*9Mz — M with cokernel killed by E(u)". For any
B-algebra B', set Mp = Mp @ B’. Fori > 0, define

K'(Mp) = coker(M%G — Mp/E(u) NMp).
This & ®z, B-module is finite over B. On 90t we define a filtration
FI(ONG) = MG N E(u) My

with graded plece gr' (M%). Note that multiplication by E (1) induces an injection
(M) — gr' (M%). We let G (M%) denote its cokernel. Thus G/ (IM%) is the
1th graded piece of the filtered Ok ®z, B-module 9% / E ()9 whose ith filtered
piece is the image of F'(901%). It follows from (2) of Proposition 2.1.10 that, for

B a finite QQ,-algebra,
G' (M) = gr'(Dar (V) (4.2.2)

whenever 2tz is the Breuil-Kisin module associated with a crystalline
representation V.

LEMMA 4.2.3. (1) K'(Mp) is B-flat if and only if F'(IMMY) ® B’ — F' (M%)
is surjective for every quotient B’ = B/1.

(2) Each G'(N%) is Ok ®z, B-finite and for every B-algebra B', there are
natural Og ®z, B-module homomorphisms G'(MY) @ B — G'(M%).

(3) If (1) holds for all i > O, then the maps in (2) are isomorphisms, and each
G (M%) is B-flat.
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This lemma does not require K to be unramified over Q,.

Proof. The kernel of Mp/E(u)'Mp — K'(Mp) is equal to M4/ F (IM%). Thus
My /F (M%) is B-finite. As K'(9Mp) is of formation compatible with base
change, being the cokernel of a map between modules compatible with base
change, there are surjective maps

MY/ F (M) @ B — MG/ F (MY,)

whose kernel is Tor1 (K (M), B'). Since this kernel can be identified with the
cokernel of F'(M%)Q@p B' — F' (M%), we deduce 1. Since gr' (9MNY}) is the kernel
of the obvious surjection Y%/ FIT1 (M%) — MG /F (M), we see each gr' (M%)
is B-finite. We also obtain maps

er' (M%) ®p B’ — gr' (ONY).

If both Tor? (K' ("), B') and Tor? (K'+! (M), B') are zero, then we also have
Tor1 (ON%/F (M%), B') = 0, and so these maps are isomorphisms. As G’ (90%)
is the cokernel of gr'~' (M%) — gr' (M%), we deduce (2) and the first part of (3).
For the last part of (3), consider the following diagram for any B-algebra B’.

g (M) ®p B' —— gr' (M) ® B —— G'(Mp) —— 0

| | |

0 — grf''MY,,) — g'M%) — G Mm4,) —— 0

The rows are exact, and one easily checks that the squares commute. If the
K (Mp) are B-flat for all i > 0, then the vertical arrows in the diagram are
isomorphisms Hence « is injective and so, since the kernel of « identifies with
Tor? (G (M%), B'), we deduce each G' (9N%) is B-flat. O

424. Let A be a complete Noetherian ring with finite residue field F of
characteristic p. Let V4 be a finite free A-module equipped with a continuous
A-linear action of Gg. To ease notation, we write £ for the A-scheme E;’Zm
from Corollary 2.2.11.

LEMMA 4.2.5. Fori > 0, there is a coherent sheaf K' on L with the following
property: for any morphism Spec B — L of A-schemes, with B either finite free
over Z, or such that wiB = 0 for some n > 1, let My € E;;;(VB) be the

associated Breuil-Kisin module. Then the global sections of the pullback of K' to
Spec B are computed by K' (IMp).
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Proof. Since the formation of K’(—) is compatible with base change (being the
cokernel of a map between modules compatible with base change), we obtain a
compatible system of coherent sheaves on L ®,4 A/m’ for n > 1. Grothendieck’s
existence theorem [18, 5.1.6] (see also [28, Tag 088C]) produces the sheaf K’ on
L with the desired properties. O

The following is the key lemma and, unlike the previous results of this section,
crucially uses the assumption that K/Q, is unramified and that we restrict to
weights <p.

LEMMA 4.2.6. Let L° — L denote the closed immersion defined by the ideal
consisting of sections that are either nilpotent or p-power torsion. If p = 2,
assume that

Koo N K (pp~) = K.

(In [29, Lemma 2.1], it is shown that the compatible system "/~ from 2.1.1 can
always be chosen so that Koo N K () = K.) Then the pullback of K “to L°is

flat.

Proof. Tt suffices to prove flatness at the closed points of £°. Thus, for a closed
point x € L, it suffices to show K'(9p) is B-flat whenever B = Op. /w7 for
some n > 1 and any My € Efr;S(VB). By definition, O  is Z,-flat and reduced.
It is also Nagata (since it is a localization of a finite type algebra over a complete
local ring; see [28, Tag 032E]). Therefore Lemma 4.1.2, applied with A = O .,
reduces the problem to that of showing K’(91¢) is C-flat whenever C is a finite
flat Z ,-algebra. This is the case by Lemma 4.2.7 (this is where the assumption

that Koo N K (up~) = K when p = 2 is used). ]

LEMMA 4.2.7. Let C be a local finite flat Z,-algebra, and suppose Mc €
ﬁfry’;(vc) for some continuous representation V¢ of G g on a finite free C-module.
If p =2, assume that Ko N K (u,~) = K. Then K' (M) is C-flat.

Proof. It suffices to show K' (M) is Z,-flat and that

K'(Mc ®c C/pC) = K'(Mc) ®c C/pC
is C/pC-flat; see [28, Tag OOML]. If p > 2 then, since V[1/p] is crystalline,
[16, Theorem 4.20] ensures the existence of an G-basis (e;) of M such that
MY is generated over S by E(u)"e; for certain integers r;. If p = 2 and

Ko N K(up~) = K, then the same is true, as explained in [29, Section 4]. This
implies K'(M¢) is p-torsion free.
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To show flatness modulo p, set B = C/pC and let B — B’ be a surjective
homomorphism. After Lemma 4.2.3, it suffices to show the natural map
Fi(Mp) — F'(My) is surjective. Proposition 3.3.1 implies M is a strongly
divisible. It follows from [2, 5.4.6] and [2, 5.4.2] that if 91 is any strongly
divisible Breuil-Kisin module and 9t — 91 is a ¢-equivariant surjection into a
Breuil-Kisin module that is free as a k[[u]]-module, then F/(OM) — F'(N) is
surjective. Applying this with 9t = 91z and 91 = My proves the lemma. O

REMARK 4.2.8. Note the second paragraph in the proof of Lemma 4.2.7 implies
K'is flaton £ ®, A/my. Thus it seems possible that K’ is flat on the whole of £
though we do not know how to prove this.

COROLLARY 4.2.9. In the situation of Lemma 4.2.6 there is, for each i > 0,
a coherent sheaf G' on L° with the following properties. For any morphism
Spec B — L° of A-schemes, with B either finite free over Z, or such that
m B = 0 for some n > 1, let My € ﬁi;’s(VB) be the associated Breuil-Kisin
module. Then the global sections of the pullback of G' to Spec B are computed by
G'(Mp). Furthermore, G' is flat on L°.

