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A GENERALIZATION OF UNIFORMLY ROTUND 
BANACH SPACES 

FRANCIS SULLIVAN 

1 . I n t r o d u c t i o n . Let AT be a real Banach space. According to von N eu man n ' s 
famous geometrical characterizat ion X is a Hilbert space if and only if for all 
x, y G X 

\\x + y\\* + \\x - y\\* = 2\\x\\> + 2\\y\\\ 

T h u s Hilbert space is distinguished among all real Banach spaces by a certain 
uniform behavior of the set of all two dimensional subspaces. A related charac­
terization of real Lv spaces can be given in terms of uniform behavior of all two 
dimensional subspaces and a Boolean algebra of norm-1 projections [16]. For an 
arb i t rary space X, one way of measuring the "uni formi ty" of the set of two 
dimensional subspaces is in terms of the real valued modulus of ro tundi ty , i.e. 
for e > 0 

8x(e) - inf{2 - \\x + y\\ : | |*| |, | |y|| g 1, | |* - y\\ è e}. 

The space is said to be uniformly rotund if for each e > 0 we have 3x(e) > 0. 
Uniformly rotund spaces share some of the properties of Hilbert space and an 
isomorphic characterizat ion has been given by Enflo [2] and James [4]. 

In general terms our purpose in this paper is to s tudy the extent to which 
Banach space properties can be obtained by requiring a uniform behavior for 
all w-dimensional subspaces for some fixed n ^ 2. This idea originated with 
Mil 'man [11] who discussed both smoothness and ro tundi ty notions. Our ap­
proach, however, appears to be ra ther different from Mi l 'man ' s and the connec­
tions are not yet clear. T h e type of generalization which we shall consider can 
be mot iva ted by the following res ta tement of the definition of uniformly 
ro tund: A Banach space X is said to be 1 — U R if, for each e > 0 there is a 
8(e) > 0 such t h a t if x and y are norm-1 vectors with | \x + y\ | ^ 2 — <5 (e) then 

sup-N 
1 1 

g(x) g{y) 
g£ X*, \\g\\ S 1} < 6 

Here, and throughout the sequel, the symbol |-| denotes the de terminant . By 
analogy we say t h a t X is 2 — U R if for each e > 0 there is a 5(e) > 0 such t ha t 
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BANACH SPACES 629 

for all norm-1 x, y, z if | \x + y + z\ \ > 3 — 5 (e) then 

I I / I U I Ê I I ^ i > < «• 

1 1 l 
/(*) /GO m g(x) g 60 *(*) 

sup< 

The notion of a X — UR space is defined in the obvious fashion. 
Notice t ha t in the definition of 2 — U R the quant i ty in the brackets can be 

thought of as twice the area of the triangle with vertices a t x, y and z. This idea 
and its ramifications are studied in a sequence of papers by E. Silverman [12], 
[13], [14]. In geometric terms, if three points on the surface of a 2 — UR space 
enclose an area ^ e/2, then the centroid of the triangle they determine lies a 
distance a t least ô(e) /3 beneath the surface of the ball. 

In the following section we obtain some of the basic geometric properties of 
K — UR spaces. We show first t ha t if a Banach space X is K — UR for some K 
then it is also K + 1 — UR. I t is well known tha t a 1 — UR space is reflexive 
(and, in fact, super-reflexive). We show tha t a K — UR space is also super-
reflexive. This fact was pointed out to us by Professor William Davis of the 
Ohio S ta te University. We wish to thank him for allowing us to report it here. 
I t is not hard to construct examples of spaces which are K — UR but not 
(K — 1) — UR. However, from the above result and the work of Enflo and 
James , such spaces must be isomorphic to 1 — UR spaces. By "fixing" one 
variable we define the notion of a locally K — UR space and show tha t if X** 
is locally 2 — U R then X is reflexive. In general, locally K — UR spaces need 
not be reflexive since locally 1 — U R is just the usual definition of an L U R 
space [1], [10]. 

