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Abstract
We consider an extreme renewal process with no-mean heavy-tailed Pareto(II) inter-renewals and shape parameter 𝛼
where 0 < 𝛼 ≤ 1. Two steps are required to derive integral expressions for the analytic probability density functions
(pdfs) of the fixed finite time 𝑡 excess, age, and total life, and require extensive computations. Step 1 creates and
solves a Volterra integral equation of the second kind for the limiting pdf of a basic underlying regenerative process
defined in the text, which is used for all three fixed finite time 𝑡 pdfs. Step 2 builds the aforementioned integral
expressions based on the limiting pdf in the basic underlying regenerative process. The limiting pdfs of the fixed
finite time 𝑡 pdfs as 𝑡 → ∞ do not exist. To reasonably observe the large 𝑡 pdfs in the extreme renewal process,
we approximate them using the limiting pdfs having simple well-known formulas, in a companion renewal process
where inter-renewals are right-truncated Pareto(II) variates with finite mean; this does not involve any computations.
The distance between the approximating limiting pdfs and the analytic fixed finite time large 𝑡 pdfs is given by an
𝐿1 metric taking values in (0, 1), where “near 0” means “close” and “near 1” means “far”.

1. Introduction

The analytic fixed finite time 𝑡 > 0 probability density functions (pdfs) of excess, age, and total life in a
renewal process, are of interest theoretically, and to applied probabilists, engineers, and scientists (see
Figure 1 in Section 2.1). Feller [8], Smith [20], Cox [7], Karlin and Taylor [11], Ross [15] pp. 44–45, and
others have usually considered these pdfs when the inter-renewals are continuous variates with a finite
mean. Recent work in applied probability and stochastic modeling has generated interest in the analytic
fixed finite time 𝑡 pdfs of excess, age, and total life in a renewal processes where the inter-renewals are
no-mean, heavy-tailed Pareto(II) variates [2] p. 49 and [12]. Real-world applications of the Pareto(II)
distribution are given in, for example, Huang et al. [10] and Harris et al. [9]. (Note: The Pareto(II)
distribution is also called the Lomax distribution [13].)

Here, the extreme renewal process of interest has no-mean Pareto(II) inter-renewals with a shape
parameter 𝛼 ∈ (0, 1], (formula (3.5), p. 60 in [12]; formula (1.3.5), p. 11 with 𝜇 = 0 and 𝜎 = 1 in
[2]). We propose a method to approximate the analytic fixed finite time 𝑡 pdfs of excess, age, and total
life for large 𝑡 in this extreme renewal process. In that process, the analytic fixed finite time 𝑡 pdfs exist
(0 < 𝑡 < ∞), but the corresponding limiting pdfs as 𝑡 → ∞ do not exist because the inter-renewals have
no mean (Section 2.2).
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Generally, two steps involving extensive computations are required to derive integral expressions for
the analytic pdfs of the fixed finite time 𝑡 excess, age, and total life. Step 1 creates and solves a Volterra
integral equation of the second kind for the limiting pdf of a basic underlying regenerative process,
denoted by {𝑋RG(𝑠)}𝑠≥0 (subscript RG indicates “regenerative process”). Process {𝑋RG(𝑠)}𝑠≥0 is used
to derive integral expressions for all three fixed finite time 𝑡 pdfs (see Figure 3 in Section 3). It has a
threshold at the state-space fixed finite level 𝑡 of interest. Process {𝑋RG(𝑠)}𝑠≥0 is built of an infinite
sequence of i.i.d. (independent and identically distributed) realizations of the extreme renewal process
{𝑍𝑛}𝑛=1,2,.... In {𝑋RG(𝑠)}𝑠≥0, the stationary mixed pdf as 𝑠 → ∞ exists (e.g., [18,20]). We denote
this mixed pdf by {𝜋 (𝑡)

RG,0, 𝑓
(𝑡)

RG (𝑥)}𝑥∈(0,𝑡) , where 𝜋 (𝑡)
RG,0 = lim𝑠→∞ 𝑃(𝑋RG (𝑠) = 0); it is derived using a

stochastic LC method (Section 3). Step 2 derives integral expressions for all three analytic fixed finite
time 𝑡 pdfs in {𝑍𝑛}𝑛=1,2,..., in terms of {𝜋 (𝑡)

RG,0, 𝑓
(𝑡)

RG (𝑥)}0<𝑥<𝑡 (Section 3.2).
Our goal is to approximate the analytic fixed finite time large 𝑡 pdfs by applying the corresponding

limiting pdfs of a companion renewal process where the inter-renewals are right-truncated Pareto(II)
variates. These limiting pdfs have well-known formulas, so their derivations require no computations
(see Section 2.5).

We approximate the analytic fixed finite time 𝑡 pdfs of excess, age, and total life in {𝑍𝑛}𝑛=1,2,... for
large 𝑡 using the corresponding limiting pdfs in the companion renewal process {𝑍TR

𝐾,𝑛}𝑛=1,2,... having
right-truncated inter-renewals. The right truncation point 𝐾 of 𝑍TR

𝐾 is selected to satisfy a “plausible
criterion” for the approximation to be “close” over a nontrivial subset of (0, 𝐾) (Section 4).

Section 5.1 gives a measure of distance between the analytic fixed finite time 𝑡 pdfs in {𝑍𝑛}𝑛=1,2,...
and the approximating limiting pdfs in {𝑍TR

𝐾,𝑛}𝑛=1,2,..., using an 𝐿1 metric taking values in (0, 1). We
choose a measure equal to one-half of the area between the two pdfs, because it conveniently takes
values in (0, 1). A distance measure “near 0” indicates that the approximation is “close”. A distance
measure “near 1” indicates that the approximation is “far”.

Section 2 on preliminaries gives notation and properties about the standard Pareto(II) variable, which
are used later in the paper; and for the renewal process whose inter-renewals are Pareto(II) variates.
It also gives similar details about the right-truncated Pareto(II) distribution. Section 2.1 defines the
fixed finite time-𝑡 random variables. Section 2.2 further details the extreme renewal process. Section
2.3 describes the right-truncated Pareto(II) random variables. Section 2.4 gives the expected value of
the truncated Pareto(II) random variable, required for the limiting pdfs of the excess, age, and total life
variables. Section 2.5 further details the renewal process with right-truncated Pareto(II) inter-renewals,
giving the very simple formulas for the limiting pdfs of excess, age, and total life. Section 3 details the
underlying regenerative process {𝑋RG(𝑠)}𝑠≥0. Section 4 approximates the analytic fixed finite time 𝑡
pdfs (large 𝑡) of the extreme renewal process. Section 5 gives an 𝐿1 measure of distance between the
analytic fixed finite time 𝑡 pdfs for large 𝑡 in the extreme renewal process, and in the corresponding
approximating limiting pdfs in the renewal process with right-truncated Pareto(II) inter-renewals.

2. Preliminaries

This section presents preliminary results which are useful in the sequel. It describes the positions of the
three fixed finite time 𝑡 random variables of interest in the extreme renewal process {𝑍𝑛}𝑛=1,2,... (Figure
1); specifies the probability distributions of Pareto(II)(𝑥, 𝛼), and right-truncated Pareto(II)(𝑥, 𝛼) when
the truncation point is 𝐾 > 0; details the limiting pdfs of excess, age, and total life in the renewal process
with right-truncated inter-renewals (denoted by {𝑍TR

𝐾,𝑛}𝑛=1,2,...).