Proof. Since K' is flat on £°, Lemma 4.2.3 implies that on each £° ®4 A/m", the
formation of G'(—) is compatible with base change. Thus we obtain a compatible
system of coherent sheaves G' on the £° ®4 A/m". By (3) of Lemma 4.2.3,
we also know these sheaves are flat on £° ®, A/m’;. Grothendieck’s existence
theorem [18, 5.1.6] produces a sheaf G' as desired; that it is flat follows because
each G' ®4 A/} is flat. O

4.2.10. Let E be a finite extension of Q, such that A is an Og-algebra. Let us fix
a p-adic Hodge type v, that is a finite free K ®q, E-module D, equipped with
a grading gr'(Dy) by K ®q, E-submodules. (Below, when we speak of a p-adic
Hodge type v, the field E will be implicit in the data of v.) Assume this grading
is concentrated in degree [0, p]. If B is a finite local E-algebra, then we say a
crystalline representation Vp has p-adic Hodge type v if there are isomorphisms

gt' (Derys (V) — gt (Dy) ®z B

for alli € Z. Since we are assuming that K is unramified over Q,, p-adic Hodge
types can be described integrally: there exists a finite free Ox ®z, Og-module Dy
with a grading gr' (D) by Ok ®z, Og-submodules, so that Dy = D; Qo, K as
graded modules. This is because Ok is unramified over Z, and so Ok ®z, O is
a product of unramified extensions of Op.
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4.2.11. Let B be a Z,-algebra. Since O is unramified over Z,, a finite Og ®z,
B-module that is flat over B is flat over O ®z, B (see [28, Tag 00MH]). Provided
Ko N K (pp~) = K if p = 2, this implies that the flat coherent sheaf G' on £°
is a flat sheaf of Ox ®z, O .-modules. As such, if for each p-adic Hodge type v,
we define LY to be the set of x € L° with

,ic = gri(Di) ®op Orex

as Ok ®z, O -modules for each i > 0, then LY is a union of connected
components of £°.

PROPOSITION 4.2.12. If p =2, assume that KocN K (1) = K. Let A, denote
the quotient of A corresponding to the scheme-theoretic image of L — Spec A.

Then, we have the following:

(1) The morphism L' — Spec AL,y becomes an isomorphism after inverting p.

(2) For any finite reduced Q,-algebra B, a map A — B factors through Allys
if and only if Vg = V4 @4 B is crystalline with p-adic Hodge type v.

By construction, Ay, is reduced and Z,-flat and so (2) uniquely determines
this quotient.

Proof. For (1) use that, after Lemma 2.2.14, £° — Spec A becomes a closed
immersion after inverting p. For (2), argue as in Proposition 2.2.15, the point
being that if C is a reduced finite flat Z,-algebra, then any 9. € Efry”S(Vc)

induces a C-valued point of £°, and this point factors through £ if and only
if G'(Mc) = gr' (DY) foreach i > 0. O

4.3. Cyclotomic freeness

4.3.1. For this subsection, let F be a finite field of characteristic p and consider
Zr and Wy, both finite-dimensional F-vector spaces equipped with a continuous
F-linear action of Gg. Further, let 3 € Efry”s(ZF) and 20 € Efryf’s(WF). It will be
useful to consider the following hypothesis.

HYPOTHESIS 4.3.2. (1) Every continuous cocycle Gx — Hom(3, 20) Q)
u?/?=1O¢ given by o +— F, with (i) (¢ — 1)(F,) =0 forall o € Gg, and
(i) F, =0forall 0 € Gg_, is zero.

(2) If Vg is a continuous representation of G ¢ on a finite-dimensional F-vector
space and 9 € LS (Vi), then (1) is satisfied when 3 = 20 = 9.

crys
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LEMMA 4.3.3. Suppose (1) of Hypothesis 4.3.2 is satisfied. Then, we have the
following:

(1) Under the identification Hom(3, 20) @y C* = Hom(Zg, Wr)®g, C”, there
are inclusions Hom(3, 20)*=! c Hom(Zg, Wy)°%.

(2) Let0 - Wy — Y — Zp — 0be an exact sequence of G g_ -representations
and let ) € E?Dp (Y) be such that Lemma 3.2.5 induces an exact sequence
0— W — Y — 3 — 0. Then there exists at most one way of extending
the G_-action on Y to a G g-action so that %) € LSP(Y)and 0 — Wy —

crys
Y — Zy — 0is Gg-equivariant.

Proof. For (1), note that in general Hom(3, 20)¢=! C Hom(Zg, Wg) %=, As
a consequence, if f € Hom(3,20)¢~!, then the 1-cocycle o — (o — 1)(f)
satisfies the conditions of Hypothesis 4.3.2. Thus (¢ — 1)(f) = 0 and so f is
G g-equivariant.

For (2), recall from 3.3.6 that, after choosing an Gy splitting of 0 — 20 —
2) — 3 — 0sothat gy = (g + f o @3, @3), the possible ways of extending the
Gk, -action on Y to a Gg-action as required by the lemma are in bijection with
the set of 1-cocycles o > f, taking values in Hom(3, 20) ®q.y u”/?~'Oc» and
satisfying (¢ — 1)(f,) = (0 — 1)(f) and f, = 0for o € Gg_. As the difference
of two such cocycles is a cocycle as in Hypothesis 4.3.2, we obtain 2. O

LEMMA 4.34. Let 0 - Zp, — Zy — Zp, — 0 be a Gg-equivariant exact
sequence, and suppose 0 — 31 — 3 — 3, — 0 is the corresponding ¢-
equivariant exact sequence from Lemma 3.2.5. If (1) of Hypothesis 4.3.2 is
satisfied when 3 is replaced by 3| and 3,, then (1) of Hypothesis 4.3.2 is satisfied
itself.

Proof. Applying Hom(—,20) to 0 — 3; — 3 — 3, — 0 yields a g-equivariant
exact sequence

0 — Hom(3,, 20) — Hom(3, 20) — Hom(3,, ) — 0, (4.3.5)

which is G g-equivariant after applying ®y,C°. Thus, if o > F, is a 1-cocycle
as in Hypothesis 4.3.2, then so is its image in Hom(3,, 20) Qg 4”7 Ocs.
We conclude that if (1) of Hypothesis 4.3.2 is satisfied with 3 replaced by
35, then this image must be zero. Sequence 4.3.5 remains exact after applying
Quui”’ P O¢» since each of its terms is k[[u]]-free. Therefore F, € Hom(3,,
W) Ry 4”7 O for each o. If (1) of Hypothesis 4.3.2 is satisfied with 3
replaced by 3;, then we must have F, = 0. Hence (1) of Hypothesis 4.3.2 itself
is satisfied. O
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PROPOSITION 4.3.6. Hypothesis 4.3.2(1) is satisfied when either of the following
two conditions holds:

(1) 3 € LS (Zw).

crys

(2) Every Jordan—Holder factor of Zy is absolutely irreducible and if Z is
a Jordan—Holder factor of Zr so that Z Qg F(1) is unramified, then
Z ®r F(1) is not a Jordan—Holder factor of Wr Qp F. (Here F(1) denotes
the one-dimensional representation of Gg over F on which G-acts by
the cyclotomic character. Likewise for F(—1), but for the inverse of the
cyclotomic character.)

Proof. By inducting on the length of Zp, and using Lemma 4.3.4, we can reduce
to the case that Zp is irreducible. Let 0 +— F, be as in Hypothesis 4.3.2 and
suppose 0 € Gy is such that F, # 0. Let J be the kernel of the restriction of
F, to 3. Since F, is p-equivariant, J is a ¢-stable SGg-submodule of 3. Since the
image of F, is u-torsion-free, J Quyy C° = 3 Qupuyy C° only if J = 3, and this
does not happen since F, # 0. Since Zp is irreducible as a G g-representation,
it is irreducible as a Gg_ -representation; see 3.2.1. Therefore J = 0 and F, is
injective; otherwise, the G_ -representation (J Q. C°)¥=' C Zr contradicts
the G -irreducibility of Zp.

