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Abstract

Let R = F, + uF,, where u* = u. A relation between the support weight distribution of a linear code ¢ of
type p** over R and its dual code €+ is established.
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1. Introduction

Let R = F, + uF,, where u* = u. Then R is a commutative ring and has ideals («) and
(1 — u) as its maximal ideals, which implies that R is a finite nonchain ring. By the
Chinese remainder theorem, we have that R = uR @ (1 — )R = uF, ® (1 — w)F,. Let R"
be the set of n-tuples over R. Then R" = uF), & (1 — w)F,. Any nonempty R-submodule
% of R" is called a linear code of length n over R. According to the Chinese remainder
theorem, ¢’ = u6) @ (1 — u)62, where 6 and 6, are F),-subspaces of F, that is, linear
codes of length n over F,. Therefore, we have that |¢| = |41||%>|. Let |6)| = p" and
|62| = p™. Then we say that % is a linear code of length n over R of rype p"*".
Let # C € be a subcode. The support of A is defined as

x(AB) ={i| c¢; # 0 for some (cg, c1,...,Cn1) € B}
The support weight of Z is defined as
wy(A) = | x(B)l.

For any nonnegative integers t; < r; and 1, < 1, let AS’ 12) he the number of subcodes
of type p"*2 with support weight i. The (¢, #;)th support weight distribution is the
polynomial

(t1,12) _ Atih) (t1,12) (t1,02) n
A () = AT+ AT+ AV
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Wei [6] introduced the notion of generalised Hamming weights, that is, the support
weights in his analysis of the wire-tap channel of type II. His paper has sparked
renewed interest in the subject, indicating its importance in both the theory and the
applications of coding theory. Klgve [4] gave the relation between the support weight
distribution of a linear code over the finite field F, and that of its dual code. Simonis
[5] gave another method for deriving the relation obtained in [4]. Following the
approaches given in [4] and [5], Cui [1, 2] obtained the relation between the support
weight distribution of a linear code over the ring Z4 and that of its dual code.

Recently, much work on the coding theory over the finite nonchain ring F,, + ulF,,
has appeared (see, for example, [3, 7, 8]). It is natural to ask if there is similar relation
between the support weight distribution of a linear code over the ring F, + uF, and
that of its dual code. The goal of this short note is to give such a relation.

2. Some lemmas

Let % be a linear code of length n and type p* over R. Let {aj,a,...,a;} be a
free basis of € over R. Then, for any i = 1,2,...,k, there exist b;, ¢; € ]FZ such that
a; = ub; + (1 — u)c;. Let

a

a
G =

ai

be the generator matrix of €. If ¢ has an F,-subspace, it has the following matrix as
its generator matrix:

ubl
ubz

- ubk
(I=wer |
(I —u)e;

¢! —‘u)ck
For any subcode C C € of type p"*2, where 1y, t; < k, define

Sc =1{(x1, %2, ..., x0) € RE | (x1, %0, ..., x)G € C.
Clearly, S¢ is an R-submodule of R*. Define

F(t1,1) = {C| C is a subcode of type p"*" of €’}

and
T(t1,12) = {U | U is a submodule of type p"* of R"}.
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L'p
Define the map
p: R > €
(1, X2, -5 X)) P (X1, X2, .., X)L

One can verify that ¢ is an R-module isomorphism. Therefore, for any nonnegative
integers 11,1, < k, if C C € is a subcode of type p"*2, then S¢ C R* is an R-submodule
of type p"*"2. Moreover, the map C — S is bijective between the set F (1, ;) and the
set 7 (1, t2).

Let S¢ be a linear code of length k and type p"*2 over R, where t;, 1, < k. Then the
dual code

SE =101 Y2s V) ERN [ 1y o) - (X1, .., xx) = O for any (xq,...,x) € Sl

k—t 2k—t,

is a linear code of length k and type p*~"1 p¥="2 = p?¥=1="2 gver R.
The above discussion immediately gives the following lemma.

Lemma 2.1. For any nonnegative integers t,t, < k, C — Sé is a bijection between the
set F (1, 1) and the set T (k — t1, k — tp).

For any x € R¥, let u(x) be the number of occurrences of X as a column in the
generator matrix G of %’. Then

Ws((g) =n- [1(0)
LemMa 2.2. Let C C € be a subcode of length n over R. Then wy(C) = n — ,u(Sé).