2.1. The three fixed finite time 𝒕 pdfs in the extreme renewal process

Figure 1 shows a sketch of an extreme renewal process where the inter-renewal times are i.i.d. Pareto(II)
r.v.s (random variables) {𝑍𝑛}𝑛=1,2,..., showing the variates of interest: excess, age, and total life with
respect to fixed finite time 𝑡.
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Figure 1. One-dimensional illustration showing the fixed finite time 𝑡 excess, age, and total life—𝑍𝑁 (𝑡)+1
(= age + excess). Figure shows 𝑍𝑁 (𝑡)+1 relative to the fixed finite time 𝑡 in the extreme renewal process
{𝑍𝑛}𝑛=1,2,....

2.2. The Pareto(II) probability distribution for inter-renewals of the extreme renewal process
{𝒁𝒏}𝒏=1,2,...

Consider the Pareto(II) inter-renewals of the extreme renewal process. Denote the cdf, ccdf (comple-
mentary cdf), and pdf of each inter-renewal in {𝑍𝑛}𝑛=1,2,... by: 𝐵(𝑥); �̄�(𝑥) := 1− 𝐵(𝑥), 0 ≤ 𝑥 < ∞; and
𝑏(𝑥), 0 < 𝑥 < ∞, respectively. The inter-renewals 𝑍𝑛

𝑑
= 𝑍

𝑑
= Pareto(II)(𝑥, 𝛼), 0 ≤ 𝑥 < ∞, 𝛼 ∈ (0, 1],

where
𝐵(𝑥) = 1 − (1 + 𝑥)−𝛼, 0 ≤ 𝑥 < ∞,
�̄�(𝑥) = 1 − 𝐵(𝑥) = (1 + 𝑥)−𝛼, 0 ≤ 𝑥 < ∞,

𝑏(𝑥) = 𝑑

𝑑𝑥
𝐵(𝑥) = 𝛼(1 + 𝑥)−𝛼−1, 0 < 𝑥 < ∞,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (1)

where 𝐵(𝑥) ≡ 𝑃(𝑍 ≤ 𝑥). Then, 𝑍 is heavy-tailed [17]. Since 𝛼 ∈ (0, 1], 𝑍 has no mean, implying that
the limiting pdfs of excess, age, and total life do not exist.

We will use the shape parameter 𝛼 = 0.5 throughout for illustrative purposes. For any value of
𝛼 ∈ (0, 1], the analysis would be similar.

Consider the 1-dimensional illustration of the extreme renewal process {𝑍𝑛}𝑛=1,2,... in Figure 1. The
fixed finite time point of interest is 𝑡 > 0. Also, 𝑁 (𝑡) := number of renewals in the interval (0, 𝑡). Let
𝑁𝑡 := number of renewals required to first exceed 𝑡, that is, 𝑁𝑡 := min{𝑛|∑𝑛

𝑖=1 𝑍𝑖 > 𝑡}. Then, 𝑁𝑡 is
a stopping time for {𝑍𝑛}𝑛=1,2,.... Also, 𝑁𝑡 = 𝑁 (𝑡) + 1, and 𝐸 [𝑁𝑡 ] = 𝐸 [𝑁 (𝑡)] + 1 ≡ 𝑀 (𝑡) + 1, where
𝑀 (𝑡) ≡ 𝐸 [𝑁 (𝑡)] is the “renewal function” (see, e.g., [11] pp. 167–169).

In {𝑍𝑛}𝑛=1,2,..., the fixed finite time 𝑡 pdfs of excess, age, and total life exist [4]. But the corresponding
limiting pdfs of excess, age, and total life as 𝑡 → ∞, do not exist because 𝑍𝑛 has no mean.

2.3. The truncated Pareto(II) probability distribution in the companion renewal process

Define a companion renewal process {𝑍TR
𝐾,𝑛}𝑛=1,2,... related to, but distinct from {𝑍𝑛}𝑛=1,2,..., where the

inter-renewals are: 𝑍TR
𝐾,𝑛

𝑑
= 𝑍TR

𝐾

𝑑
= right-truncated Pareto(II)(𝑥, 𝛼), 0 < 𝑥 < 𝐾 . The superscript “TR”

indicates that 𝐾 := right truncation point of 𝑍 . In {𝑍TR
𝐾,𝑛}𝑛=1,2,..., the limiting pdfs of excess, age, and

total life, as 𝑡 → ∞, do exist because 𝐸 [𝑍TR
𝐾 ] < ∞ (finite). Importantly, the limiting pdfs of excess, age,

and total life in {𝑍TR
𝐾,𝑛}𝑛=1,2,... have relatively simple formulas (Section 2.5).

We use the limiting pdfs of excess, age, and total life in {𝑍TR
𝐾,𝑛}𝑛=1,2,... to approximate the analytic

fixed finite time 𝑡 pdfs of interest (large 𝑡) in the extreme renewal process {𝑍𝑛}𝑛=1,2,.... No computations
are required since the theoretical formulas of the limiting pdfs are well known. This approximation
method saves a great deal of computer time required for the computational derivation of the analytic
fixed finite time 𝑡 pdfs, for even a single large 𝑡.
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Substituting from formula (1) in Section 2.2, we obtain the truncated cdf 𝐵TR
𝐾 (𝑥), ccdf 𝐵TR

𝐾 (𝑥), and
pdf 𝑏TR

𝐾 (𝑥), of 𝑍TR
𝐾 to be, respectively:

𝐵TR
𝐾 (𝑥) = 𝐵(𝑥)

𝐵(𝐾) =
1 − (1 + 𝑥)−𝛼
1 − (1 + 𝐾)−𝛼 , 0 < 𝑥 < 𝐾,

𝐵TR
𝐾 (𝑥) = 1 − 𝐵TR

𝐾 (𝑥) = 1 − 1 − (1 + 𝑥)−𝛼
1 − (1 + 𝐾)−𝛼 , 0 < 𝑥 < 𝐾,

𝑏TR
𝐾 (𝑥) = 𝑑

𝑑𝑥
𝐵TR
𝐾 (𝑥) = 𝛼(1 + 𝑥)−𝛼−1

1 − (1 + 𝐾)−𝛼 , 0 < 𝑥 < 𝐾 .

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(2)

2.4. The expected value of the right-truncated Pareto(II) at level 𝑲

For all 𝛼 ∈ (0, 1], 𝑍TR
𝐾 has a finite mean which is given in formulas (3), when using 𝐵TR

𝐾 (𝑥) in (2).

𝐸 (𝑍TR
𝐾 ) =

∫ 𝐾

𝑥=0
𝐵TR
𝐾 (𝑥) 𝑑𝑥 =

∫ 𝐾

𝑥=0

(
1 − 1 − (1 + 𝑥)−𝛼

1 − (1 + 𝐾)−𝛼
)
𝑑𝑥

=
∫ 𝐾

𝑥=0

( (1 + 𝑥)−𝛼 − (1 + 𝐾)−𝛼
1 − (1 + 𝐾)−𝛼

)
𝑑𝑥

= 𝐾 − (−𝛼 + 1)𝐾 − (1 + 𝐾)−𝛼+1 + 1
(−𝛼 + 1)(1 − (1 + 𝐾)−𝛼) , if 0 < 𝛼 < 1;

𝐸 (𝑍TR
𝐾 ) =

(
1 + 1

𝐾

)
ln(1 + 𝐾) − 1, if 𝛼 = 1.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(3)

In (3), 0 < 𝐸 (𝑍TR
𝐾 ) < 𝐾 (finite) when 𝐾 > 0. (Note: When 𝛼 = 1, inf 𝐸 (𝑍TR

𝐾 ) = inf𝐾 ↓0 𝐸 (𝑍TR
𝐾 ) = 0).