Par t of the motivat ion for s tudying the s t ructure of Banach spaces from the 
geometric point of view is to determine the extent to which Hilbert space 
phenomena carry over to more general spaces. Of particular interest are 
questions concerning the behavior of approximations and existence of fixed 
points for non-linear operators. In many cases the appropriate generalization 
holds in 1 — UR spaces—or even characterizes this class of spaces [17]. 
Section 3 of this paper contains two ' 'applicat ions" of the notion of K — UR 
spaces. We show tha t if M is a Chebyshev subspace of a locally 2 — U R space 
then the nearest point map for M is continuous and tha t for each K, K — U R 
spaces have normal s t ructure and hence have the fixed point property for weak 
compact convex sets. Both of these theorems generalize known properties of 
1 — U R spaces. 

2. K — U R B a n a c h spaces a n d reflexivity. We give first a simple result 
which shows t ha t the notion of K — UR is "coherent ." 

T H E O R E M 1. If for some K a Banach space X is K — UR then X is K + 1 — UR. 

Proof. Suppose tha t there are norm-1 sequences (xn
{l)), (xn

{2)), . . . , (xn
{K+2)) 
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with ||*n<» + xn^ + (K+2)| • K + 2. Then from the triangle in­
equality for each j we have 

(*) H*.'» + • • • + s»»"» + x^+'> + • . . + *„<*+»! x + 1. 
Now, let fuf2, • • • ,/A:+I be any norm-1 linear functionals and consider the 

determinant 

1 1 
/ i W 1 1 ) fi (*»<») 

/*+i (x r e
( 1 > ) / K + i ( * » ( 2 ) ) 

1 

/ * + i ( x K < K + 2 ) ) 

Expanding in minors along the second row and using (*) and the fact that X is 
K - UR we conclude that X is K + 1 - UR. 

Generalizing our earlier definition somewhat we say that X is locally 
2 — UR if for each ||x|| = 1 and e > 0 there is a 8 = <5(x, e) > 0 such that for 
all norm-1 y and s if ||x + y + x|| ^ 3 — <5 then 

sup< 

1 1 1 

m f(y) m 
g(x) g(y) g0) 

kll ^ 1> < e. 

THEOREM 2. i j X** is locally 2 — UR //^?z X is reflexive. 

Proof. If X is not reflexive then for any 0 < 77 < 1/2 there is an ||x**|| = 1 
such that 

dist(x**, X) = ||x** + X\\ ^ 1 - v. 

From the Bishop-Phelps Theorem we may even assume that there is a norm-1 
/ a * with x**(f) = 1. Since (X**/X)* is isometric to X-1 C X*** there is an 
llx-1!! = 1 with x^(x**) ^ 1 — 7]. 

From Goldstine's Theorem we find a net (xa) on the unit ball of X with 

xa —>x**. For a subsequence of this netf(xk) —» 1. Hence for each e > 0 there 
is an iV(e) such that ii n, m ^ iV(e) then 

||x** + x, + xm\\ £ x**(f) + /(*„) +f(xn) > 3 - 0(e) 

and so 

G e X***; ||G|| = 1 
1 1 1 

e > sup<[ ^^(x**) x-L(xn) x-L(xm) 
G(x**) G(xJ G(xm) j 

sup(x-Hx**)G(x„ - xw) : G G X***, ||G|| = 1} 

è (1 - ^?)||xn - xw P" 2 I | ^ / i ^ m | I • 
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Therefore, (xk) is a norm Cauchy subsequence of (xa) and SO Xfc ^ X 
contradicts the fact that dist(x**, X) > 1/2. 

This 

Recall that if Y and X are Banach spaces then Y is said to be finitely 
representable in X if for each e > 0 and each finite dimensional subspace 
M CI Y there is an isomorphism T : M —* X such that for all m £ M 

(1 ^ ||7w|| ^ (1 + e)\\m\\. 