For each z € 3\ u3 and each n > 1, there exist §, € Z and z,, € 3 \ u3 such
that

¢'(2) = u?" g,

Using that u”?3 C 3¢, we deduce that §, > 0 (the point being that ¢(z) & u”*'3
if it was then ¢(z)/u € 3%, which implies z € u'/?3 Qy Oc», a contradiction).
In particular, there is a 8’ > 0 such that ¢(z,) = up"s/z,hq and so, since

n+l B N it _ o P e p2 e p—pS, -8
@"(2) = u” PP (z,) = u? O L

we see that 8, = pé, + & = pé,. In particular, if §y > 0 for some N, then
8, > oo as n — 00. As F, is injective and 3 is finitely generated, there exists
y > O such that F, (z) € 20 Qs u” /P~ VO for any z € 3\ u3. This implies

Fo(¢" () = u” " Fo (20) @ 2B @y u” I O

forany z € 3\u3 andn > 0. As F, is g-equivariant and F, € Hom(3, 20) ®p.;
u?’P=Y O, we also deduce

F,(¢"(2)) = ¢"(F,(2)) € W @y u”" PO
Note that p" + -+ p =8, +y —p/(p—1) =p" 1 /(p—1) =6, +y. If

8y > 0 for some N then, by choosing n large enough that —4, +y < 0, we obtain
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a contradiction. We conclude that F, = O unless, for all z € 3 \ u3, ¢(z) = u”z’
for some 7z’ € 3 \ u3. Equivalently, F, = O unless 3¢ = u”3.

This completes the proof when 3 € ﬁcfy’; 1(Zg) since then u?~'3 C 3°.
Therefore assume we are as in (2). If 3 = u”3, then ¢ induces a semilinear
automorphism of u =P/P=13  and hence a k-semilinear automorphlsm of 3
(u”'?~'3) @y k. Via the p-equivariant section of Oc» — k given by Telchmuller
representatives, we g-equivariantly view 3 as a subset of 3 Ququy C”. Since k is
algebraically closed, 3 is generated by ¢-invariant elements, and so 35"~' = Zp.
It is a straightforward exercise to show that, as a G_ -representation, 39=lisa
twist of an unramified representation by the inverse of the cyclotomic character.
Thus 3*=! has the same description as a G g-representation; see 3.2.1. As Zy is
absolutely irreducible, it follows that Z is one-dimensional.

We have shown that if a nonzero cocycle o — F,, exists as in Hypothesis 4.3.2,
then Zy ®p F(1) is an unramified character. Since F, lgx, = 0, this cocycle
represents a class in H' (G x, Hom(Zr ®p F, W ®p F)) which is killed by
restriction to Gg_. . If Zy ®p IF(I) is not a Jordan—Holder factor of Wy ®g I, then
[3, 2.3.5] implies this restriction map is injective, so F, = (¢ — 1)(F') for some
F € Hom(Zr Q@ F, Wy @5 F), which is fixed by Gk . Applying [3, 2.3.5] again
then implies F is fixed by G, so F, = 0. We conclude (1) of Hypothesis 4.3.2 is
satisfied. ]

This motivates the following definition.

DEFINITION 4.3.7. (1) We say Vg is cyclotomic-free if every Jordan—Holder
factor of Vy is absolutely irreducible, and if Z is a Jordan—Holder factor of
Vi such that Z ®g F(1) is unramified then Z ®=F(1) is not a Jordan-Holder
factor of Vi ®g F.

(2) We say Vy is strongly cyclotomic-free if V|, is cyclotomic-free for all
finite unramified extensions L /K. Equivalently, Vr is strongly cyclotomic-
free if each Jordan-Holder factor is absolutely irreducible, and if an
unramified twist of F(—1) is a Jordan—Holder factor of Vy then no Jordan—
Holder factor of Vf is unramified.

Most of our results will only require us to assume cyclotomic freeness.
However, to prove potential diagonalizability, it will be necessary to replace a
representation Vi by the restriction Vy|g, for some sufficiently large unramified
extension L/K so that Vg|s, has every Jordan—-Holder factor one-dimensional.
To apply our results, we will need Vy|s, to be cyclotomic-free. The following
example indicates why we therefore require V to satisfy a stronger property than
cyclotomic freeness.
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EXAMPLE 4.3.8. Assume p = 2 and let ¢ be a nontrivial character of G g, which
becomes trivial when restricted to G, for L/K a finite unramified extension. Let
Vr be an irreducible representation of G ¢ of dimension [L : K]. Assuming [F to be
sufficiently large, L/K is then the smallest unramified extension such that Vy|g,
has every Jordan—Holder factor one-dimensional. However, if Vi = Vy @ F(y),
then Vj|g, is not cyclotomic-free since F(v)|g, is trivial and, because p = 2, the
cyclotomic character is also trivial.

COROLLARY 4.3.9. If Vg is cyclotomic-free, then (2) of Hypothesis 4.3.2 holds
forall M € LS (V).

crys

Proof. This follows from Proposition 4.3.6 applied with 3 = 20 = 9. (|

<p

4.4. Local analysis of Ly

4.4.1. With notation as in 4.3.1, a deformation of Vf to a complete local
W (F)-algebra A, with residue field I, is a finite free A-module V, equipped with
a continuous A-linear action of G together with a G g-equivariant isomorphism
Va®aF = Vg

Fix an [F-basis &p of Vy. Then a framed deformation of Vf is a deformation V,
together with an A-basis &4, which gets identified with & after applying ®@4F.
The functor

DE[F (A) = {isomorphism classes of framed deformations of Vf}

is representable by a complete local Noetherian W (IF)-algebra R = REF. Let Vg
denote the universal framed deformation. Applying Corollary 2.2.11 to R and Vy
gives a projective R-scheme L := E,f”;ys.

LEMMA 4.4.2. Let ' be a finite extension of F and x an W' -valued point of L.
Suppose the corresponding M, € Efryps(Vﬂw) satisfies (2) of Hypothesis 4.3.2.
Then (It would be better to write ), . dimyG"(OM,) — dimg G"(M,)
as G'(Hom(OM,, M,)), but we have only defined G'(—) for finite projective
Gr-modules equipped with maps ¢*IN — M. The image of the Frobenius on
Hom(N,, M,) will not, in general, be contained in Hom(MN,, I,).)

dimp O, (Fle) <d*+ ) ) dimg G"(M,) — dime G" (OM,).

i>0 n—m=i

Here F'[€] is the ring of dual numbers over IF'.

https://doi.org/10.1017/fms.2020.12 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2020.12

On the irreducible components of some crystalline deformation rings 39

Proof. Replacing Vg by V¢ ®r ', we may suppose F = [’. An element of
O, (F[e]) gives rise to a map R — F[e], and so a framed deformation Vg
of Vg to F[€], and an element My € chy’;(VF[E]) satisfying Mpe) Qppe F = N,

When viewed as an Gp-module, M fits into an exact sequence
O—)DJ?xgi)ﬁF[E]—)imx%O.