Thus, the limiting pdfs of excess, age, and total life in {𝑍TR
𝐾,𝑛}𝑛=1,2,... exist as time → ∞ (Section 2.5).

We explore using the limiting pdfs of {𝑍TR
𝐾,𝑛}𝑛=1,2,... to approximate the analytic fixed finite time 𝑡 pdfs

of excess, age, and total life for large 𝑡 in the extreme renewal process {𝑍𝑛}𝑛=1,2,.... When constructing
the renewal process {𝑍TR

𝐾,𝑛}𝑛=1,2,... we will need to determine the value of a right truncation point 𝐾
such that the limiting pdfs of excess, age, and total life approximate the corresponding analytic fixed
finite time 𝑡 pdfs in {𝑍𝑛}𝑛=1,2,... on a nontrivial subset of the interval (0, 𝐾) (Section 4). The quality of
the approximation will be measured by an 𝐿1 distance measure between the analytic fixed finite time 𝑡
pdfs in {𝑍𝑛}𝑛=1,2,... and the corresponding (approximating) limiting pdfs in {𝑍TR

𝐾,𝑛}𝑛=1,2,... (Section 5).

2.5. The limiting pdfs of excess, age, and total life in the renewal process with right-truncated
inter-renewals {𝒁TR

𝑲,𝒏}𝒏=1,2,...

Denote the limiting excess, age, and total life by 𝛾TR
𝐾 , 𝛿TR

𝐾 , and 𝛽TR
𝐾 , respectively; with corresponding

pdfs 𝑓 TR
𝛾𝐾

(𝑥), 0 < 𝑥 < 𝐾; 𝑓 TR
𝛿𝐾

(𝑥), 0 < 𝑥 < 𝑡; 𝑓 TR
𝛽𝐾

(𝑥), 0 < 𝑥 < 𝐾 , where 𝐾 > 𝑡. We use the well-known
formulas for the limiting pdfs of a standard renewal process where the inter-renewals have a finite mean
(e.g., formulas (6.2), (6.5) and (6.6), pp. 193–194, in [11]) and substitute from the formulas in (2). This
gives for the renewal process {𝑍TR

𝐾,𝑛}𝑛=1,2,...:

𝑓 TR
𝛾𝐾

(𝑥) = 1
𝐸 [𝑍TR

𝐾𝛾]
𝐵TR
𝐾𝛾

(𝑥) = 1
𝐸 [𝑍TR

𝐾𝛾]

(
1 − 1 − (1 + 𝑥)−𝛼

1 − (1 + 𝐾𝛾)−𝛼
)
, 𝑥 ∈ (0, 𝐾𝛾), 𝐾𝛾 > 𝑡, (4)

𝑓 TR
𝛿𝐾

(𝑥) = 1
𝐸 [𝑍TR

𝐾𝛿
] 𝐵

TR
𝐾𝛿

(𝑥) = 1
𝐸 [𝑍TR

𝐾𝛿
]

(
1 − 1 − (1 + 𝑥)−𝛼

1 − (1 + 𝐾𝛿)−𝛼
)
, 𝑥 ∈ (0, 𝐾𝛿), 𝐾𝛿 = 𝑡, (5)
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Figure 2. In figure 𝑍𝑛
𝑑
= 𝑍TR

𝐾𝜍
, 𝜍 = 𝛾, 𝛿, 𝛽. 𝛾𝑍 (𝑡) (slope −1) := limiting excess. 𝛿𝑍 (𝑡) (slope +1) :=

limiting age. 𝛽𝑍 (𝑡) (slope 0) := limiting total life. Expected regenerative cycles 𝐸 [𝑍TR
𝐾𝜁 ] are all equal.

𝑓 TR
𝛽𝐾

(𝑥) = 1
𝐸 [𝑍TR

𝐾𝛽
] 𝑥𝑏

TR
𝐾𝛽

(𝑥) = 1
𝐸 [𝑍TR

𝐾𝛽
] 𝑥

(
𝛼(1 + 𝑥)−𝛼−1

1 − (1 + 𝐾𝛽)−𝛼
)
, 𝑥 ∈ (0, 𝐾𝛽), 𝐾𝛽 > 𝑡, (6)

where 𝐸 [𝑍TR
𝐾𝜁 ] is given in (3) on replacing 𝐾 by 𝐾𝜁 , where 𝜁 = 𝛾, 𝛿, or 𝛽.

We can quickly check formulas (4)–(6) using the elementary renewal theorem (e.g., [16] pp. 432–433)
and the renewal reward theorem (e.g., [21] p. 33ff). Note that the sample paths of all three regenerative
processes have the same rate out of level 0 (see Figure 2), and have the same expected cycle, for example,
𝐸 [𝑍TR

𝐾𝜁
]. That is, by the elementary renewal theorem the rate out of level 0 is 1/𝐸 [𝑍TR

𝐾𝜁 ], 𝜁 = 𝛾, 𝛿. 𝛽
and all three regenerative cycles are equal.

Clarifying formula (4), the limiting pdf of excess at time 𝑡 (same as the limiting pdf of remaining
service time at instant 𝑡 (see Figure 2)). The expected number of upcrossings of arbitrary state-space
level 𝑥, (0 < 𝑥 < 𝐾) in a regenerative cycle is equal to 1 with probability 𝐵TR

𝐾𝛾
(𝑥) (probability that an

upward jump representing a service time overshoots level 𝑥). By the renewal reward theorem (first two
equalities immediately below) and the basic level crossing theorem (third equality immediately below
[3]):

𝐸 [No. of 𝑥-upcrossings in cycle]
𝐸 [cycle] =

𝐵TR
𝐾𝛾

(𝑥)
𝐸 [𝑍TR

𝐾𝛾
] = lim

𝑠→∞
D𝑠 (𝑥)

𝑠
= 𝑓 TR

𝛾𝐾
(𝑥), 0 < 𝑥 < 𝐾𝛾 ,

where D𝑠 (𝑥) is the number of sample-path downcrossings of level 𝑥 during a time interval (0, 𝑠).
The age at time 𝑡 is the time that a customer has been in service at instant 𝑡 (Figure 2). The sample

path of the regenerative process for limiting age at 𝑡 overlays the sample path of the limiting excess at
time 𝑡. Using the renewal reward theorem and basic LC theorem similarly as for the limiting excess at
time 𝑡 yields the formula

𝐵TR
𝐾𝛿

(𝑥)
𝐸 [𝑍TR

𝐾𝛿
] = lim

𝑠→∞
U𝑠 (𝑥)

𝑠
= 𝑓 TR

𝛿𝐾
(𝑥), 0 < 𝑥 < 𝐾𝛿 ,

where U𝑠 (𝑥) is the number of sample path upcrossings of level 𝑥 during time interval (0, 𝑠).
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Figure 3. Sample path of underlying regenerative process {𝑋RG(𝑠)}𝑆≥0 with i.i.d. renewal processes
{𝑍𝑛}𝑛=1,2,... in the vertical direction within the horizontal regenerative cycles. When an inter-renewal
jumps over level 𝑡 it “double jumps” immediately down to level 0, beginning a new regenerative cycle.
The 𝑎𝑖s are the times between vertical jumps. The vertical-jump sizes are inter-renewal times. The 𝑎𝑖s
are 𝑑

= Exp1 random variables, where Exp𝜇 is an exponential random variable with rate 𝜇. Also shows
SP (system point—leading point of the sample path).

