NOTE ON SUPPORT WEIGHT DISTRIBUTION OF LINEAR CODES OVER $\mathbb{F}_p + u\mathbb{F}_p$

JIAN GAO

(Received 20 June 2014; accepted 22 December 2014)

Abstract

Let $R = \mathbb{F}_p + u\mathbb{F}_p$, where $u^2 = u$. A relation between the support weight distribution of a linear code \mathscr{C} of type p^{2k} over R and its dual code \mathscr{C}^{\perp} is established.

2010 *Mathematics subject classification*: primary 94B05; secondary 94B15. *Keywords and phrases*: finite nonchain ring, support weight, support weight distribution.

1. Introduction

Let $R = \mathbb{F}_p + u\mathbb{F}_p$, where $u^2 = u$. Then *R* is a commutative ring and has ideals (*u*) and (1 - u) as its maximal ideals, which implies that *R* is a *finite nonchain ring*. By the Chinese remainder theorem, we have that $R = uR \oplus (1 - u)R = u\mathbb{F}_p \oplus (1 - u)\mathbb{F}_p$. Let R^n be the set of *n*-tuples over *R*. Then $R^n = u\mathbb{F}_p^n \oplus (1 - u)\mathbb{F}_p^n$. Any nonempty *R*-submodule \mathscr{C} of R^n is called a linear code of length *n* over *R*. According to the Chinese remainder theorem, $\mathscr{C} = u\mathscr{C}_1 \oplus (1 - u)\mathscr{C}_2$, where \mathscr{C}_1 and \mathscr{C}_2 are \mathbb{F}_p -subspaces of \mathbb{F}_p^n , that is, linear codes of length *n* over \mathbb{F}_p . Therefore, we have that $|\mathscr{C}| = |\mathscr{C}_1| |\mathscr{C}_2|$. Let $|\mathscr{C}_1| = p^{r_1}$ and $|\mathscr{C}_2| = p^{r_2}$. Then we say that \mathscr{C} is a linear code of length *n* over *R* of *type* $p^{r_1+r_2}$.

Let $\mathscr{B} \subseteq \mathscr{C}$ be a subcode. The support of \mathscr{B} is defined as

 $\chi(\mathscr{B}) = \{i \mid c_i \neq 0 \text{ for some } (c_0, c_1, \dots, c_{n-1}) \in \mathscr{B}\}.$

The support weight of \mathscr{B} is defined as

$$w_s(\mathscr{B}) = |\chi(\mathscr{B})|.$$

For any nonnegative integers $t_1 \le r_1$ and $t_2 \le r_2$, let $A_i^{(t_1,t_2)}$ be the number of subcodes of type $p^{t_1+t_2}$ with support weight *i*. The (t_1, t_2) th support weight distribution is the polynomial

$$A^{(t_1,t_2)}(z) = A_0^{(t_1,t_2)} + A_1^{(t_1,t_2)}z + \dots + A_n^{(t_1,t_2)}z^n.$$

^{© 2015} Australian Mathematical Publishing Association Inc. 0004-9727/2015 \$16.00

J. Gao

Wei [6] introduced the notion of generalised Hamming weights, that is, the support weights in his analysis of the wire-tap channel of type II. His paper has sparked renewed interest in the subject, indicating its importance in both the theory and the applications of coding theory. Kløve [4] gave the relation between the support weight distribution of a linear code over the finite field \mathbb{F}_q and that of its dual code. Simonis [5] gave another method for deriving the relation obtained in [4]. Following the approaches given in [4] and [5], Cui [1, 2] obtained the relation between the support weight distribution of a linear code over the ring \mathbb{Z}_4 and that of its dual code.

Recently, much work on the coding theory over the finite nonchain ring $\mathbb{F}_p + u\mathbb{F}_p$ has appeared (see, for example, [3, 7, 8]). It is natural to ask if there is similar relation between the support weight distribution of a linear code over the ring $\mathbb{F}_p + u\mathbb{F}_p$ and that of its dual code. The goal of this short note is to give such a relation.