As explained in Proposition 3.3.5, an Gp-splitting of this sequence can be chosen
so that gopy,, = (¢, + f o @o,, o) for some f € Hom(IN,, M,). Since
choosing a different splitting replaces f by f+(¢—1)(g) for some g € Hom(M,,
2N, ), we obtain a well-defined map

O,..(Fle]) — Hom(M,, M,)/F° Hom(M,, MN,), (4.4.3)

where F® Hom(9,, 90,) consists of those g € Hom(M,, M, ) for which ¢(g) €
Hom(M,, 91,). We remark that the target of (4.4.3) can be identified with
ExtéD (O, M), the first Yoneda extension group in the exact category of strongly
divisible Breuil-Kisin modules; see [3, Section 4.1]. It is easy to check that this
map is F-linear.

If W is the multiset of integers containing i with multiplicity equal to the
F-dimension of G (9N1,), then [3, 4.2.5] implies the right-hand side of (4.4.3) has
F-dimension

dimy Hom(N,, M,)*=" 4+ Card{i — j > 0]i, j € W}.

Clearly, the value of the double sum in the statement of the lemma equals the
cardinality of {i — j > 0| i, j € W}, and so it remains to bound the dimension
of the kernel of (4.4.3). To do this, we first claim this kernel is contained in the
kernel of the composite

O, (Fle]) — R(F[e]) — Ext'(Vg, Vi).

Here the last maps sends R — [F[e] onto the exact sequence 0 — Vg N Vi Qr
Fle] = Vg — 0. If My corresponds to an element in the kernel of (4.4.3), then
the surjection My — M, admits a p-equivariant Sg-linear splitting s. Since
Mpre; — M becomes G g-equivariant after applying ®;.;C’, it follows that
(0 —1)(s) ;=0 os oo~ — s is an element of Hom(9M,, M,,) sy u”/ PV Oc>
for each 0 € Gg. Using Hypothesis 4.3.2, we deduce that s is G g-equivariant,
and so s induces a G g-equivariant splitting of Vg; — Vy. This proves the claim.

To finish the proof, it therefore suffices to show that the kernel of O , (F[e]) —
R(F[e]) — Ext'(Vi, Vi) has dimension equal to

< d*> — Hom(t,, M, )¢~
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We claim that the kernel of the first map in this composite is a torsor for
Hom(Vz, Vi) % / Hom(9,, 21,)¢~'

(note that this makes sense since by Lemma 4.3.3, we do have Hom(901,, 91,)¢=!
C Hom(Vy, V&)9%). Since the kernel of the second map in this composite
is clearly a torsor for Hom(V, Vg)/ Hom(Vy, V)%, proving this claim will
complete the argument.

To do this, note that any # € Hom(Vy, V&)¥ produces an automorphism
a + be — a + h(b)e of Vx ®r €] which, when viewed as an automorphism
of Vr ®r Fle] ®, C’, acts on the set X C [Zfry’;(VF ®r Fle]) containing those
elements corresponding to elements in the kernel of O . (F[e]) — R(F[¢]). This
action is also transitive. To see this, note that any two elements of X are abstractly
isomorphic as Breuil-Kisin modules by a ¢-equivariant map inducing the identity
modulo €. By Lemma 4.3.3, this isomorphism induces an automorphism of
Vr ®r F[e] which, being the identity modulo €, is of the form a +be > a+h(b)e
for some & € Hom(Vg, V)%, Finally we note that Hom(9,, 9, )¥=! is the
stabilizer of any point of X under this action. O

PROPOSITION 4.44. If p = 2, assume that Koo N K(,~) = K. Let x € L
be an W'-valued closed point of L with O, ,[1/p] # 0, and assume that the
corresponding element of £§y”S(VF/) satisfies (2) of Hypothesis 4.3.2. Then O ,
is Z,-flat and O ./ p is regular. The completion of O . is a power series over

W ().

Proof. Letp € O, [1/p] be a maximal ideal and let g be its preimage in O ,.
Set B equal to the residue field of (O, ,)qand C = O, ,/q C B.By Lemma4.1.1,
we know B is a finite extension of Q, and C is finite flat over Z,.

Let y € L denote the image of Spec B — L. Since L[1/p] is Jacobson
and B is finite over Q,, y is closed in L[1/p]; see [28, Tag 01TB]. The map
Spec C — L corresponds to M € £§n;;(vc) with 9 ®¢ F’ the Breuil-Kisin
module corresponding to x. Lemmas 4.2.7 and 4.2.3 imply that G' (M @¢ F') =
G' (M) @c F'.If Vy = Ve Q¢ B is the representation of Gx induced by y, then
Vj is crystalline and we also have G' (M) @¢ B = gri (Dgr(V3)); see 4.2.2. If
M, € Efry"S(V]F) corresponds to x, then we deduce

dimp G'(Mc ®c F') = dimp gr' (Dar (V).

From Proposition 2.2.15, we know L[1/p] = Spec RS”[1/p]. By [21, 2.6.2]

crys
and [21, 3.3.8], the connected component of RS”[1/p] containing y is

crys
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equidimensional of dimension

d*+ ) dims g (Dor (Hom(V, V)
i>0
=d’+ ) Y dimpgr"(Dar(Vp)) — dims g (Dar (V).
i>0 n—m=i
Since y is a closed point of £[1/p], this is the dimension of O, , = (O, y)q-
From Lemma 4.4.2, we deduce

dimp O, (Fle]) < dim O ,.
On the other hand,
dimO,, <dimO,, — 1 <dimO,,/p.

We have used Lemma 4.1.1 for the first inequality and [28, Tag 000OM] for
the second. Hence O ,/p is regular and these two displayed inequalities are
equalities.

To show O, , is Z,-flat, note that p is in the maximal ideal of O, and so
dim O, ,[1/p] <dim O, —1=dim O ,. As O, is obtained from O ,[1/p]
by localization dim O, , < dim O, ,[1/p] and we have equality. Let I C O , be
the ideal of elements killed by a power of p. Then O, [1/p] = (O,../DI1/p]
and so

1
dim O‘C’x/p = dim OL,x — 1 =dim OL,x |:—:|
p

<dim O, /I -1 <dm O/, p).

We conclude O, /p and O, ./(I, p) have the same dimension. Since O, /p
is regular, the image of I in O, /p must be zero, and so I C pO, .. As such,
any x € [ can be written as x = py; by the definition of 7, we see y € I and so
I Cc Np"O,, = 0. We conclude O , is Z,-flat. That the completion of O , at
its maximal ideal is a power series ring is then a standard consequence of the fact
that O , is Z,-flat and O ./ p is regular. O

COROLLARY 4.4.5. Assume that Vy is cyclotomic-free and that Ko N K (pp~) =
K if p = 2. The closed subscheme of L defined by the ideal of p-power torsion
sections is equal to a union of connected components of L, and is regular. This
closed subscheme therefore coincides with L° defined in Lemma 4.2.6.

