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ON THE NUMBER OF RUNS
FOR BERNOULLI ARRAYS
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Abstract

We introduce and motivate the study of (n + 1) × r arrays X with Bernoulli
entries Xk,j and independently distributed rows. We study the distribution of Sn =∑r

j=1
∑n

k=1 Xk,jXk+1,j , which denotes the number of consecutive pairs of successes
(or runs of length 2) when reading the array down the columns and across the rows.
With the case r = 1 having been studied by several authors, and permitting some initial
inferences for the general case r > 1, we examine various distributional properties and
representations of Sn for the case r = 2, and, using a more explicit analysis, the case of
multinomial and identically distributed rows. Applications are also given in cases where
the array X arises from a Pólya sampling scheme.
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1. Introduction

For an array X of Bernoulli random variables Xk,j , k � 1 and j = 1, . . . , r , such that the
random vectors Xk = (Xk,1, . . . , Xk,r )

� are independent, we study the distributional properties
of Sn = ∑n

k=1 X�
k Xk+1, n ≥ 1, which denotes the number of pairs of consecutive Bernoulli

successes (or runs of length 2) in the array X when reading down the lines and across the
columns. We may alternatively write

Sn =
r∑

j=1

n∑
k=1

Xk,jXk+1,j =
r∑

j=1

Zj (1)

with

Zj =
n∑

k=1

Xk,jXk+1,j .

As an illustration, the array

X =

⎡
⎢⎢⎣

1 0 0 0 1
1 1 0 1 1
0 0 1 1 0
1 1 0 1 1

⎤
⎥⎥⎦ ,

where n = 3 and r = 5, yields Z1 = 1, Z2 = 0, Z3 = 0, Z4 = 2, Z5 = 1, and S3 =∑5
j=1 Zj = 4.
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368 D. AIT AOUDIA AND É. MARCHAND

Example 1. A key class of situations where Sn arises consists of n+1 draws with replacement
from an urn with r colours of cardinalities α1, . . . , αr (αi > 0), where we define

Xk,j = 1{kth draw is of type j}, 1 ≤ k ≤ n, 1 ≤ j ≤ r,

with 1{·} denoting the indicator function. We thus have Xk ∼ Multinomial(1, θk,1, . . . , θk,r ),
with θk,j = αj/

∑r
j=1 αj , and Sn denoting the number of pairs of consecutive draws with

matching colours. Observe that the independence of the vectors Xk is a consequence of the
draws with replacement.

The univariate column case (i.e. r = 1 or as pertaining to the marginal distribution of Zj ) has
generated much recent interest, analysis, and interpretation; see [4], [5], [6], [7], [9], and [10],
among others. Although our main interest relates to cases where the Zj s are not independent,
it is worthwhile here summarizing results that may be inferred in cases where the columns are
independent.

Example 2. (Independent columns and P(Xk,j = 1) = aj /(aj + bj + k − 1).) Whenever
the columns are independent, representation (1) implies that an efficient analysis of Sn passes
through the convolution of r independent one-dimensional problems. For instance, whenever
the Xk,j s, k ≥ 1, j = 1, . . . , r , are independent, and P(Xk,j = 1) = aj /(aj + bj + k − 1),
we can show that the distribution of S = limn→∞ Sn admits the following representation:

S | Y ∼ Poi(Y ) with Y =
r∑

j=1

ajLj ,

where L1, . . . , Lr are independent random variables such that Lj ∼ Beta(aj , bj ). Indeed,
this may be established by exploiting representation (1), the independence of the Zj s, and the
characterization

Zj | Lj ∼ Poi(ajLj )

(see, e.g. [5]), so that, for all t ∈ R,

E[tS] = E[t
∑n

j=1 Zj ]

=
r∏

j=1

E[tZj ]

=
r∏

j=1

E[E[tZj ] | Lj ]

=
r∏

j=1

E[exp(ajLj (t − 1))]

= E

[
exp

( r∑
j=1

ajLj (t − 1)

)]