The limiting total life at time 𝑡 is equal to limiting excess + limiting age. It is constant during the
service time of the customer in service at time 𝑡. It is also a regenerative process (Figure 2). The sample
path of limiting total life overlays the sample paths of the limiting excess and limiting age. The renewal
reward theorem gives:

𝐵TR
𝐾𝛽

(𝑥)
𝐸 [𝑍TR

𝐾𝛽
] = lim

𝑡→∞
U𝑡 (𝑥)

𝑡
= lim
𝑡→∞

D𝑡 (𝑥)
𝑡

=
∫ 𝐾

𝑦=𝑥

1
𝑦
𝑓 TR
𝛽𝐾

(𝑦) 𝑑𝑦, 0 < 𝑥 < 𝐾𝛽 .

Taking 𝑑/𝑑𝑥 in the left-most and right-most terms in the immediately-above formula gives

−
𝑏TR
𝐾𝛽

(𝑥)
𝐸 [𝑍TR

𝐾𝛿
] = −1

𝑥
𝑓 TR
𝛽𝐾

(𝑥), 0 < 𝑥 < 𝐾𝛽 ,

or

𝑓 TR
𝛽𝐾

(𝑥) =
𝑥𝑏TR

𝐾𝛽
(𝑥)

𝐸 [𝑍TR
𝐾𝛿
] , 0 < 𝑥 < 𝐾𝛽 .

3. Underlying regenerative process and its limiting mixed pdf {𝝅 (𝒕)
RG,0, 𝒇

(𝒕)
RG (𝒙)}0<𝒙<𝒕

Construct a sample path of the regenerative process {𝑋RG(𝑠)}𝑠≥0 with state space [0,∞) having a
threshold at the fixed finite level of interest 𝑡. The sample path is built of i.i.d. probabilistic replicas of
the extreme renewal process {𝑍𝑛}𝑛=1,...,𝑁𝑡 (Figure 3).

The properties of the sample path of {𝑋RG(𝑠)}𝑠≥0 are: (1) 𝑋 (0) = 0; (2) SP (system point—leading
point of the sample path which can jump vertically in the state space, for example, “not in Time”; see
Chapter 2 in [5]) makes upward jumps 𝑑

= 𝑍 (Pareto(II) variate with shape parameter 𝛼 ∈ (0, 1]) at an
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arbitrary Poisson rate 1/𝑎 (we select 𝑎 := 1 for simplicity). (3) Whenever a sample-path upward jump
upcrosses level 𝑡, the sample path of {𝑋RG(𝑠)}𝑠≥0 is prescribed to jump downward instantaneously into
level 0, completing a regenerative cycle, and immediately beginning a new independent regenerative
cycle. (4) The sample path on each regenerative cycle is a nondecreasing random step function starting
at level 0 during every cycle. (5) The sample path’s structure rotates the time axis of the extreme renewal
process {𝑍𝑛}𝑛=1,2,... in Figure 3 by 90◦ counterclockwise. This construction results in a sequence of
adjoining independent realizations of {𝑍𝑛}𝑛=1,2,... comprising the regenerative cycles (see [4]; also
discussed in Section 10.3.1 in [5]).

The process {𝑋RG(𝑠)}𝑠≥0 has a key limiting mixed pdf (e.g., [18,20]). The limiting mixed pdf is
denoted by {𝜋 (𝑡)

RG,0, 𝑓
(𝑡)

RG (𝑥)}0<𝑥<𝑡 , where 𝜋 (𝑡)
RG,0 := lim𝑠→∞ 𝑃(𝑋RG (𝑠) = 0) and 𝑓 (𝑡)RG (𝑥), 0 < 𝑥 < 𝑡, is the

absolutely continuous part.
The limiting mixed pdf {𝜋 (𝑡)

RG,0, 𝑓
(𝑡)

RG (𝑥)}0<𝑥<𝑡 is the time-average limiting pdf. It is the same as the
limiting pdf at the sample-path upward jump instants due to the prescribed Poisson arrivals of renewal
upward jumps, by the PASTA principle (Poisson Arrivals See Time Averages, Wolff [22]). The limiting
cdf of {𝑋RG(𝑠)}𝑠≥0 as 𝑠 → ∞, is

𝐹 (𝑡)
RG (𝑥) = 𝜋 (𝑡)

RG,0 +
∫ 𝑥

𝑦=0
𝑓 (𝑡)RG (𝑦) 𝑑𝑦, 0 ≤ 𝑥 < 𝑡, 0 < 𝑡 < ∞, (7)

with normalizing condition
𝐹 (𝑡)

RG (𝑡) = 1. (8)

The pdf {𝜋 (𝑡)
RG,0, 𝑓

(𝑡)
RG (𝑥)}0<𝑥<𝑡 is the basis for deriving integral expressions for the analytic fixed finite

time 𝑡 pdfs of the excess, age, and total life in the extreme renewal process {𝑍𝑛}𝑛=1,2,.... (An advantage
of the method used here to derive the integral expressions is: the connection with the sample path of the
underlying regenerative process gives concrete meaning to the derivations of the integral expressions.)

3.1. Obtaining an integral equation for the key limiting mixed pdf {𝝅 (𝒕)
RG,0, 𝒇

(𝒕)
RG (𝒙)}0<𝒙<𝒕 in the

underlying regenerative process {𝑿RG(𝒔)}𝒔≥0

Applying the stochastic level crossing method in Sections 3.2.1–3.2.2, p. 198, in Brill [4] (or Section
10.3 in [5]), leads to the Volterra integral equation of the second kind for 𝑓 (𝑡)RG (𝑥):

𝑓 (𝑡)RG (𝑥) = 𝜋 (𝑡)
RG,0𝛼(1 + 𝑥)−𝛼−1 + 𝛼

∫ 𝑥

𝑦=0
(1 + 𝑥 − 𝑦)−𝛼−1 𝑓 (𝑡)RG (𝑦) 𝑑𝑦, 0 < 𝑥 < 𝑡, 𝛼 > 0, (9)

and the normalizing condition

𝜋 (𝑡)
RG,0 +

∫ 𝑡

0
𝑓 (𝑡)RG (𝑥) dx = 1. (10)

Formulas (3.13) and (3.14) in Brill [4] connect the solution of Eqs. (9) and (10) to the classical
renewal function 𝑀 (𝑥) (e.g., [11] p. 169):

𝜋 (𝑡)
RG =

1
1 + 𝑀 (𝑡) , 𝑓 (𝑡)RG (𝑥) = 𝑀 ′(𝑥)

1 + 𝑀 (𝑡) , 0 < 𝑥 < 𝑡, (11)

where 𝑀 (𝑡) is equal to a series of self-convolutions of the inter-renewal cdf 𝐵(𝑥). This series may be
time-consuming computationally, and tedious to derive, especially for large 𝑡.