2. Some lemmas

Let \mathscr{C} be a linear code of length *n* and type p^{2k} over *R*. Let $\{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k\}$ be a free basis of \mathscr{C} over *R*. Then, for any $i = 1, 2, \dots, k$, there exist $\mathbf{b}_i, \mathbf{c}_i \in \mathbb{F}_p^n$ such that $\mathbf{a}_i = u\mathbf{b}_i + (1-u)\mathbf{c}_i$. Let

$$G = \begin{pmatrix} \mathbf{a}_1 \\ \mathbf{a}_2 \\ \vdots \\ \mathbf{a}_k \end{pmatrix}$$

be the generator matrix of \mathscr{C} . If \mathscr{C} has an \mathbb{F}_p -subspace, it has the following matrix as its generator matrix:

$$\widehat{G} = \begin{pmatrix} u\mathbf{b}_1 \\ u\mathbf{b}_2 \\ \vdots \\ u\mathbf{b}_k \\ (1-u)\mathbf{c}_1 \\ (1-u)\mathbf{c}_2 \\ \vdots \\ (1-u)\mathbf{c}_k \end{pmatrix}.$$

For any subcode $C \subseteq \mathscr{C}$ of type $p^{t_1+t_2}$, where $t_1, t_2 \leq k$, define

$$S_C = \{(x_1, x_2, \dots, x_k) \in \mathbb{R}^k \mid (x_1, x_2, \dots, x_k) G \in C\}.$$

Clearly, S_C is an *R*-submodule of R^k . Define

$$\mathcal{F}(t_1, t_2) = \{C \mid C \text{ is a subcode of type } p^{t_1 + t_2} \text{ of } \mathscr{C}\}$$

and

$$\mathcal{T}(t_1, t_2) = \{\mathcal{U} \mid \mathcal{U} \text{ is a submodule of type } p^{t_1 + t_2} \text{ of } R^k\}.$$

Define the map

$$\phi: \mathbb{R}^k \to \mathscr{C}$$
$$(x_1, x_2, \dots, x_k) \mapsto (x_1, x_2, \dots, x_k)G$$

One can verify that ϕ is an *R*-module isomorphism. Therefore, for any nonnegative integers $t_1, t_2 \leq k$, if $C \subseteq \mathcal{C}$ is a subcode of type $p^{t_1+t_2}$, then $S_C \subseteq R^k$ is an *R*-submodule of type $p^{t_1+t_2}$. Moreover, the map $C \to S_C$ is bijective between the set $\mathcal{F}(t_1, t_2)$ and the set $\mathcal{F}(t_1, t_2)$.

Let S_C be a linear code of length k and type $p^{t_1+t_2}$ over R, where $t_1, t_2 \le k$. Then the dual code

$$S_C^{\perp} = \{(y_1, y_2, \dots, y_k) \in \mathbb{R}^k \mid (y_1, \dots, y_k) \cdot (x_1, \dots, x_k) = 0 \text{ for any } (x_1, \dots, x_k) \in S_C\}$$

is a linear code of length k and type $p^{k-t_1}p^{k-t_2} = p^{2k-t_1-t_2}$ over R.

The above discussion immediately gives the following lemma.

LEMMA 2.1. For any nonnegative integers $t_1, t_2 \leq k, C \rightarrow S_C^{\perp}$ is a bijection between the set $\mathcal{F}(t_1, t_2)$ and the set $\mathcal{T}(k - t_1, k - t_2)$.

For any $\mathbf{x} \in \mathbb{R}^k$, let $\mu(\mathbf{x})$ be the number of occurrences of \mathbf{x} as a column in the generator matrix G of \mathcal{C} . Then

$$w_s(\mathscr{C}) = n - \mu(0).$$

LEMMA 2.2. Let $C \subseteq \mathscr{C}$ be a subcode of length n over R. Then $w_s(C) = n - \mu(\mathcal{S}_C^{\perp})$.

PROOF. Let $C \subseteq \mathscr{C}$ be a subcode of length *n* and type $p^{t_1+t_2}$, where $t_1, t_2 \leq k$. Then $S_C \subseteq R^k$ is an *R*-submodule of type $p^{t_1+t_2}$. As an \mathbb{F}_p -subspace, let

{
$$u\mathbf{b}_1, u\mathbf{b}_2, \dots, u\mathbf{b}_{t_1}, (1-u)\mathbf{c}_1, (1-u)\mathbf{c}_2, \dots, (1-u)\mathbf{c}_{t_2}$$
} (2.1)

be a basis of S_C , where \mathbf{b}_i and $\mathbf{c}_j \in \mathbb{F}_p^k$. Let M be the $(t_1 + t_2) \times k$ matrix whose rows are the transposes, $u\mathbf{b}_1^T, \ldots, (1-u)\mathbf{c}_{t_2}^T$, of the column vectors in (2.1). Then the columns of the matrix