= E[eY (t−1)].
Our introduction (for r > 1) and focus on the properties of Sn is, as far as we can tell in the

face of a vast amount of literature on runs as defined above for r = 1, novel, and so are our main
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findings which pertain to the bidimensional case (r = 2) with additional implications for Pólya
urns. In Section 2 we derive a general recurrence (Lemma 1) for the probability generating
function (PGF) of Sn using a conditioning argument (as in [7, Proposition 1]). We then proceed
to more explicit representations (Corollary 1) for the particular case of multinomial rows (as
in Example 1), which will lead to an explicit expression (Theorem 1) for the probability mass
function of Sn in the identically distributed case. The new family of distributions thus obtained,
which is quite interesting on its own, may be viewed as one that contains (for fixed n) the
Bin(n, 1

2 ) distribution and whose members admit a large n normal approximation (Theorem 2).
Finally, although our setup does not encompass Pólya urn sampling schemes where the rows ofX
are dependent, we nevertheless derive by de Finetti’s representation theorem novel implications
for Pólya urns, as expanded upon in Section 3.

2. The bidimensional case (r = 2)

We begin by analyzing the general bidimensional case (r = 2) where

f
(k)
i,j = P(Xk = (i, j)), 1 ≤ k ≤ n + 1, i, j = 0, 1.

Define Sn as in (1) above with S0 = 0, i.e.

Sn = Sn−1 + Xn,1Xn+1,1 + Xn,2Xn+1,2, n ≥ 1. (2)

To derive a useful expression for the PGF ϕSn(t)(= E[tSn ]) of Sn, we introduce the auxiliary
random variables Wl,n, l = 1, 2, 3, defined as, for n ≥ 0,

W1,n := Sn + Xn+1,1 + Xn+1,2, W2,n := Sn + Xn+1,1, W3,n := Sn + Xn+1,2. (3)

We denote their PGFs by ϕWl,n
, and we also write

ϕ
n
(·) = (ϕSn(·), ϕW1,n (·), ϕW2,n (·), ϕW3,n (·))�, n ≥ 0.

The next result establishes an explicit recurrence and expression for ϕ
n
(·), n ≥ 1.

Lemma 1. We have, for n ≥ 1 and t ≥ 0,

ϕ
n
(t) = Mn+1ϕn−1

(t) (4)

and

ϕ
n
(t) = Mn+1 · · · M2ϕ0

(t) = Mn+1 · · · M11, (5)

where

Mn =

⎡
⎢⎢⎢⎣

f
(n)
0,0 f

(n)
1,1 f

(n)
1,0 f

(n)
0,1

f
(n)
0,0 t2f

(n)
1,1 tf

(n)
1,0 tf

(n)
0,1

f
(n)
0,0 tf

(n)
1,1 tf

(n)
1,0 f

(n)
0,1

f
(n)
0,0 tf

(n)
1,1 f

(n)
1,0 tf

(n)
0,1

⎤
⎥⎥⎥⎦

and 1 = (1, 1, 1, 1)�.
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Proof. We condition onXn+1. ForSn, n ≥ 1, we obtain, from (2), (3), and the independence
of the Xks,

L(Sn | Xn+1 = (1, 1)) = L(Sn−1 + Xn,1 + Xn,2) = L(W1,n−1),

L(Sn | Xn+1 = (1, 0)) = L(Sn−1 + Xn,1) = L(W2,n−1),

L(Sn | Xn+1 = (0, 1)) = L(Sn−1 + Xn,2) = L(W3,n−1),

and L(Sn | Xn+1 = (0, 0)) = L(Sn−1).

Since
ϕSn(t) = E[E[tSn | Xn+1]],

the above translates to

ϕSn(t) = (f
(n+1)
0,0 , f

(n+1)
1,1 , f

(n+1)
1,0 , f

(n+1)
0,1 )ϕ

n−1
(t)

(i.e. the scalar product of the first row of Mn+1 and ϕ
n−1

(t)). The remaining system of equations
is obtained along the same lines. Finally, (5) follows from (4), with ϕ

0
(t) derived directly as

M11 from the definitions of Wl,0 in (3), and since S0 = 0.