Therefore, we use a relatively straightforward numerical procedure (Section 3.2) to obtain a com-
putational solution for the pdf 𝑓 (𝑡)RG (𝑥), 0 < 𝑥 < 𝑡 by solving integral Eq. (9). This is followed by the
application of Eq. (10) to obtain a computational solution for 𝜋 (𝑡)

RG,0. (As a by-product, this also gets a
computational solution for 𝑀 (𝑡) by virtue of formula (11).)
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This proposed numerical procedure used here is sufficient to gain insight into the approximation of
the analytic fixed finite time 𝑡 pdfs of excess, age, and total life in the renewal process {𝑍𝑛}𝑛=1,2... for
large 𝑡 by applying the corresponding computational limiting pdfs in the companion renewal process
{𝑍TR

𝐾,𝑛}𝑛=1,2,....
Section 5 considers a plausible 𝐿1 measure of the distance (discrepancy) between these two pdfs for

each time-𝑡 random variable, and gives a computed numerical value of the corresponding measure of
distance.

(The literature contains various numerical solution techniques to solve Volterra integral equations of
the second kind, e.g., [6,14]—and references therein.)

3.2. Details about solving for the limiting mixed pdf {𝝅 (𝒕)
RG,0, 𝒇

(𝒕)
RG, (𝒙)}𝒙∈(0,𝒕) of the regenerative

process {𝑿RG(𝒔)}𝒔≥0

We solve Eq. (9) with the normalizing condition (10) to derive {𝜋 (𝑡)
RG,0, 𝑓

(𝑡)
RG, (𝑥)}𝑥∈(0,𝑡) using directly the

Riemann–Stieltjes definition of an integral on a finite interval (e.g., [1] p. 141). The resulting numerical
solution is a step function with respect to a preassigned partition of state-space interval (0, 𝑡) with a
norm ℎ > 0. To get a good computational solution for {𝜋 (𝑡)

RG,0, 𝑓
(𝑡)

RG (𝑥)}𝑥∈(0,𝑡) , we choose small ℎ such
that 𝑡 = 𝑁ℎ where 𝑁 is a positive integer.

3.2.1. Use of Pareto(II) shape parameter 𝛼 = 0.5 and large fixed finite time 𝑡 = 400
In the remainder of this paper, we consider a generic case where the shape parameter 𝛼 of the Pareto(II)-
distributed inter-renewals of the process {𝑍𝑛}𝑛=1,2,... is 𝛼 = 0.5 and the “large fixed finite time of
interest” is 𝑡 := 400, unless otherwise stated. These values help to increase insight in approximating the
analytic fixed finite time 𝑡 pdfs of excess, age, and total life for large 𝑡 in the renewal process {𝑍𝑛}𝑛=1,2...
by using the limiting pdfs in the companion renewal process {𝑍TR

𝐾,𝑛}𝑛=1,2,..., given in formulas (4)–(6)
in Section 2.5.

3.2.2. Details about computer program to compute limiting mixed pdf {𝜋 (𝑡)
RG,0, 𝑓

(𝑡)
RG, (𝑥)}𝑥∈(0,𝑡) of the

regenerative process {𝑋RG (𝑠)}𝑠≥0
Let 𝑓 (𝑡)RG∗(𝑥) = 𝑓 (𝑡)RG (𝑥)/𝜋 (𝑡)

RG,0, 𝑥 ∈ (0, 𝑡). This transforms Eq. (9) into the following integral equation for
𝑓 (𝑡)RG∗ (𝑥):

𝑓 (𝑡)RG∗(𝑥) = 𝛼(1 + 𝑥)−𝛼−1 + 𝛼

∫ 𝑥

𝑦=0
(1 + 𝑥 − 𝑦)−𝛼−1 𝑓 (𝑡)RG∗(𝑦) 𝑑𝑦, 0 < 𝑥 < 𝑡. (12)

The computation consists of the following five steps.

Step 1. Compute and store in computer memory:

𝑏(𝑖ℎ) := 𝛼(1 + 𝑖ℎ)−𝛼−1, 𝑖 = 0, . . . , 𝑁, ℎ > 0. (13)

Step 2. Using Eq. (12), start the computation with 𝑖 = 0, that is,

𝑓 (𝑡)RG∗(𝑥) = 𝑏(0) + 0 = 𝛼, 0 < 𝑥 < ℎ. (14)

Compute for 𝑖 = 1, . . . , 𝑁 ,

𝑓 (𝑡)RG∗(𝑖ℎ) = 𝛼(1 + 𝑖ℎ)−𝛼−1 +
∫ 𝑖ℎ

𝑦=0
𝛼(1 + 𝑖ℎ − 𝑦)−𝛼−1 𝑓 (𝑡)RG∗(𝑦) 𝑑𝑦

= 𝛼(1 + 𝑖ℎ)−𝛼−1 +
𝑖∑
𝑗=1

∫ 𝑗ℎ

𝑦=( 𝑗−1)ℎ
𝛼(1 + 𝑖ℎ − 𝑦)−𝛼−1 𝑓 (𝑡)RG∗(𝑦) 𝑑𝑦, 𝑖 = 1, . . . , 𝑁. (15)
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where 𝑓 (𝑡)RG∗ (𝑦) = 𝑓 (𝑡)RG∗((𝑖 − 1)ℎ), (𝑖 − 1)ℎ < 𝑦 < 𝑖ℎ, 𝑖 = 1, . . . , 𝑁 .
This gives the values of 𝑓 (𝑡)RG∗(𝑖ℎ), 𝑖 = 1, . . . , 𝑁 .

Step 3. From Step 2, construct the step function

𝑓 (𝑡)RG∗ (𝑥) = 𝑓 (𝑡)RG∗ ((𝑖 − 1)ℎ), 𝑥 ∈ ((𝑖 − 1)ℎ, 𝑖ℎ), 𝑖 = 1, . . . , 𝑁. (16)

Step 4. Compute the estimation for∫ 𝑡

𝑥=0
𝑓 (𝑡)RG∗ (𝑥) 𝑑𝑥 ≈ ℎ

𝑁∑
𝑖=1

𝑓 (𝑡)RG∗ (𝑖ℎ). (17)

Step 5. Denote the computational solution for {𝜋 (𝑡)
RG,0, 𝑓

(𝑡)
RG (𝑥)}𝑥∈(0,𝑡) by {�𝜋 (𝑡)

RG,0, �̂�
(𝑡)

RG (𝑥)}𝑥∈(0,𝑡) . Then,

�̂� (𝑡)RG (𝑥) = �
𝜋 (𝑡)

RG,0 �̂�
(𝑡)

RG∗(𝑥), 0 < 𝑥 < 𝑡, (18)�
𝜋 (𝑡)

RG,0 +
∫ 𝑡

0
�̂� (𝑡)RG (𝑥) 𝑑𝑥 = �

𝜋 (𝑡)
RG,0 +

�
𝜋 (𝑡)

RG,0

∫ 𝑡

0
�̂� (𝑡)RG∗ (𝑥) 𝑑𝑥 = 1

≈ �
𝜋 (𝑡)

RG,0 +
�
𝜋 (𝑡)

RG,0ℎ
𝑁∑
𝑖=1

�̂� (𝑡)RG∗(𝑖ℎ) 𝑑𝑥 = 1, (19)

giving �
𝜋 (𝑡)

RG,0 ≈ 1

1 + ℎ
∑𝑁
𝑖=1 �̂� (𝑡)RG∗ (𝑖ℎ)

. (20)

To make the computational solutions concrete, we assume, in addition to 𝛼 = 0.5, 𝑡 = 400, that ℎ = 0.1,
𝑁 = 4000.