Proor. Let C C % be a subcode of length n and type p"*2, where #1,1;, < k. Then
Sc € R* is an R-submodule of type p"'*2. As an F,-subspace, let

{uby,uby, ..., ub;, (1 —we, (1 —uw)ey, ..., (1 —u)c,} 2.1

be a basis of S¢, where b; and ¢; € Pf,. Let M be the (t; + t») X k matrix whose rows are
the transposes, ubf, o1 = u)cz, of the column vectors in (2.1). Then the columns
of the matrix

MG = {ub{G,ub,G,...,ub;G,(1 - u)e{G, (1 —u);G, (1 — u)e,G}

form an F,-basis of C and MG is a generator matrix of C, which implies that

wy(C) =n— > p(x)

Mx=0
=n- Z u(x)
xeSE
=n—u(Sg). o
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Let | bt
imlas = [ [ =P ] [ = P
i=0 J=0

We make the convention that [[%) (p" — p') = 1 if a = 0 and that Hlj’-;é (P -pH=1if
b = 0. Denote by GR(R, m) = F,» + ulF,» the mth Galois extension ring of R. Let & be
a primitive element of the finite field F,». Any element r € GR(R, m) can be expressed
uniquely as

r:r0+r1§+"'+rm—1§m_1,

where ro, ri,...,7m_1 €R.

Lemma 2.3. Let U C R* be an R-module of type p"'*" and U = {ye GR(R,m)|y-x=0
for x € R* if and only if x € U)}. Then

01U = [mles aers
(i) (U | U is a submodule of R*} is a partition of GR(R, m)~.

Proor. (i) This follows from the proof process of Lemma 3 in [4].

(i1) From the definition of U , we have that if U, = U,, then U 1N ‘Z\lz = (. For any
1, Y2, - - -»yn) € GR(R, m)*, define

U ={(x1, X2, ..., %) € RN (x1, X2, ..., %) - (V15 V2, > %) = O}

Then U is an R-submodule of R* and (yi,y2,..., k) € f(, which implies that
{U | U is a submodule of R¥} is a partition of GR(R, m)*. O

Similar to [1, Lemma 7], we also have the following result.
Lemva 2.4. If aj,ap,...,a; € RF are free over R, then aj,ay,...,a; are free over
GR(R, m).
3. Main results

Recall that %’ is a linear code of length n and type p2k over R, and {a;,a,,...,a.} is
the free basis of ¥ with G as its generator matrix. Denote by D the linear code over
GR(R, m) with generator matrix G.

PropositioN 3.1. The Hamming weight enumerator of D is
m m
Wa(2) = " [mly s A" ().
11=0 t,=0

Proor. From Lemma 2.4, we know that for any y;,y, € GR(R, m)* with Y1 # Y2, We
have y;G # y>G, whence Wy (2) = Yyecrgmy 2*7. From Lemma 2.3(ii),

k k
Wo=Y > F Fee

11=0 =0 UET (t1,12) yeﬂ
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Fory e "EI,
WEYG) = ) Wy +X) =n— > u(x) = n - p(U).

X€ERK xeU

Therefore,

M~
M=

WH(Z =

Z R

0 UET (t1,t2) ye’LA(

=
Il
(==}

5}

Zn—/t(“u)

M=
M=

[m]k—ll k=t

=
Il
(==}

15}

0 (Z/{ET([] 1)

>y Iy

0 1,=0 UET (k—t,,k—1t3)

M=
M=

~

1
From Lemmas 2.1 and 2.2,

— _ 1
R — Z RS

UET (k—11,k—12) CeF (t1,12)

— Z ZwX(C)

CeF (t1,1)
— A(IIJZ)(Z)

which implies that
ko k
Wa(@) = > > Iml, ,AC2().
11=0 1,=0

If m < kand t1,t, > m, then [m];,,, = 0. If m > k and 11,1, > k, then A1) = (0. Hence,

k k m m
Wa(@) = Y 3 [mly , A2 () = > > [ml, , A (2). .

1©=0 t,=0 1=0 1,=0

Let €+ C R" be the dual code of € and (€)* C GR(R, m)" be the dual code of
€™, Clearly, (4"")* is also generated by the parity-check matrix of 6". Denote by
W(z) the Hamming weight enumerator of (4)* and B""2)(z) the (11, 1,)th support
weight distribution of €™*. Then, by Proposition 3.1,

Wi@) = ) Y Imly B2 G). (3.1
t1=0 t,=0
TraeoreM 3.2. Forallm > 1,

Zm: Zm:[m]tn B () = ka(l + (™" = 1) Z Z[m] nod m(l + (;zmz— I)Z)'

11=0 t,=0 =0 1=0
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Proor. Recall the MacWilliams-type identity for the Hamming weight of the linear
code over GR(R, m):

1
Hamgmy. (x,2) = wHam%(m)(x + (pzm - Dz, x—2).

From this identity,

1 1-z2
") = L (02 = D2 Wi 32
(@) I‘f(””l( (» ) Wil 1 = 1)z (3.2)
and the desired result follows by substituting (3.2) into (3.1). O
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