We now pursue further analysis of multinomially distributed rows Xk , where, for all k ∈
{1, . . . , n + 1},

f
(k)
1,0 = 1 − f

(k)
0,1 = pk (say), (6)

and where Sn reduces to
∑n

k=1 1{Xk+1,1=Xk,1}. This corresponds to nonhomogeneous (or
nonidentically distributed) draws in Example 1. We do not assume for the time being that
the Xks are identically distributed, but the more explicit results that follow later (e.g. part (b)
of Corollary 1) do apply to cases where

f
(k)
1,0 = 1 − f

(k)
0,1 = p (7)

for all k ∈ {1, . . . , n + 1}. We require the following result, a proof of which is given in [2].

Lemma 2. If A is a 2×2 matrix with distinct eigenvalues λ1 and λ2, and I2 is the 2×2 identity
matrix, then, for all n ≥ 2,

An =
(

λn
2 − λn

1

λ2 − λ1

)
A − λ1λ2

(
λn−1

2 − λn−1
1

λ2 − λ1

)
I2.

The next result consists of specializations of Lemma 1 to cases where (6) or (7) holds. In
cases where the first two columns of Mn are zero vectors, we obtain a useful and more explicit
representation for the PGF of Sn.

Corollary 1. (a) Under assumption (6), we have, for all n ≥ 1 and t ≥ 0,

ϕSn(t) = pn+1ϕW2,n−1(t) + (1 − pn+1)ϕW3,n−1(t) (8)

with [
ϕW2,n (t)

ϕW3,n (t)

]
=

[
tpn+1 1 − pn+1
pn+1 t (1 − pn+1)

] [
ϕW2,n−1(t)

ϕW3,n−1(t)

]

and (ϕW2,0(t), ϕW3,0(t))
� = (p1t + (1 − p1), p1 + (1 − p1)t)

�.
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(b) For all p ∈ [0, 1], n ≥ 1, and t ≥ 0, set

λ1 = 1

2

(
t +

√
t2 − 4p(1 − p)(t2 − 1)

)
, λ2 = t − λ1, αn = λn

1 − λn
2

λ1 − λ2
.

Under assumption (7), we have, for all n ≥ 1 and t ≥ 0,

ϕSn(t) = αn[2p(1 − p) + t (1 − 2p(1 − p))] + αn−1p(1 − p)(1 − t2). (9)

Proof. (a) The result follows directly from Lemma 1, and since

W2,0 = X1,1 and W3,0 = X1,2.

(b) From part (a) we have, for all n ≥ 1 and under assumption (7),
[
ϕW2,n−1(t)

ϕW3,n−1(t)

]
= Bn−1

[
ϕW2,0(t)

ϕW3,0(t)

]
= Bn

[
1
1

]
,

where

B =
[
tp 1 − p

p t(1 − p)

]
.

Observe that λ1 and λ2 are the eigenvalues of B, so that

Bn = αnB − (t2 − 1)p(1 − p)αn−112,

by virtue of Lemma 2. From this we obtain
[
ϕW2,n−1(t)

ϕW3,n−1(t)

]
= αn

[
tp + 1 − p

p + t (1 − p)

]
+ αn−1

[
(1 − t2)p(1 − p)

(1 − t2)p(1 − p)

]
,

and the result follows by applying (8).

We pursue an expansion of ϕSn as given in (9) in order to derive an explicit form for the
probability function of Sn.

Theorem 1. Under assumption (7), we have the following assertions.

(a) For p = 1
2 , we have Sn ∼ Bin(n, 1

2 ).

(b) Let ρ = 4p(1 − p), let n and k be nonnegative integers, and let

an,k(ρ) =
(

ρ

1 − ρ

)	n/2
−k−1

×
	n/2
−1∑

j=	n/2
−k−1

(
j

	n/2
 − k − 1

)(
n

2j + 1

)
(1 − ρ)j 1{0≤k≤	n/2
−1}.