In the sequel, we denote pdfs and related quantities which we derive computationally, by using a
“hat”, for example, “p̂df”. Quantities which are known or derived from theory will not have a “hat”.

The computational mixed pdf {�𝜋 (𝑡)
RG,0, �̂�

(𝑡)
RG (𝑥)}0<𝑥<𝑡 is plotted in Figure 4.

The computational solutions can be improved in various ways, for example, making the norm size ℎ
smaller and the corresponding 𝑁 larger; using trapezoidal areas instead of rectangular areas in intervals
((𝑖 − 1)ℎ, 𝑖ℎ), 𝑖 = 1, . . . , 𝑁; etc. (see [6]). Section 4 displays the analytic fixed finite time 𝑡 pdfs of
excess, age, and total life in the extreme renewal process {𝑍𝑛}𝑛=1,2..., with the corresponding limiting
pdfs of the companion renewal process {𝑍TR

𝐾,𝑛}𝑛=1,2,..., given in Section 2.5. (Note: The limiting pdfs are
known from theory and do not require any extra computation here.)

3.3. Obtaining integral expressions for the analytic fixed finite time 𝒕 pdfs in the extreme renewal
process {𝒁𝒏}𝒏=1,2,..., 0 < 𝒕 < ∞

Using the computational solutions for the mixed pdf {�𝜋 (𝑡)
RG,0, �̂�

(𝑡)
RG (𝑥)}0<𝑥<𝑡 of the regenerative process

{𝑋RG(𝑠)}𝑠≥0, we create integral expressions of the analytic fixed finite time 𝑡 pdfs in {𝑍𝑛}𝑛=1,2....
Denote the analytic fixed finite time 𝑡 excess, age, and total life by 𝛾𝑡 , 𝛿𝑡 , and 𝛽𝑡 , respectively,

with corresponding pdfs: �̂�𝛾𝑡 (𝑥), 0 < 𝑥 < ∞; {𝜋𝛿𝑡 , �̂�𝛿𝑡 (𝑥)}0<𝑥<𝑡 (Note: the atom 𝜋𝛿𝑡 ≈ 𝑃(𝛿𝑡 = 𝑡); the
computational pdf of total life is denoted by �̂�𝛽𝑡 (𝑥), 0 < 𝑥 < ∞.)

For each large 𝑡 > 0, evaluating the pdf {�𝜋 (𝑡)
RG,0, �̂�

(𝑡)
RG (𝑥)}0<𝑥<𝑡 may require a time-consuming com-

putational solution of a Volterra integral equation of the second kind, due to the nature of the Pareto(II)
distribution. Increasing values of 𝑡 require corresponding increasing computation times.)
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Figure 4. Computational mixed limiting pdf of the regenerative process {�𝜋 (𝑡)
RG,0,

�
𝑓 (𝑡)RG (𝑥)}𝑥∈(0,𝑡) (see Eq.

(9)). 𝛼 = 0.5, 𝑡 = 400; �
𝜋 (𝑡)

RG,0 = 0.072996.

Formulas (21)–(23) are obtained from formulas derived in Brill [4]. For example, formula (4.4a) in
[4] gives

𝑓𝛾𝑡 (𝑥) = 𝑏(𝑡 + 𝑥) +
∫ 𝑡

𝑦=0
𝑏(𝑡 + 𝑥 − 𝑦) 𝑓

(𝑡)
RG (𝑦)
𝜋 (𝑡)

RG,0

𝑑𝑦, 0 < 𝑥 < ∞. (21)

Formula (4.11) in [4] gives

𝑓𝛿𝑡 (𝑥) = �̄�(𝑥) 𝑓
(𝑡)

RG (𝑡 − 𝑥)
𝜋 (𝑡)

RG,0

, 0 < 𝑥 < 𝑡; 𝜋𝛿𝑡 = �̄�(𝑡). (22)

The formula for 𝑓𝛽𝑡 (𝑥), 0 < 𝑥 < ∞, is given in formula (4.13) in [4], and also in formula (23) for
convenience.

𝑓𝛽𝑡 (𝑥) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
𝑏(𝑥)

∫ 𝑡

𝑦=𝑡−𝑥

𝑓 (𝑡)RG (𝑦)
𝜋 (𝑡)

RG,0
𝑑𝑦, 0 < 𝑥 < 𝑡,

𝑏(𝑥)
(
1 +

∫ 𝑡

𝑦=𝑡−𝑥

𝑓 (𝑡)RG (𝑦)
𝜋 (𝑡)

RG,0

𝑑𝑦

)
, 𝑡 ≤ 𝑥 < ∞.

(23)

The formulas (21)–(23), and those for �̄�(𝑥) and 𝑏(𝑥) in formula (1), are valid when the inter-renewals
are 𝑑

= Pareto(II) variate with shape parameter 𝛼 ∈ (0, 1].

Remark 1. Formula (22) shows that 𝛿𝑡 has an atom at level 𝑡 with probability 𝜋𝛿𝑡 = (1+ 𝑡)−𝛼. Formula
(23) shows that 𝑓𝛽𝑡 (𝑥) has a discontinuity at level 𝑥 = 𝑡 of size

𝑓𝛽𝑡 (𝑡+) − 𝑓𝛽𝑡 (𝑡−) = 𝑏(𝑡) = 𝛼(1 + 𝑡)−𝛼−1. (24)
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Figure 5. �̂�𝛾𝑡 (𝑥), 0 < 𝑥 < 800, 𝛼 = 0.5, 𝑡 = 400, ℎ = 0.1, 𝑁 = 4000.

Figure 6. {𝜋𝛿𝑡 , �̂�𝛿𝑡 (𝑥)}0<𝑥<𝑡 , 𝛼 = 0.5, 𝑡 = 400, ℎ = 0.1, 𝑁 = 4000. 𝜋𝛿𝑡 = 0.049938.

We obtain computational results for the analytic fixed finite time 𝑡 pdfs in formulas (21)–(23) by
substituting in them the computational step function {�𝜋 (𝑡)

RG,0, �̂�
(𝑡)

RG (𝑥)}0<𝑥<𝑡 given in formulas (18) and

(20) for the pdf of the regenerative process {�𝜋 (𝑡)
RG,0, �̂�

(𝑡)
RG (𝑥)}0<𝑥<𝑡 , where 𝑡 ∈ (0,∞).

The computational analytic fixed finite time 𝑡 pdfs in {𝑍𝑛}𝑛=1,2,... : �̂�𝛾𝑡 (𝑥), 𝑥 > 0, {𝜋𝛿𝑡 , �̂�𝛿𝑡 (𝑥)}0<𝑥<𝑡 ,

and �̂�𝛽𝑡 (𝑥), 𝑥 > 0, are specified directly in terms of {�𝜋 (𝑡)
RG,0, �̂�

(𝑡)
RG (𝑥)}0<𝑥<𝑡 in {𝑋RG(𝑠)}𝑠≥0 (Section

3.2.2). Examples of these estimated analytic fixed finite time 𝑡 pdfs are plotted in Figures 5, 6, and 7,
respectively.

We give further discussion on Figures 6 and 7 in Section 5.
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Figure 7. �̂�𝛽𝑡 (𝑥), 0 < 𝑥 < 800, 𝛼 = 0.5, 𝑡 = 400, ℎ = 0.1, 𝑁 = 4000. Discontinuity at time point 𝑡 is
equal to 𝑏(𝑡) = 𝛼(1 + 𝑡)−𝛼−1.