Proof. Since Vy is cyclotomic-free, Proposition 4.4.4 implies that a closed point
x € Lis contained in £° if and only if O , is Z,-flat. Further, if this is the case,
then O , is regular. Flatness implies £L° C L is open; see [28, Tag 00RC]. We
see L° is regular as it is regular at closed points. O
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5. Applications to deformation rings

5.1. Potential diagonalizability

5.1.1. Now consider a finite extension E of Q,, with residue field I, and a finite
free Og-module V equipped with a continuous Og-linear action of G . Assume
that V[1/p] is crystalline of p-adic Hodge type v. Let VF = V ®p, F and let
R?, denote the quotient of REW from Proposition 4.2.12 (or more generally, the
quotient defined in [21] if v is not concentrated in degrees [0, p]). If £ is an
Og-basis of V, we say (V, &) is diagonalizable if the corresponding point of R
lies on the same irreducible component of R} . as an Og-valued point (here Of
denotes the ring of integers in an algebraic closure of E) whose corresponding
representation is a direct sum of crystalline characters. (Since R( is Z,-flat,
this is equivalent to asking that the image of their generic fibres lie on the same
irreducible component of R} ([1/p].) Say V is potentially diagonalizable if Vg,
is diagonalizable for some finite extension L of K. These notions were introduced

in[1, 1.4].

LEMMA 5.1.2. (1) Whether or not V is potentially diagonalizable is
independent of the choice of &.

) If V' is a Gg-stable Og-lattice inside V[1/p), then V is potentially
diagonalizable if and only if V' is.

(3) If VI[1/pl admits a G g-stable filtration, then V is potentially diagonalizable
if and only if each graded piece is potentially diagonalizable. In particular,
this is the case if each graded piece is one-dimensional.

Proof. Both (1) and (2) follow from [1, 1.4.1]. For (3), we refer the reader to
[13,2.1.2]. O

We now prove Theorem 1.1.1. Recall the definition of strongly cyclotomic-free
is given in Definition 4.3.7.

THEOREM 5.1.3. Assume T is sufficiently large and that the p-adic Hodge type
v is concentrated in degree [0, pl. If Vr is strongly cyclotomic-free, then V is
potentially diagonalizable.

Proof. First, if p = 2, then we choose our compatible system of pth power roots
of a uniformizer of K so that Ko, N K (u,~) = K. This can always be done; see
[29, Lemma 2]. As V5 is strongly cyclotomic-free, Vr|g, is strongly cyclotomic-
free for any finite unramified extension L/K. As F is sufficiently large, we may
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therefore assume each Jordan—Holder factor of V is one-dimensional. Under
these assumptions, we claim there exists another deformation V'’ of Vg such that:

e V’'[1/p] is crystalline with Hodge—Tate weights in [0, p].
e Every Jordan—Holder factor of V'[1/p] is one-dimensional.

o If M and 9 are the Breuil-Kisin modules associated with V and V’,
respectively, then M R, F = M ®op, Fin LS (V).

crys

Such a V' is constructed below; see Corollary 5.1.6.

Assuming for now that V' can be constructed, we explain how this implies
potential diagonalizability of V. Let £ = ﬁ,ffc’rys and L£° C L be the Z,-flat
locus from Corollary 4.4.5. Then it follows that 9t and 9V induce Og-valued
points of L° (see (2) of Remark 2.2.16). The image of the closed point in
Spec O under these two maps coincide, and so both Og-points lie on the same
connected component of £°. By Corollary 4.4.5, £° is normal, and so these points
lie on the same irreducible component. Hence their images in R} lie in the
same irreducible component. By (3) of Lemma 5.1.2, we know V' is potentially
diagonalizable, and so V is potentially diagonalizable also. O

To complete the proof of Theorem 5.1.3, we must construct a V'’ as above. Thus
we make the following definition.

DEFINITION 5.1.4. Let Mp € L57(Vi). We say M admits a crystalline lift if
there exists a finite extension E/Q, with residue field I containing IF and a finite
free Og-module V equipped with a continuous Og-linear action of Gk so that
(1) VI[1/p] is crystalline with Hodge-Tate weights in [0, p], (ii) V ®p, F' =
Vr ®r ', and (iii) if 90t denotes the Breuil-Kisin module associated with V, then
m ®OE F = D:R]F R F’" in ﬁép(VF/)_

For the next lemma, consider a G, -equivariant exact sequence 0 — Wy —

V¥ — Zp — 0 of finite-dimensional [F-vector spaces. If 9y € L£S7(V), then
Lemma 3.2.5 produces an exact sequence 0 — p — Mr — 3r — 0.
LEMMA 5.1.5. Assume that 00 € LS (W) and 3 € LS (Z) are crystalline lifts
of Wy and Zy, respectively. Assume that 2y @ 3 satisfies (2) of Hypothesis 4.3.2,
and that My from the previous paragraph is strongly divisible. Then there exists
a crystalline lift M € LSP(V) of My such that:

crys

(1) I fits into a @-equivariant exact sequence 0 — W — M — 3 — 0 of
& o, -modules, which recovers 0 — 0y — Mr — 35 — 0 after applying
base-changing to IF'.
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(2) V fits into a Gg-equivariant exact sequence 0 — W — V — Z — 0,
which recovers 0 — 20 — 9 — 3 — 0 after base-changing to W (C").

In particular, if both Zr and Wy are cyclotomic-free, then Zy @& Wy is
cyclotomic-free also, and so in this case (1) of Hypothesis 4.3.2 is satisfied for
Wr @ 3p. We remark also that a similar result is proven [3, 5.3.1] but with a
different notion of cyclotomic-free.

Proof. The element Wy @ 3r € ,Cfr;;(WF @ Zy) defines a closed point x of the
R = Ry o, -scheme £ = E,fﬁrys from Corollary 2.2.11. Also 20 @ 3 defines an
Og-valued point y of £ through which x factors.

View the extension 0 — Q0r — My — 3 — 0 as an extension of Wy @ 3p
by itself. By assumption, 1y is strongly divisible, so we obtain an element of the
set Ext;D (Wr @ 3, Wr @ 3r) described in the proof of Lemma 4.4.2. It follows
from the proof of Proposition 4.4.4 that the map O, (F[e]) — Exty, (Wr & 3,
Wrd33r) in (4.4.3) is surjective. Thus there is a tangent vector x": Spec F[e] — L
mapping onto this extension class. Since the completion of O , is a power series
ring over W (IF), the point y factors through a morphism Spec Og[e] — L lifting
x" (here Og[€] denotes the ring of dual numbers over Q). This morphism induces
anextension) > W@ Z -V - W& Z — Oaswellasan M € ﬁfrfs(V/)
fitting into an exact sequence

0> WRI3I—> M —>WHp3—0.

From this, we obtain the representation V and 91 £§§’S(V) as desired. ]
COROLLARY 5.1.6. Suppose Vy is cyclotomic-free and every Jordan—Holder
factor is one-dimensional. Let My € EsgDp (Vr). Then MMy admits a crystalline
lift V so that every Jordan—Holder factor of V[1/p] is one-dimensional.

Proof. If Vg is one-dimensional, then the result is easy (see for example part (1)
of [16, Lemma 6.3]). For the general case, induct on the length of Vy using
Lemma 5.1.5. O

In particular, we see 9 € LSP (V).

crys
5.2. A possible improvement. We would now like to explain how Theorem
5.1.3 can be strengthened, assuming a conjectural statement regarding the fibre of

L over the closed point of Spec R.

5.2.1. As usual, let [F denote a finite field of characteristic p and let Vi denote
a finite-dimensional F-vector space equipped with a continuous F-linear action
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of Gg.Let R = REF and £ = L5" .. We also let Ly = £ @ F be the fibre of £

R,crys*
over the closed point of Spec R.