For all p ∈ (0, 1), p �= 1
2 , we have

(i) for odd n,

P(Sn = 2k) = ρan,k(ρ)

2n
,

and P(Sn = 2k + 1) = 1

2n
[(2 − ρ)an,k(ρ) + ρan−1,k(ρ) − ρan−1,k−1(ρ)];
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(ii) for even n,

P(Sn = 2k) = 1

2n
[(2 − ρ)an,k−1(ρ) + ρan−1,k(ρ) − ρan−1,k−1(ρ)],

and P(Sn = 2k + 1) = ρan,k(ρ)

2n
.

Proof. For part (a), evaluate (9) with p = 1
2 to obtain

αn =
(

t + 1

2

)n

−
(

t − 1

2

)n

and

ϕSn(t) = αn

(
t + 1

2

)
− αn−1

(
t − 1

2

)(
t + 1

2

)
=

(
t + 1

2

)n

,

which implies that Sn ∼ Bin(n, 1
2 ). For part (b), begin with standard operations to express αn

as a polynomial in t . Write the λ1 and λ2 of Corollary 1 as λ1 = (t +�)/2 and λ2 = (t −�)/2,
with � = √

ρ + t2(1 − ρ), so that λ1 − λ2 = �, and

αn = λn
1 − λn

2

λ1 − λ2

= 1

�2n
{(t + �)n − (t − �)n}

= 1

�2n

n∑
k=0

(
n

k

)
tn−k�k(1k − (−1)k)

= 1

2n−1

n∑
k=0, k odd

(
n

k

)
tn−k�k−1

= 1

2n−1

	n/2
−1∑
j=0

(
n

2j + 1

)
tn−2j−1(ρ + t2(1 − ρ))j

= 1

2n−1

	n/2
−1∑
j=0

(
n

2j + 1

)
tn−2j−1

j∑
k=0

(
j

k

)(
ρ

1 − ρ

)k

(1 − ρ)j t2j−2k

= 1

2n−1

	n/2
−1∑
k=0

tn−2k−1
(

ρ

1 − ρ

)k 	n/2
−1∑
j=k

(
j

k

)(
n

2j + 1

)
(1 − ρ)j

= t1{n even}

2n−1

	n/2
−1∑
k=0

t2k

(
ρ

1 − ρ

)	n/2
−k−1

×
	n/2
−1∑

j=	n/2
−k−1

(
j

	n/2
 − k − 1

)(
n

2j + 1

)
(1 − ρ)j

= t1{n even}

2n−1

∑
k

an,k(ρ)t2k, (10)
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with the change of variable k → 	n/2
 − k − 1{n even} in the penultimate line. Making use of
(9) and (10), we obtain, for odd n,

ϕSn(t) =
{

1

2n−1

(∑
k

an,k(ρ)t2k

)(
ρ

2
+ t

(
1 − ρ

2

))}

+
{

1

2n−2

(∑
k

an−1,k(ρ)t2k+1
)(

ρ(1 − t2)

4

)}

= 1

2n

{∑
k

ρan,k(ρ)t2k +
∑

k

(2 − ρ)an,k(ρ)t2k+1 +
∑

k

ρan−1,k(ρ)t2k+1

−
∑

k

ρan−1,k−1(ρ)t2k+1
}
,

and the result follows by collecting terms in the representation ϕSn(t) = ∑
k t2k P(Sn = 2k) +∑

k t2k+1 P(Sn = 2k + 1). Finally, a similar expansion leads to the stated result for even n.

The probabilities of the events {Sn = 0} and {Sn = n} are of particular interest.

Corollary 2. Under assumption (7), we have, for all n ≥ 1,

P(Sn = 0) = 2(p(1 − p))(n+1)/21{n odd} + (p(1 − p))n/21{n even},
and P(Sn = n) = pn+1 + (1 − p)n+1.