4. Using limiting pdfs of {𝒁TR
𝑲,𝒏}𝒏=1,2,... to approximate analytic fixed finite time 𝒕 pdfs of

{𝒁𝒏}𝒏=1,2,... (fixed finite large 𝒕)

We use the limiting pdfs 𝑓 TR
𝜁𝐾

(𝑥), 0 < 𝑥 < 𝜁𝐾 , (𝜁 = 𝛾, 𝛿, 𝛽) given by formulas (4)–(6) in Section 2.5,
to approximate the corresponding analytic fixed finite time 𝑡 pdfs �̂�𝜁𝑡 (𝑥), 0 < 𝑥 < 𝐾𝜁 (𝜁 = 𝛾, 𝛿, 𝛽) in
the extreme renewal process {𝑍𝑛}𝑛=1,2,... (𝑡 large). Computing analytic pdfs �̂�𝜁𝑡 (𝑥), 𝜁 = 𝛾, 𝛿𝑡 , 𝛽𝑡 , for
{𝑍𝑛}𝑛=1,2,... is time-consuming, requiring numerical solutions of Volterra integral equations and related
quantities (Section 3.3). This tediousness increases motivation to apply the no-computation well-known
limiting pdfs 𝑓 TR

𝜁𝐾
(𝑥)s to approximate �̂�𝜁𝑡 (𝑥), 𝜁 = 𝛾, 𝛿, 𝛽, (𝑡 large).

4.1. Selecting right truncation points of the inter-renewals in the renewal process {𝒁TR
𝑲,𝒏}𝒏=1,2,...

We derive the right truncation points of the Pareto(II) variate, 𝐾𝛾 , 𝐾𝛿, , and 𝐾𝛽 , which are useful for
approximating the fixed finite 𝑡 pdfs of excess, age, and total life, respectively. The resulting right-
truncated inter-renewals, denoted by 𝑍TR

𝐾𝛾
, 𝑍TR

𝐾𝛿,
, and 𝑍TR

𝐾𝛽
, respectively, have pdfs given by formulas

(4)–(6) on interval (0, 𝐾𝜁 ), 𝜁 = 𝛾, 𝛿, 𝛽. The 𝑍TR
𝐾𝜁

s in the renewal process {𝑍TR
𝐾𝜍 ,𝑛

}𝑛=1,2,...have the same
shape parameter𝛼 as the Pareto(II) variate in the original extreme renewal process of interest {𝑍𝑛}𝑛=1,2....

4.2. Details for approximating the analytic fixed finite time pdfs of 𝜸𝒕 , 𝜹𝒕 , and 𝜷𝒕

4.2.1. Details for approximating the pdf of 𝛾𝑡
Letting 𝑥 ↓ 0 in formula (21) gives

𝑓𝛾𝑡 (0+) = 𝛼(1 + 𝑡)−𝛼−1 + 𝛼

∫ 𝑡

𝑦=0
(1 + 𝑡 − 𝑦)−𝛼−1 𝑓 (𝑡)RG (𝑦)

𝜋 (𝑡)
RG,0

𝑑𝑦, 0 < 𝑡 < ∞. (25)
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Figure 8. Analytical time 𝑡 pdf of excess �̂�𝛾𝑡 (𝑥) (solid blue line) versus approximating pdf 𝑓 TR
𝛾𝐾

(𝑥) (red
line), 0 < 𝑥 < 800. 𝛼 = 0.5, fixed finite 𝑡 = 400.

Since 𝐵TR
𝐾𝛾

(0) = 1 in (4), we equate the values of formula (25) and (4) at 𝑥 = 0+ and solve for 𝐾𝛾 in the
equation

𝑓𝛾𝑡 (0+) =
1

𝐸 [𝑍TR
𝐾𝛾]

, (26)

where 𝐸 [𝑍TR
𝐾𝛾] is given in formula (3). The solution of (26) is 𝐾𝛾 for the inter-renewals in {𝑍TR

𝐾,𝑛}𝑛=1,2,....
We shall use the Policy expressed by Eq. (26) for the approximation procedure because it is plausible
and of theoretical interest.

When 𝑡 = 400 (considered here as a large 𝑡) and 𝛼 = 0.5, Eq. (26) gives 𝐾𝛾 = 3877.5672 and
𝐸 (𝑍TR

𝐾 ) = 61.2781. The right truncation point 𝐾𝛾 is significantly greater than 𝑡 = 400. Pdf �̂�𝛾𝑡 (𝑥) versus
pdf 𝑓 TR

𝛾𝐾
(𝑥) is plotted in Figure 8. The closeness of the two pdfs appears to be good.

4.2.2. Details for approximating the pdf of 𝛿𝑡
From the discussion in Section 2.5 and Figure 2, we have

𝐸 [𝑍TR
𝐾𝛿
] = 𝐸 [𝑍TR

𝐾𝛽
] = 𝐸 [𝑍TR

𝐾𝛾
] . (27)

Note that 𝐾𝛿 = 𝐾𝛾 = 3877.5672. In pdf, {𝜋𝛿𝑡 , �̂�𝛿𝑡 (𝑥)}0<𝑥<𝑡 , 𝜋𝛿𝑡 > 0 is a small probability when 𝑡 is
large. The absolutely continuous part of the pdf �̂�𝛿𝑡 (𝑥) versus 𝑓 TR

𝛿𝐾
(𝑥), 0 < 𝑥 < 𝑡 (𝑡 = 400), is plotted in

Figure 9. The closeness between the two pdfs appears to be good on the nontrivial interval (0, 200), the
discrepancy increases rapidly on (200, 400).

4.2.3. Details for approximating the pdf of 𝛽𝑡
Using an equation similar to Eq. (26) and letting 𝑥 = 0 gives “0 = 0”, which does not provide an equation
directly for 𝐾𝛽 . Hence, we will use a plausible 𝐾𝛽 > 0. We now compare analytic pdf �̂�𝛽𝑡 (𝑥) with the
corresponding approximating pdf 𝑓 TR

𝛽𝐾
(𝑥). When 𝑡 = 400 and 𝛼 = 0.5, we use 𝐾𝛽 = 3877.5672; giving

𝐸 [𝑍𝐾𝛽 ] = 61.2781, the same as for 𝐾𝛾 and for 𝐾𝛿 . Pdf �̂�𝛽𝑡 (𝑥) versus limiting pdf 𝑓𝐾𝛽 (𝑥) is plotted in
Figure 10.
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Figure 9. Analytic time 𝑡 pdf of �̂�𝛿𝑡 (𝑥) (solid blue line) versus 𝑓 TR
𝛿𝐾

(𝑥) (red line), 0 < 𝑥 < 400. 𝛼 = 0.5,
fixed finite 𝑡 = 400.

Figure 10. �̂�𝛽𝑡 (𝑥) (blue line) versus 𝑓 TR
𝛽𝐾

(𝑥) (red line), 0 < 𝑥 < 800. 𝛼 = 0.5, fixed finite 𝑡 = 400.

5. Measure of distance between the analytic fixed finite time 𝒕 pdfs and the limiting pdfs of the
renewal process {𝒁TR

𝑲,𝒏}𝒏=1,2,...