The space X is super-reflexive if each F which is finitely representable in X is 
reflexive. It is known that X is super-reflexive if and only if it is isomorphic to a 
1 — UR space [2], [4]. We shall show that every k — UK space is super-
reflexive. 

Using ideas similar to those in Theorem 2, James [5] showed that if X is not 
reflexive then for each 0 < 6 < 1 there are sequences (x*) and (x*) in B and 
B*, the unit balls of X and X* respectively such that for all i, j 

X j \X i ) 
id iîj^i 
(0 otherwise. 

LEMMA 3. If for any K, X is K — UR then X is reflexive. 

Proof. Suppose that X is K — UR but not reflexive. Using James' theorem 
for each 0 < e < 1 we can choose 0 < 6 < 1 so that 6 > 1 — 5(e)/(K + 1) 
and 6K > e and vectors in B and B* (xi, x2, . . . , xK+i), (xx*, x2*, . . . , x^+i*) 
so that 

X j \X î ) 
0 

if j è i 
if j > i' 

Here 5(e) is the function required in the definition of K 
Now we have that 

UR. 

||xi + X2 + . . . + XK+i\\ ^ Xi*(Xi + X2 + • . . + XK+i) 

= (K+l)d> (K+l) - 5 ( e ) . 

On the other hand it is easy to check that 

1 1 1 
X2*(Xi) x2*(x2) X2*(XK+I) 

X3 (Xi) x3*(x2) . . X3 (xK+i) 

e < 6K = 

| * * + l * ( * l ) X ^ + i * ( x 2 ) 

which gives the required contradiction. 

%K+l \%K+l) 

LEMMA 4. If X is K — UR and Y is finitely representable in X then Y is also 
K - UR. 
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Proof. If Y is not K — UR then there are norm-1 sequences (yn
{1)), (yn

i2))j • • • , 
(yn

{K+1)) such that 

Hmn||y„(1) + yn
{2) + • • • + ^ + 1 ) l l -> K + 1 

while the associated determinants remain bounded away from zero. Using the 
definitions of finite representability repeatedly gives norm-1 sequences in X 
such that 

Hmn||xnœ + *n<» + . . . + xn<
K+»\\ -> K + 1. 

Applying the Hahn-Banach theorem to the finite dimensional subspaces 
Xn = span[xw

(1), . . . , xn
{K+l)] gives determinants contradicting K — UR in X. 

THEOREM 5. If for some K, X is K — UR then X is super-reflexive. 

Proof. Combine Lemmas 5 and 6. 

3. Applications. Recall that a closed subspace M C X is called Chebyshev 
if each x Ç X has a unique nearest point in M. In case M is Chebyshev we 
denote by P(M) the nearest point map X —» if. This map is non-linear in 
general and is characterized by the fact that for each x, 

\\x - P(M)x\\ = dist(x, M) = \\x + AI\\. 

It is immediate that for m Ç M and any x G X, P(M) (x + m) = P(M)x-\-m 
and fora a scalar P(M) (ax) = aP(M)x. If X is 1 — UR then it is reflexive and 
strictly convex. This is equivalent to having each closed subspace of X 
Chebyshev. In fact, for spaces which are 1 — UR the class of maps \P(M) \ M 
is a closed subspace of X) is known to be uniformly equicontinuous on bounded 
closed subsets of X [17], [3]. 

If A" is 2 — UR then it is reflexive and so for each closed subspace M and 
each x Ç X there is at least one m Ç M with ||x — m\\ = \\x + M\\. Howrever, 
a 2 — UR X need not be strictly convex and so in general m will not be unique. 
In case best approximations are unique we have the following: 

THEOREM 1. If M is a Chebyshev subspace of a locally 2 — UR space X, then 
P(M) is continuous. 

Proof. We begin with a few general observations. Let x G X and suppose that 
xn -» x. If x e M then P(M)x = x and also \\xn — P(M)xn\\ = dist(x„, M) ^ 
\\xn — x\\ —>0 so that P(M)xn—>x = P(M)x. Hence we may assume that 
dist(x, M) > 0. 