5.2.2. Let us first assume Vf is absolutely irreducible and F is sufficiently large,
so that Vp = Indgf Wr with L/ K unramified and Wy one-dimensional. We also
assume that the residue field / of L embeds into IF. Recall from Lemma 3.1.8 that
thereis amap f,: LS?(Wg) — LSP(Vg). It follows from 3.2.9 and Lemma 3.2.11
that the image of this map lies in ﬁiQ(VF)-

CONJECTURE 5.2.3. With Vr as in 5.2.2, every closed point of L lies in the same
connected component as a closed point arising from f, N for some N € LSP (Wp).

We are going to prove this when Vf is 2-dimensional. Before doing so, we
record some consequences of this conjecture.

LEMMA 5.2.4. Suppose Conjecture 5.2.3 holds and, if p = 2, that Ko, N
K(up~) = K. Then any M € LSP (Vi) admits a crystalline lift.

crys

In particular, we deduce £° = L in this situation.

Proof. We have to show the local ring of L at the closed point corresponding
to 9 is nonzero after inverting p. After Corollary 4.4.5, it suffices to show
every connected component of £ contains at least one closed point admitting
a crystalline lift. Using the conjecture, we are reduced to proving that, if
N € LS?(Wp), £,91 admits a crystalline lift, and this is easy. Choose a
crystalline character lifting 91 and consider the induction of that character from
G L to G](. OJ

LEMMA 5.2.5. Suppose Conjecture 5.2.3 for all absolutely irreducible Vi and, if
p =2, that Koo N K(upo) = K. Then any M € Epo(V[g) with Vg cyclotomic-
free (but not necessarily irreducible) admits a crystalline lift V such that every
Jordan—Holder factor of V[1/ p] has irreducible reduction modulo p.

Proof. Using Lemma 5.2.4, this follows as in Corollary 5.1.6 by inductively
applying Lemma 5.1.5. O

COROLLARY 5.2.6. Suppose Conjecture 5.2.3 holds for all absolutely
irreducible Vy. Then Theorem 5.1.3 holds with strong cyclotomic freeness
replaced by cyclotomic freeness.

Proof. First, suppose the V ®», ' = Vg is irreducible. Conjecture 5.2.3 then

implies V lies in the same irreducible component of R}  as a point obtained by
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inducing a crystalline character over an unramified extension. Since such points
are potentially diagonalizable (after a finite extension, they become a sum of
crystalline characters), this proves the result in the irreducible case.

For the general case, we know after Lemma 5.2.5 that V lies in the same
component as a point whose Jordan—Holder factors are all irreducible modulo p.
The previous paragraph implies each of these Jordan—Holder factors is potentially
diagonalizable, and so Lemma 5.1.2 implies the point itself is potentially
diagonalizable. We conclude V is also. O

PROPOSITION 5.2.7. Conjecture 5.2.3 holds if Vi is two-dimensional.

Proof. Replacing Vi by an unramified twist (which is allowable by Lemma 3.1.5
and the comment made in 3.1.7), we can assume the situation is as in the proof of
Proposition 3.2.2; see in particular 3.2.4 and 3.2.6. Thus there is an 91 € L7 (Wg)
with generators (eg)geHome @.p satisfying

ga(e@ogo) = ur9€09 0 g 4] g p

together with an inclusion 91 C £, (where f,91 denotes Ot viewed as an
Gp-module). For 9t to be contained in Efr;s(V]F), it is necessary and sufficient
that:

o If m € M, then p(m) € M. If p(m) € u?™'M, then m € uIM.
o If Y agey € M with oy € F, then Y

(see 3.2.8). Recall that the first condition is implied by u?97t C ¥ C 9, and it
implies ue, € M for every 6.

For T € Homg, (k, IF), we write 901, for the summand of 90t on which k acts
through t (with 991 viewed as an F[[u]]-module). If 6 € Homy, (/, F) is such that
0lx = 7, then elements of M, have the form aey 4+ Bego,n, Wwhere h = [K 1 Q,].
In particular, the possible shapes of the 91, can be divided into two:

Op€y € .

ro=r mod p

(1) Either there is an o € > so that ey + aego,n and uey generate 9, over
F[[u]] (for some 6 with 6|, = ).

(2) Or no such « exists. Thus 91, is generated by u* e, and u'*¢" ey, for some
Xo, Xgopr € [0, 1] (again 6 is some embedding with 6|, = 7).

Set d(9) equal to the number of 7 as in case (i). Note that if d(¥0t) = 0, then
M = £.9, where N € LSP(Wy) is the Sp-submodule of 91 generated by u*’e;.
Arguing by induction, it therefore suffices to show 9t lies in the same connected
component of Ly as an 9 C £, with d(ON) < d(IN). For this, we will need a
lemma.
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LEMMA 5.2.8. Suppose M. and M., are as in (i) and 6 € Homg (I, F) with
Ol = t. Then I, is generated by ey + aeyo,n and uey, for some o € F, if and
only if M., is generated by ey, + Aepoynr1 and ueg,,. Furthermore, rg = roopn.

Proof. The second bullet point above implies ry = ry.,» modulo p, so we have
equality except possibly if r, = 0 or p. Suppose ry = 0 so that ry.,» equals 0 or p.
As such, if ego, + aepo it € My, then applying ¢ shows that ey + au'vv" ego,n €
M,. If ryopn = p, then e, € 9M,, which contradicts the fact that 91, is as in (i).
Thus ry.,n = 0 and ey + aepo,n € M. This proves the lemma when ry = 0.

Now suppose ry > 0. Then ry.,n = 1y except possibly if rg = p and rgen = 0.
Applying the previous paragraph with 6 replaced by 0 o ¢ shows the exceptional
case is impossible. Suppose o € I is such that ey + aepo,n € M. The first bullet
point above implies that ego, + a€gopitt € Mo, (Since @ maps u(ego, + AXepogi+)
onto u”*" (eg + atepo,n)). This proves the lemma when ry > 0. ]

If My is the etale ¢-module associated with Vg, set M) = My ®p F[T], for
a formal variable 7. We are going to construct Mg, € Efryps(VF Qr F[T]) with
Mpr) C (LN QpF[T], which at T = 1 recovers 9t and which at T = 0 produces
M’ with d(ON') < d(9M). As M7 induces a morphism A' — L connecting M
and 997, this will complete the proof.

To produce M7}, choose 7 € Homg, (k, F) sothat J = {to¢", 09", ...,
7} is such that 9., is asin (i) for 0 < j < n and asin (ii) for j = =l and n + 1.
We can assume such a t exists for the following reasons. We can always assume
there is a T with 90, as in (i) as otherwise d (M) = 0. If 901, is as in (i) for every
7, then Lemma 5.2.8 would imply ry = rg., for every 6 € Homp, ({, F). In this
case, the submodule of f,91 generated by the ey + e, for all & € Homg, (7, )
is @-stable and so corresponds to a Gk, -subrepresentation of Vg, contradicting
irreducibility.