Proof. First, observe that P(Sn = 0) = ϕSn(0). The result follows by evaluating (9) with
t = 0, λ1 = −λ2 = √

p(1 − p), αn = (p(1 − p))(n−1)/2 for odd n, and αn = 0 for even n.
Now, consider P(Sn = n) for even n (part (b) of Theorem 1 with k = n/2). Then

P(Sn = n) = 1

2n
[(2 − ρ)an,n/2−1(ρ) + ρan−1,n/2(ρ) − ρan−1,n/2−1(ρ)]

= 1

2n

[
(2 − ρ)

n/2−1∑
j=0

(
n

2j + 1

)
(1 − ρ)j + 0 − ρ

n/2−1∑
j=0

(
n − 1

2j + 1

)
(1 − ρ)j

]

= 1

2n+1

[(√
1 − ρ + 1√

1 − ρ

)
{(1 + √

1 − ρ)n − (1 − √
1 − ρ)n}

+
(√

1 − ρ − 1√
1 − ρ

)
{(1 + √

1 − ρ)n−1 − (1 − √
1 − ρ)n−1}

]
,

by virtue of the identity

s/2−1∑
j=0

(
s

2j + 1

)
wj = 1

2
√

w
[(1 + √

w)s − (1 − √
w)s],

where s is an even positive integer and w > 0. Finally, with a little algebra, we obtain the
equivalent form

P(Sn = n) = 1

2n+1 [(1 + √
1 − ρ)n+1 + (1 − √

1 − ρ)n+1] = pn+1 + (1 − p)n+1.

A similar development yields the result for odd n.
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Remark 1. The probabilities of the events {Sn = 0} and {Sn = n}, as well as the distribution
of Sn for the constant case p = 1

2 in (7), can also be evaluated by elementary combinatorial
arguments. For instance, we can directly infer that

P(Sn = n) = P

(n+1⋂
k=1

{Xk,1 = 1}
)

+ P

(n+1⋂
k=1

{Xk,1 = 0}
)

=
n+1∏
k=1

pk +
n+1∏
k=1

(1 − pk),

under (6), and
P(Sn = n) = pn+1 + (1 − p)n+1,

under (7). We refer the reader to [1] for additional details.

From both a combinatorial and probabilistic point of view, the probability distributions
described in (9) and Theorem 1 form an interesting family on their own with parameter ρ, ρ ∈
(0, 1], with the case ρ = 1 corresponding to a Bin(n, 1

2 ) distribution. Moreover, as shown
below, all of these distributions may be described by a large n normal approximation which
extends the well-known result applicable to the Bin(n, 1

2 ) distribution.

Theorem 2. Under assumption (7), we have

Sn − n(1 − ρ/2)√
n(ρ − 3ρ2/4)

d−→ N(0, 1),

with ρ = 4p(1 − p).

Proof. Observe that Sn
d= ∑n

k=1 Yk with Yk = 1{Xk+1,1=Xk,1} ∼ Bernoulli(1 − ρ/2). The
Bernoulli sequence Y1, Y2, . . . is stationary and 1-dependent (i.e. Yi and Yj are independent for
all |i − j | > 1), so that the results of Stein [11, Corollary 3.1] imply that

Sn − E[Sn]√
var(Sn)

d−→ N(0, 1). (11)

Evaluations yield
E[Sn] = n

(
1 − ρ

2

)
,

var(Y1) = ρ

2

(
1 − ρ

2

)
,

cov(Y1, Y2) = P(X1 = X2 = X3) − (p2 + (1 − p)2)2

= (p3 + (1 − p)3) − (p2 + (1 − p)2)2

= ρ(1 − 2ρ)

4
,

var(Sn) = var

( n∑
k=1

Yk

)

= n

{
var(Y1) + 2

(
1 − 1

n

)
cov(Y1, Y2)

}

= n

{
ρ

2

(
1 − ρ

2

)
+

(
1 − 1

n

)
ρ(1 − 2ρ)

2

}

= n

(
ρ − 3ρ2

4

)
+ O(n−1).

