
BULL. AUSTRAL. MATH. SOC. 0 5 A I 0 , I 0 A 2 5

VOL. 14 ( 1 9 7 6 ) , 2 9 9 - 3 0 2 .

On a problem of Kurt Mahler concerning

binomial coefficents

Ian S. Williams

Recently Kurt Mahler asked: for which natural numbers N is

the least common multiple of all the 'binomial coefficients L

I. J
the product of the primes less than or equal to N 1

We obtain a formula for the least common multiple of all the

binomial coefficients of any natural number N and hence show

that 2, 11 , and 23 are the only solutions to Mahler's

problem.

Write LCM.. for the least common multiple of the binomial

(N\
coefficients " of N , k = 0, ..., N .

r.
LEMMA. Let N be any natural number and p.1 be a prime power such

that p., < N+l < p. . Then

1

where the product is over all primes p • £

Proof. Let q be any prime power less than or equal to N + 1 .
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Then q divides one and only one of

N+l, N, N-l, . . . , N+2-q .

Hence q divides the numerator and not the denominator of

m ( N + l ) N ( N - l ) . . . ( N + 2 - g ) [ » ) , „ ,
(1> 1 . 2 . 3 . . - ( q - 1 ) U - l J '

r. r. r.+l r. ( m l
So if q = p .V , where p ̂  S N+l < p .V , then p.% \ (N+l)\ . But

1f If 1f If l^?~ J

r.
this is true for any prime power p. . Hence

r.
~ ]> y | (ff+l)LCM .

It remains to show that if p | q = pa , then no higher power of p than

pa divides the left-hand side of (l). This could only happen if some

power of p , say p < p occurred more times in the numerator than in

the denominator; this clearly cannot happen, as p divides exactly

p ~ - 1 other terms in both the numerator and denominator.

Hence we have the result.

THEOREM. Let N be a natural number. Suppose the least common

multiple of the binomial coefficients of N is the product of the primes

less than or equal to N . Then N is 2, 11 , or 23 .

Proof. Write LCM = ~| [p. for the least common multiple of the
v

primes less than or equal to N . Now using the previous lemma,

0

where p . runs over all primes less than or equal to N + 1 , and where

r. r.+l
p • 5 N+l < p ? . Hence, unless N + l is a prime or prime power,
tl 3
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Clearly r. = 1 for any prime greater than Vfl+1 , and so such a prime
3

does not appear in (2). Similarly for any prime less than or equal to

r . r .+1
ViV+1 the condition p P £ ff+1 < p Z7 ensures that r . 2 2 , and so it

e3 y3 3

does appear in (2). Thus every prime less than VN+1 is a factor of

N + l and not of N . Hence N is a prime.

Therefore we consider the primes N of the form

r.-l

» = TT P/ -1

r. r .+1
in which every prime p . 2 Vii+l occurs and for which p . - N+l < p .

3 3 3

First we show N + l cannot he divisible by 3 to a power greater

than or equal to 2 . Suppose the contrary; then

N = 2a32+bk - 1 , a > 0 , b > 0 ,

satisfies all the assumptions. Thus 3 5 N+l < 3 and a i 3 (since

2 a + 1 < N+l < 2 a + 2 ) . But this means

33+b s 2a333

3 5 2afe < 32

which can only be satisfied for a = 3 * fe = 1 . In this case

// = 2332+2j - 1 , 2 a + 1 = 16 £ N+l < 2 a + 2 = 3 2 and so b < 0 , which is a

contradiction.

Hence the power of 3 is 0 or 1 . How consider b = 0 ; then

N = 2a - 1

and 3 > Vtf+1 ; so N = 7 or 3 which clearly do not satisfy the

assumption that 2 a + 1 5 ff+1 < 2 a + 2 .

It remains to consider natural numbers 1 = 2 3 - 1 . We must have

32 < N+l < 33 , 2 a + 1 £ ff+1 < 2 a + 2 , and 5 >
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Clearly N = 11 = 22.3 - 1 and N = 23 = 23.3 - 1 are the only natural

numbers which satisfy all the assumptions, when N + 1 is not a prime or

prime power.

r.
If fl + 1 isa prime power, p. , then from the lemma, p. will

not divide LCMW and so kCM is not a product of the primes less than or

equal to N .

If N + 1 is prime, then N can only equal 2 , as N must be

2 3prime using the same argument as above. Clearly LCM2 = —^- = 2 satisfies

the assumptions.

Hence we have the result.
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