Choose ¢ € Homg, (I, F) so that 8|, = 7; there is an & € F* such that 9, is
generated over IF[[u]] by ey + aego,r and uey. Using Lemma 5.2.8, we see ;o
is generated by egoi + @€pogiti and uegopnts for 0 < j < n.For0 < j < n, we
define

Mpr),r0ps = the F[[u]][T ]-linear span of eyo,i + Taepogn+i and uego,i

(note that this is well defined; for 0 < j, j’ < n,if t o/ =t 0 ¢/, then j = j’;
otherwise, J = Hompg, (k, ), which we have shown in the paragraph above
is impossible). For v/ ¢ J, we set Mpr)» = M, Qr F[T]. Define Mpr =
D, cHome, (k.F) Mpir), - This is a projective Spjr-module inside Myr;, which by
construction equals 9t at T = 1. The scheme from Proposition 2.2.3 is described
as a closed subscheme of the affine Grassmannian, and so Ly is also closed in
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the affine Grassmannian. Thus to show g7 € Cfr;’s(VF ®r F[T1]), it suffices to
show that 9, € Efryps(\/yg ®r ') whenever I’ is a finite extension of [F and 9,
is obtained from 97| by evaluating T at A € IF’. This means verifying the two
bullet points above for 91,. The second bullet point is clear from the construction
of Mp(r;. To show the first, we only have to check u?M, C M C M, If T/ is

such that both t’ and 7’ o ¢ are not in J, then
u”i)ﬁ“/ C m’tsz C mt)hr'

since MM, zrop = Mro, (s0 that MY, = IMY) and M, .- = M. For the remaining
7/, we choose F[[u]]-bases &, of N, .- as follows:

(1) Ift'=7t0¢/ € J,sothat0 < j <n,then&, = (€oogi +Aategopiti, Uepogiti).

(2 Ift'=top ' ortog " notin J, then & = (u% €popi, Ui+ €goyin), Where
d8; and 8, respectively, equal x40,/ and xg.,+ as defined in (ii) above. In
particular, both §; and §;,, are integers in [0, 1].

There are matrices A, valued in F[[u]] so that ¢(§,1.,) = (§,)A.. If T/ =6 0 ¢/
with ' op and v’/ € J (thatis O < j < n — 1), then we compute

uré)o(pj 0
Ay = .
T 0 upfl+r9wh+j

This does not depend on A, so we deduce that u?9; ., C Sﬁff C M, . from
the fact that it holds when A = 1. If T’ = 7,50t € J but ' 0o ¢! ¢ J, then we

compute
u’(/oquf‘s*l 0
Ap = AaurOOw”"_sh" Mp"‘rgowh—l_ah—] :

As such, in order that u”; . C szj, C M., we need both rp,,-1 — 8- =
Foopi-1 — 851 = 0. Setting A = 1, we see this is the case, so it is the case for any A.
Finally we consider the case T/ = 7 o ¢" sothat ' o ¢ ¢ J and 7’ € J. Then

A up871+] Frgogn O
v _}\au/"srwl“'rﬂwn -1 upan+lz+l+rgown+h—l :

Again whether or not u?M; . C MY, C M, .+ is a condition on the powers of
u appearing in this matrix (we must have pd,.| + rgop» € [1, pl and pd,ip1 +
Foogrth — 1 € [0, p — 1]). As these conditions hold with A = 1, they hold for
general A. O
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EXAMPLE 5.2.9. While it seems plausible that the same kind of strategy could be
used to give a full proof of Conjecture 5.2.3, in higher dimensions, the situation
is more complicated. Below we give an example that illustrates this difficulty.
Suppose K = @, and that L/K is the unramified extension of degree 7. For an
appropriate one-dimensional representation Wy of G, there is an 9t € L7 (Wy)
so that 1 is generated by (es, es, . . ., €1, €p) With

@(es, ..., e0) = (es, uey, e3, uey, ey, uey, ueg).
If 9 C f,MNis the F[[u]]-submodule generated by
es + e4+ e, es + e3, uey, ues, uey, ey, €y,

then one easily checks that 9 € LS” (Vg), where Vi = Indgf Wr. If we define

crys

My to be generated over F[[u]][T] by
eo + T?es + Tey, e5 + Tes, ues, ues, ues, ey, €,

then one also checks by hand that this defines an element of £§§;(VF ®r F[T]).

Thus we obtain a morphism A' — L connecting 9 with £V, where 97 C N
is generated by eg, es, uey, ues, uey, ey, €.

5.3. Final remarks

5.3.1. So far we have seen that the scheme L° describes the irreducible
components of Ry & (they correspond to the connected components of L0).
In some specific situations, we can do better. As usual, let IF be a finite field of
characteristic p and Vy a representation of Gg on an [F-vector space. Assume
that Vg is cyclotomic-free and, if p = 2, that Koo N K (i p~) = K. We also fix a

p-adic Hodge type v concentrated in degree [0, p].

The following notation is taken from [7, 5.1.3]. For complete local Noetherian
Z,-algebras R, Ry, ..., R,, write R ~ ]_[;zl R; if there exists a Z,-algebra
homomorphism R — [] R;, which becomes an isomorphism after inverting p
and is such that each projection R — [[ R; — R; is surjective.

PROPOSITION 5.3.2. Suppose that the fibre of LY over the closed point of Spec R
is reduced and zero-dimensional and assume T is sufficiently large. Then

v ~
Rcrys l_[ OL»X ’

where the product runs over the closed points of LY. (In particular, we are
asserting that each O, is complete.)
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Proof. The fibre of LY — Spec R over the closed point being zero-dimensional
implies this map is quasifinite and therefore finite since it is projective. In
particular, LY = Spec S is affine and the induced finite map R — S becomes
surjective after inverting p. By definition, R7 is the quotient of R by the kernel
of this map. Clearly, S is a product of the local rings of L' at its closed points;
all that remains is to show the maps R}, — Ogv, are surjective. Since F is
assumed to be sufficiently large, we may assume this map is an isomorphism on
residue fields, so we only need to show that Mgy Opv. = mgv, (that is, that
R = Opv . is unramified). This follows from the assumption that the fibre of

LY at the closed point of Spec R is reduced. O

5.3.3. We now show how to verify the hypotheses of Proposition 5.3.2 in explicit
cases. Let I € Efryps(VF) and suppose My € ,chr}i(V]F ®r F[e]) is such that
Mpe) Qrpe) F = M. As in the proof of Lemma 4.4.2, we can view DM as fitting
into an exact sequence 0 — 9 — My — M — 0. If & is an F[[u]]-basis
of M (viewed as a row vector), then any Gg-splitting corresponds to an X €
Mat(F((u))); the splitting sends & onto £(1 + €X). As explained in 3.3.2, any

such splitting gives rise to an f € (1/u”) Hom(90, 9N) such that

(pmj‘[g] = (90931 + f O Yo, 90931)

Writing ¢on(§) = €A for some matrix A, we compute that the matrix of f
with respect to & is given by Ap(X)A™! — X. As My, is strongly divisible,
Proposition 3.3.5 implies that X can be chosen so that Ap(X)A™! — X €
Mat(F[[«]]). Any such My corresponds to a tangent vector, around the closed
point corresponding to 91, mapping onto the zero tangent vector at the closed
point of Spec R. Such tangent vectors fit into the diagram

SpecFle] ——— L

! |

SpecFF ——— Spec R

and so describe the tangent vectors of £ ®z F at closed points. If every such
tangent vector is zero, then it will follow that £ ®j F is zero-dimensional and
smooth, and so verifies the hypothesis of Proposition 5.3.2. In other words, to
verify the hypothesis of Proposition 5.3.2, it suffices to show that My, = M Qp
F[e]. In other words, it suffices to show that if X € Mat(IF((«))) is such that
Ap(X)A™!' — X e Mat(IF[[u]]), then X € Mat(F[[u]]).