Finally, the above properties along with (11) yield the result.
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3. Applications for Pólya urns

By virtue of de Finetti’s representation theorem for sequences of 0–1 exchangeable random
variables, the results above under assumption (7) (i.e. Corollary 1 part (b) and Theorem 1)
permit us to describe the distribution of Sn in (1) for r = 2 where the rows (Xk,1, Xk,2), k ≥ 1,
are no longer independent, but arise in the context of a Pólya urn sampling scheme. We briefly
describe such a context, but refer the reader to [8] for a general reference. In such schemes, an
urn initially contains b black balls and w white balls. At step k, a ball is drawn randomly and
uniformly from the urn, and returned to the urn with s (s > 0) balls of the same colour. This
generates the sequence of rows (Xk,1, Xk,2), k ≥ 1, where Xk,1 = 1−Xk,2 is 1 or 0 according
to whether the colour of the ball selected in the kth draw is black or white, respectively. Hence,
Sn given in (1), and as described in Example 1, represents the number of consecutive pairs of
draws with matching colours, among the first n + 1 draws. Now, in such a case, de Finetti’s
representation theorem (see, e.g. [3]) implies the representation

X1,1, . . . , Xn+1,1 i.i.d. Bernouilli(θ), with θ ∼ Beta

(
b

s
,
w

s

)
. (12)

We thus obtain the following result.

Corollary 3. Let

cn,j,k =
(

j

	n/2
 − k − 1

)(
n

2j + 1

)
1{	n/2
−k−1≤j≤	n/2
−1}1{0≤k≤	n/2
−1}

and

Bn,k,m =
∑
j

cn,j,k

j−(	n/2
−k−1)∑
i=0

(
j − (	n/2
 − k − 1)

i

)
(−1)i4j+m−i

× (b/s)j+m−i (w/s)j+m−i

((b + w)/s)2(j+m−i)

(13)

for positive integers n and k, and m = 0 or 1, where (a)x is the usual Pochhammer function
defined as (a)0 = 1, and (a)x = ∏x−1

i=0 (a + i) for x = 1, 2, . . . . Then, for a Pólya urn as
described above with parameters b, w, and s, we have

(a) for odd n,

P(Sn = 2k) = Bn,k,1

2n
,

and P(Sn = 2k + 1) = 1

2n
[2Bn,k,0 − Bn,k,1 + Bn−1,k,1 − Bn−1,k−1,1];

(b) for even n,

P(Sn = 2k) = 1

2n
[2Bn,k−1,0 − Bn,k−1,1 + Bn−1,k,1 − Bn−1,k−1,1],

and P(Sn = 2k + 1) = Bn,k,1

2n
.

Proof. It follows directly from representation (12) and Theorem 1 that the probability
function of Sn in the context here of a Pólya urn is given by the above equations with Bn,k,m =
E[Zman,k(Z)], where Z

d= 4θ(1 − θ) and θ ∼ Beta(b/s, w/s). It remains to show that (13) is
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a valid expression for Bn,k,m. Indeed, we have

E[Zman,k(Z)] =
∑
j

cn,j,k E[Zm+	n/2
−k−1(1 − Z)j−(	n/2
−k−1)]

=
∑
j

cn,j,k

j−(	n/2
−k−1)∑
i=0

(
j − (	n/2
 − k − 1)

i

)
(−1)i E[(4θ(1 − θ))j+m−i]

= Bn,k,m, (14)

by the evaluation

E(Zu(1 − Z)v)] = (a1)u(a2)v

(a1 + a2)u+v

for Z ∼ Beta(a1, a2), u, v ≥ 0. (15)

Remark 2. For the cases where b = w (i.e. an equal number of black and white balls initially
in the Pólya urn), the expression of Bn,k,m in Corollary 3 is also equivalent to the simpler
expression

Bn,k,m =
(

2b

s
− 1

)
m+	n/2
−k−1

∑
j

cn,j,k

(1/2)j−(	n/2
−k−1)

(2b/s − 1/2)j+m

.

This is verified by establishing that (i) Z = 4θ(1 − θ) ∼ Beta(2b/s − 1, 1
2 ) whenever θ ∼

Beta(b′, b′), and (ii) by directly evaluating (14) via (15).

4. Concluding remarks

We have introduced a rich collection of problems relative to Bernoulli arrays. We have
proceeded with explicit representations for the probability generating and mass functions in
the case of multinomial rows of length r = 2. Various properties and implications have been
discussed, including applications to Pólya urns. Further analysis or extensions for r > 2 with
or without assumption (7) would be most useful and welcome.
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