Clearly x / = (xn - P(M)x)/\\x - P(M)x\\ -> (x - P(M)x)/\\x - P(M)x\\ 
= x' and P(M)xn -+P(M)x if and only iiP(M)xn' - • 0 = P(M)xf. Therefore, 
we may also assume that | |x| | = 1 and P (M)x = 0 and we need only show that 
P(M)xn —> 0. In fact, it is sufficient to show that (P(M)xn) converges because if 
P(M)xn —> w then 

||x - m|| = lim ||xn - P(M)xn\\ S lim ||x„|| = \\x\\ 
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and so by uniqueness of nearest points, m = 0. 
Finally, notice that for all n 

||* | g ||* - P(M)*„|| g ||*„ - P(M)*n | | + ||* - *n|| g ||*n|| + 11* - *n|| 

and so ||* - P(M)xn\\ -» ||*|| = 1. 
Let e > 0 be given and assume by passing to a subsequence, if necessary, that 

||P(Af)*n|| - > a > 0. For all n and m large ||* - P(M)xn\\ and ||* - P(M)*n | | 
are close to 1 while 

||* + (* - P(M)*„) + (* - P(M)xm)\\/3 ^ IWI = 1. 

Let (J'n) be a sequence of norm-1 functionals such that for each n,fn(P{M)xn) = 
\\P(M)xn\\. 

Since X is locally 2 — UR, for n and m large we have for i < e/4 

fl x x x 

ae/2 > supii^n=i< K ( * ) /„(* - P(M)xn) fn(x - P(M)xm) | 
( |g(*) g(* - P ( M ) x J g(* - P(M)*W) 

The supremum is taken over all ||g|| = 1 so expanding in minors along the last 
row gives 

(*) aê/2 > \\fn(P{M)xn)P{M)xn - \\P{M)xn\\P{M)xm\\. 

Since ||P(m)*A;|| —* a for n or m large, equation (*) implies that 

i> ||P(M)xre|| - \fn(P(M)xm)\. 

In case fn(P(M)xm) è 0, using (*) again gives 

aï/2 > \\P{M)xn\\-\\P(M)xn - P(M)xm\\ 

- | | |P(M)x„|| -fn(P(M)xm)\ \\P{M)xn\\ 

so that 

2 e > \\P(M)xn~ P(M)xm\\. 

In case/n(P(M)*m) g 0 we conclude by similar calculations that 

2 ê > | |P(M)*n + P(M)* ro | | . 

Now, if k > j > n and fn(P(M)xk) and fn(P(M)Xj) have the same sign 
(say gO) then 

\\P{M)xk-P{M)xj\\ g \\P(M)xk + P(M)xn\\ + \\P(M)xn + P(M)xj\\ 

g 2ë + 2ë = 4ë < €. 

On the other hand iifj(P(M)xk) g 0 then applying the above argument for j 
and k gives ||P(7kf)*fc -j- P(ikf)*:7|| <C 2ë <C e. Combining the last two in­
equalities and using the triangle inequality we have that ||P(M)xfc|| < e which 
is impossible if we assume (as we may) that e < a/2. 
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Hence the required convergent subsequence may be constructed from all 
those terms P(M)xk with fn(P(M)xk) ^ 0 or from those with fn{P(M)xk) ^ 0. 

Let C be a closed convex subset of a Banach space X. The set C is said to have 
normal structure if for each closed convex bounded non-empty K Ç C which is 
not a singleton, there exists an x £ K such that 

sup{||x - k\\ | k e K] < diam(i£). 

Here diam(i^) = sup{ \\ki — k2\\ \ ku k2 G K}. If we may take C = X then we 
say that the space X has normal structure. 

It was proved by Kirk [8] that if X has normal structure, and K is any 
weakly compact convex subset of X, then each T : K —> K which is non-
expansive has a fixed point in K. T is said to be non-expansive if 11 Tx — Ty\ | ^ 
||x — y\\ for all x, y £ K. 