We conclude with some examples in which Proposition 5.3.2 can be applied.
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EXAMPLE 5.3.4. Suppose K = Q, and suppose I is sufficiently large. A p-adic
Hodge type v concentrated in degree [0, p] then corresponds to a pair of integers
0<a<b< p.Suppose Vg = Indgf Wr is two-dimensional and irreducible, with

Wr one-dimensional. In this case, we shall show R, is either zero or is formally

smooth over Z,.

e First, using the discussion from 3.2.8, it is easy to verify that any 9t € ,Cfr;;(VF)
is of the form £, for an N € LS?(Wy). Of course, this is only true because
K = Q,. Thus there exists an F[[«]]-basis of 2T with respect to which the
matrix of ¢ is given by A = ( 0 xg’?) with r, s € [0, p] not equal and x € [F*.

xu”

e Next, take X = (¢ %) and compute
_ pd)—a u ()b
A(X)AI—X=<” )

Y woeb) —c  gla)—d

We want to verify the condition in 5.3.3, so assume Ap(X)A™' — X €
Mat(F[[u]]). It is easy to see this implies a, d € F[[u]]. For ¢ and b, we may
assume that » > s; otherwise, interchange ¢ and b in our argument. Let x. and
x;, denote the u-adic valuations of ¢ and b, respectively, and assume x, < O.
Then r — s + px, = x., and so x;, < 0 also. This implies s — r + px. = x; and
so p(x, + x.) = (x. 4+ x;,), a contradiction. Now assume x, > 0 and x;,, < 0. We
still have s — r 4+ px. = x;, and so, as s — r > —p, we must have x. = 0. Thus
s — r = x;. On the other hand, we see that r — s + px;, > 0, which is another
contradiction. We conclude that X € Mat(F[[u]]), and so in this case £L Qz F
is zero-dimensional and reduced.

e Finally we argue that £* contains at most one closed point. One computes that
for 9 as above, G'(9M) is zero unless i = r or s, in which case it is one-
dimensional. This implies that the Breuil-Kisin modules associated with two
closed points of £¥ must be abstractly isomorphic as Breuil-Kisin modules;
they must therefore be equal since an abstract g-equivariant isomorphism
induces a Gg_-equivariant automorphism of Vg, and these are all given by
scalar multiplication since Vf is irreducible.

EXAMPLE 5.3.5. Continue to assume that K = Q, and that I is sufficiently

large. We can then also treat the two-dimensional reducible case Vp ~ ()8 Xcz)

at least as long as x; x, T2 Xeye SO that Vg is cyclotomic-free. We can compute
that R}, is either zero or is formally smooth over Z,, except in the following
exceptional cases:
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e When v = (a,a + p — 1) and Vg is a split extension with x;x, "' equal to
a nontrivial unramified character, R, is either zero or has two irreducible

components, each of which is formally smooth.

e Whenv = (a,a+p—1), x1x;' = 1 and the cocycle c(o) is ramified, Ry 1s
either zero or formally smooth. If ¢(o) is unramified, then we are only able to
deduce that R" has a single irreducible component ([27] computes these rings
directly in this case; they are not formally smooth; in fact, they are not even
Cohen—Macaulay).

Let us only explain the claims in the last bullet point. We leave the rest as an
exercise for the interested reader (the arguments are more straightforward). After
twisting, we may suppose Vi admits an F-basis & so that o (§r) = & () °).
Then the etale p-module associated with Vg, viewed as a submodule of V¢ ®r, C b
is generated by § := & (}¢), where & € C” is such that o (@) — @ = ¢(o) for
(NS GKx.

e Note that ¢(0) — o € F((u)). Note also that « is only well defined
up to translation by elements of F((x)). This allows us to assume that
o) —a=ay+a_ju'+---+a_,u"" for some o; € IF and some p > n > 0.
Let us choose o so that n is minimal. If o +— c¢(o) is unramified, then we can
clearly take o € k ®r, [ and in this case n = 0. Conversely, if n = 0, then

ack ®r, IF and so o > ¢(0) is unramified.

e We first compute the set of 91 € L57(Vir). Any such 9 is generated by & B for
some B € GL,(IF((#))). Using the Iwasawa decomposition for GL,(IF((«))),
we may assume B = (% 5) for some b € F((u)). With respect to &B, the
matrix of ¢ is given by

_ (u”’“’ T (p(b) = u”" b + u” (p(a) — a)))

=\ o u(P=Ds

Thus r, s € [0, 1]. When r = s = 0, we must have ¢ (b) —b+¢(a) —a € F[[u]],
which is only possible if ¢(o¢) — o« € F[[u]] and b € F[[u]]. Thus when
c(o) is unramified, we obtain a single element of £<P(Vf), and otherwise
this case contributes no elements. For r = 0, s = 1, we must have
@(b) — u?~'b + u?(p(a) — a) € F[[u]]. This occurs if and only if b € F[[u]],
so in this case, we obtain a single element of LS?(Vy). If r = 1,5 = 0, then
we must have ¢(b) — b + ¢(o) — o € ulF[[u]]. We see this is only possible
if p() —a = 0 (that is, c(o) = 0) and b € F[[u]]. In this case, we obtain
multiple elements of LS?(Vi), one for every b € F. Finally, if » = s = 1, then
we must have ¢(b) — u?~'b 4+ u?(¢(a) — o) € ulF[[u]], and one sees that this
case contributes one element to £57 (V).
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e We assert that each of the 91 € LS?(Vf) from the previous bullet point lies in
Efry”S(VF). This can be done by first checking each is strongly divisible (which
is easy to do by hand). Then use Lemma 5.1.6 to deduce each is contained
in ,Cfry’;(VF), where Vg is equipped with some Gg-action extending the

Gk, -action. Finally use that there is at most one way to extend the Gk, action
on Vf to a Gg-action, because Vf is cyclotomic-free.

e Let us now focus on the case v = (0, p — 1). We first suppose c(o’) is nonzero.
From the above, L' consists of one closed point 9t admitting a basis on which
¢ acts by () /), where B = ¢(ar) — o To compute the tangent vectors of

L ®p F around this point, take X = (¢ ). Then Ap(X)A™" — X equals

((P(a) —a+u’Be(c) u'Pw’Bp(d) — ¢la) —u’Be(c)) + ) — up—1b)>
ublo(c) —c —u?Bo(c) +¢(d) —d '

Assume that Ap(X)A™! — X e Mat(F[[u]]). From u”"'¢(c) — ¢ € F[[u]],
we deduce ¢ has wu-adic valuation > —1. If this valuation is —1, then
o(a) —a + u’Be(c) € Fllu]] implies v(p(a) — a) = v(B). By construction,
p < v(B) < 0while v(¢p(a) —a) = pv(a) unless a € F[[u]], so we must have
a, B € F[[u]]. Thus ¢ & F[[u]] implies c(o) is unramified. Regardless of the
valuation of ¢, we see o € F[[u]]. Similarly d € F[[«]], and also b € F[[u]].
We conclude that if c¢(o) # 0, then £¥ ® F is a reduced point when c¢(o) is
ramified and a nonreduced point if c(o) is unramified.

e Finally we consider when c(o) = 0. In this case, we may construct a morphism
Al — LY given by the element Mgy € LS (Vr Qp F[T]) with basis

crys

£ u T
0 1
for £ as above. Since LV is projective, this morphism extends to a morphism
Py — LY, which is an isomorphism.

These calculations recover those of [23, 1.7.14]; see also [27].
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