We quantify the notion: “The limiting pdf 𝑓𝜁𝐾 (·) of the renewal process {𝑍TR
𝐾,𝑛}𝑛=1,2,... approximates

the analytic fixed finite time 𝑡 pdf �̂�𝜁𝑡 (·) for 𝜁 = 𝛾, 𝛿, 𝛽”, by using an 𝐿1 measure based on the metric
| �̂�𝜁𝑡 (𝑥) − 𝑓 TR

𝜁𝐾
(𝑥) |, 0 < 𝑥 < 𝐾𝜁 . This metric leads to an integral measure for the distance between the
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analytic pdfs �̂�𝜁𝑡 (𝑥) and the corresponding approximating limiting pdfs 𝑓 TR
𝜁𝐾

(𝑥) for 𝑥 ∈ (0, 𝐾𝜁 ), 𝜁 = 𝛾,
𝛿, 𝛽.

5.1. The metric |̂𝒇𝜻𝒕 (𝒙) − 𝒇 TR
𝜻𝑲

(𝒙)|, 𝜻 = 𝜸, 𝜹, 𝜷

We use a measure of distance (discrepancy) motivated by the areas between the fixed time 𝑡 pdfs �̂�𝜁𝑡 (𝑥)
and the approximating pdfs 𝑓 TR

𝜁𝐾
(𝑥). The areas between the pdfs must be in the interval (0, 2) since

the areas below each pdf is equal to 1. The 𝐿1 measure between the pdfs accounts for all 𝑥 ∈ (0, 𝐾𝜁 ),
𝜁 = 𝛾, 𝛿, 𝛽. Denote this measure by

𝜌( �̂�𝜁𝑡 , 𝑓 TR
𝜁𝐾

) = 1
2

∫ 𝐾𝜁

𝑥=0
| �̂�𝜁𝑡 (𝑥) − 𝑓 TR

𝜁𝐾
(𝑥) | 𝑑𝑥, 𝜁 = 𝛾, 𝛿, 𝛽, (28)

where
0 ≤ 𝜌( �̂�𝜁𝑡 , 𝑓 TR

𝜁𝐾
) < 1. (29)

The measure 𝜌( �̂�𝜁𝑡 , 𝑓 TR
𝜁𝐾

) = 0 iff �̂�𝜁𝑡 (𝑥) = 𝑓 TR
𝜁𝐾

(𝑥) for all 𝑥 ∈ (0, 𝐾𝜁 ). Moreover, 𝜌( �̂�𝜁𝑡 , 𝑓 TR
𝜁𝐾

) < 1.
The less the distance 𝜌( �̂�𝜁𝑡 , 𝑓 TR

𝜁𝐾
), the better is the approximation (i.e., 𝜌( �̂�𝜁𝑡 , 𝑓 TR

𝜁𝐾
) is nearer to 0). The

greater the distance 𝜌( �̂�𝜁𝑡 , 𝑓 TR
𝜁𝐾

), the worse is the approximation (i.e., 𝜌( �̂�𝜁𝑡 , 𝑓 TR
𝜁𝐾

) is nearer to 1).
(Other measures of discrepancy between pdfs are given on p. 35 and in Section 3.7 in [19].)

5.2. Example values of the measure 𝝆(̂𝒇𝜻𝒕 , 𝒇 TR
𝜻𝑲

)
In the three examples here, the shape parameter of the Pareto(II) distribution is 𝛼 = 0.5.

5.2.1. Excess when fixed time 𝑡 = 400
For the example in Figure 8, we obtain 𝜌( �̂�𝛾𝑡 , 𝑓 TR

𝛾𝐾
) = 0.198468. The distance is uniformly quite close

on the entire time interval (0, 800). The approximation of pdf �̂�𝛾𝑡 by using pdf 𝜌( �̂�𝛾𝑡 , 𝑓 TR
𝛾𝐾

) is good.

5.2.2. Age when fixed time 𝑡 = 400
For the example in Figure 9, we obtain 𝜌( �̂�𝛿𝑡 , 𝑓 TR

𝛿𝐾
) = 0.475558. The distance between the two pdfs

is quite close on (0, 200). It is not uniformly close on (0,400); starting at approximately time 200, the
discrepancy increases rapidly on the interval (200, 400). In addition, there is an atom with probability
0.049938 at time 𝑡. The approximation of pdf �̂�𝛿𝑡 using 𝜌( �̂�𝛿𝑡 , 𝑓 TR

𝛿𝐾
) is medium. Generally, 𝜌( �̂�𝛿𝑡 , 𝑓 TR

𝛿𝐾
)

gives the analyst an idea of where the pdf �̂�𝛿𝑡 (𝑥) is located relative to 𝑓 TR
𝛿𝐾

(𝑥).

5.2.3. Total life when fixed time 𝑡 = 400
For the example in Figure 10, we obtain 𝜌( �̂�𝛽𝑡 , 𝑓 TR

𝛽𝐾
) = 0.281637. The distance between the two pdfs

is close on intervals (0, 150) and on (650, 800). The overall distance is not uniformly close. The
approximation of pdf �̂�𝛽𝑡 using 𝜌( �̂�𝛽𝑡 , 𝑓 TR

𝛽𝐾
) is between good and medium. There is a rise in discrepancy

starting at approximately time 150 and increasing rapidly on (150, 400). This rise appears similar to the
discrepancy pattern in Figure 9 on interval (200, 400), for approximating �̂�𝛿𝑡 (𝑥). The variate of “total
life” is equal to “age + excess” (see Figure 1). In Figure 10, on interval (400, 800), the distance decreases
steadily, resembling Figure 8 for 𝜌( �̂�𝛾𝑡 , 𝑓 TR

𝛾𝐾
). The discrepancy patterns for all three fixed finite time 𝑡

pdfs appear to be related.

6. Conclusion

(1) This article proposes a technique for approximating the analytic fixed finite time 𝑡 pdfs for large 𝑡,
of excess, age, and total life, in a renewal process where the inter-renewals have a no-mean
heavy-tailed distribution (extreme renewal process).
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(2) For the inter-renewals, we use the Pareto(II) variate (e.g., [2]) with shape parameter 𝛼 ∈ (0, 1], as a
generic example throughout the article, because of its common occurrence in recent research and
applications.

(3) Obtaining the analytic fixed finite time 𝑡 pdfs (𝑡 large) of excess age, and total life requires
time-consuming computations. The greater 𝑡 is, the more time-consuming is the computation. The
approximating pdfs are the limiting pdfs of the fixed finite time 𝑡 variates as 𝑡 → ∞ in a companion
renewal process, denoted by {𝑍TR

𝐾,𝑛}𝑛=1,2,..., where the inter-renewals are right-truncated Pareto(II)
variates with finite mean, finite right truncation point 𝐾 > 0 and the same shape parameter
𝛼 ∈ (0, 1]. The limiting pdfs in {𝑍TR

𝐾,𝑛}𝑛=1,2,... exist because the inter-renewals have a finite mean,
and have well-known formulas available from theory, not requiring any computation in the
presented technique.

(4) An 𝐿1 distance measure between the analytic fixed finite time 𝑡 pdfs of the excess, age, and total life
(large 𝑡) in the extreme renewal process of interest {𝑍𝑛}𝑛=1,2,..., and the approximating limiting pdfs
of excess, age, and total life in the companion renewal process {𝑍TR

𝐾,𝑛}𝑛=1,2,... is considered in
Section 5.
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