It is not hard to show that a 1 — UR space has normal structure, and Smith 
[15] has shown that this property holds for any space having a very general 
sort of directional uniform rotundity. 

THEOREM 2. If, for some K, X is K — UR then X has normal structure. 

Proof. Suppose that X is K — UR and that C is a closed bounded convex 
subset of X which contradicts normal structure. We may assume that 
diam C = 1 and using techniques of T. C. Lim [9] there exist sequences 
fc(1)), fc(2)), . . . , (cn

(K+2)) in C such that for all 1 ^ j g K + 1 

\imndist(cn^\co(cn^,cn^,...,cn^)) 1. 

1 for In particular, defining xn
U) = cn

U) — cn
(K+2) we have that limw||xn

(J,)| 
all 1 g j g K + 1 and also that 

||x,(1) + xn^ + . . . + xn<K+»\\/(K + 1) -> 1. 

Now, from the definition of K — UR for any choices of sequences of norm-1 
functionals (fn^), (fn™), . . . , (ttK~l)) we have 

i m n s u p i i , | | = i 

1 
J n K-^n J In K^n ) 

f {K-l)( ( i ) \ f (K-\)( ( 2 ) \ 

g(xn^) g(xn™) 

f ( i ) / r {K+l)\ 

fn{K-l)(Xn{K+l)) 
g(x„(X+1>) 

0. 

Expanding in minors along the last row and using the fact that the supremum 
is taken over all ||g|| = 1 we conclude that 

\\mn\\Mn^xnw + Mn^xn<*v + ••• + Af»<Jr+1>*)I<
jr+1>|| = 0. 

Since the above determinant is zero if the elements of the last row are re-
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placed by l's we have that 

Z S 1 Mn
U) = 0 for all n. 

Also we may assume that there is a choice of functionals (/n
(1)), . . . , (/n

(X_1)) so 
that |Mw

(jK:+1)| remains bounded away from zero. This requires some verification 
which we postpone until the end of the proof. 

Notice that X Mn
U) = — J2 Mn

{l) where the sum on the left is over positive 
Mn

uvs and on the right over negative. Hence dividing by this sum and re­
arranging gives 

lin^HE^V - £ W"ll =0 
where £ M»a) = £ K(l> = 1 and all jure

(fl, K{1) ^ 0. Without loss of generality 
assume that cn

(K+1) occurs among the right hand terms so that 

0 = lim„| |£ v.^cj» - c<*+» - ( I w ^ ' V » 

- (LI<K+IK(1)WK^)\\. 

Let Xn
(l) = \{1)/12I<K+I Xn(Z) for / < K + 1 and use the triangle inequality to 

obtain 

0 ^ limn[| |E HnU)cn - cn<
K+»\\ - (ZKK+I K<1))\\ZI<K+I K°Wl)- cn<*+»\\] 

= Hmn[l - Z W i V ° ] = limn(Mn<
K+»/ZMnW). 

However, since J2 Mn
{l) is clearly bounded, this contradicts the fact that 

Mn
{K+l) is bounded away from zero. 

The preceding argument shows that either C has normal structure or else 
the K X K upper left hand determinants go to zero for all choices of functionals. 
However, the same argument applied to this determinant either contradicts 
the abnormality of C or implies that the upper left hand (K — 1) X (K — 1) 
determinants go to zero, etc., e.g. 

1 1 

M{K+l) 

r (K+l) 

Continuing in this manner we conclude that 

1 1 I 

K*»(1)) £fe ( 2 )) l 
lim sup||p| |=i } -
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which is impossible since 

= \\Cn{2) - C , ( » | | - l . 

It has been pointed out by James [6] that there is an equivalent norm for /2 

which fails normal structure. Because of the preceding result this example is 
super-reflexive but not K — UR for any K. However, Karlovitz [7] has shown 
that /2 in this equivalent norm still has the fixed point property, i.e. the con­
clusion of Kirk's Theorem holds. In view of this we would like to end with the 
following question: Does every super-reflexive space have the fixed point 
property? 
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