$$MG = \{u\mathbf{b}_1^{\mathrm{T}}G, u\mathbf{b}_2^{\mathrm{T}}G, \dots, u\mathbf{b}_{t_1}^{\mathrm{T}}G, (1-u)\mathbf{c}_1^{\mathrm{T}}G, (1-u)\mathbf{c}_2^{\mathrm{T}}G, (1-u)\mathbf{c}_{t_2}^{\mathrm{T}}G\}$$

form an \mathbb{F}_p -basis of *C* and *MG* is a generator matrix of *C*, which implies that

$$w_{s}(C) = n - \sum_{M \mathbf{x} = 0} \mu(x)$$
$$= n - \sum_{\mathbf{x} \in S_{C}^{\perp}} \mu(x)$$
$$= n - \mu(S_{C}^{\perp}).$$

https://doi.org/10.1017/S0004972715000052 Published online by Cambridge University Press

[3]

Let

348

$$[m]_{a,b} = \prod_{i=0}^{a-1} (p^m - p^i) \prod_{j=0}^{b-1} (p^m - p^j).$$

We make the convention that $\prod_{i=0}^{a-1}(p^m - p^i) = 1$ if a = 0 and that $\prod_{j=0}^{b-1}(p^m - p^j) = 1$ if b = 0. Denote by $GR(R, m) = \mathbb{F}_{p^m} + u\mathbb{F}_{p^m}$ the *m*th Galois extension ring of *R*. Let ξ be a primitive element of the finite field \mathbb{F}_{p^m} . Any element $r \in GR(R, m)$ can be expressed uniquely as

$$r = r_0 + r_1 \xi + \dots + r_{m-1} \xi^{m-1},$$

where $r_0, r_1, ..., r_{m-1} \in R$.

LEMMA 2.3. Let $\mathcal{U} \subseteq \mathbb{R}^k$ be an \mathbb{R} -module of type $p^{t_1+t_2}$ and $\widehat{\mathcal{U}} = \{\mathbf{y} \in GR(\mathbb{R}, m) \mid \mathbf{y} \cdot \mathbf{x} = 0 \text{ for } \mathbf{x} \in \mathbb{R}^k \text{ if and only if } \mathbf{x} \in \mathcal{U}\}$. Then

(i) $|\widehat{\mathcal{U}}| = [m]_{k-t_1,k-t_2}.$

(ii) $\{\widehat{\mathcal{U}} \mid \mathcal{U} \text{ is a submodule of } R^k\}$ is a partition of $GR(R, m)^k$.

PROOF. (i) This follows from the proof process of Lemma 3 in [4].

(ii) From the definition of $\widehat{\mathcal{U}}$, we have that if $\mathcal{U}_1 \neq \mathcal{U}_2$, then $\widehat{\mathcal{U}}_1 \cap \widehat{\mathcal{U}}_2 = \emptyset$. For any $(y_1, y_2, \dots, y_n) \in \operatorname{GR}(R, m)^k$, define

$$\mathcal{U} = \{ (x_1, x_2, \dots, x_k) \in \mathbb{R}^k \mid (x_1, x_2, \dots, x_k) \cdot (y_1, y_2, \dots, y_k) = 0 \}.$$

Then \mathcal{U} is an *R*-submodule of \mathbb{R}^k and $(y_1, y_2, \dots, y_k) \in \widehat{\mathcal{U}}$, which implies that $\{\widehat{\mathcal{U}} \mid \mathcal{U} \text{ is a submodule of } \mathbb{R}^k\}$ is a partition of $GR(\mathbb{R}, m)^k$.

Similar to [1, Lemma 7], we also have the following result.

LEMMA 2.4. If $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_k \in \mathbb{R}^k$ are free over \mathbb{R} , then $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_k$ are free over $GR(\mathbb{R}, m)$.

3. Main results

Recall that \mathscr{C} is a linear code of length *n* and type p^{2k} over *R*, and $\{\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_k\}$ is the free basis of \mathscr{C} with *G* as its generator matrix. Denote by \mathcal{D} the linear code over GR(*R*, *m*) with generator matrix *G*.

PROPOSITION 3.1. The Hamming weight enumerator of \mathcal{D} is

$$W_H(z) = \sum_{t_1=0}^m \sum_{t_2=0}^m [m]_{t_1,t_2} A^{(t_1,t_2)}(z).$$

PROOF. From Lemma 2.4, we know that for any $\mathbf{y}_1, \mathbf{y}_2 \in GR(R, m)^k$ with $\mathbf{y}_1 \neq \mathbf{y}_2$, we have $\mathbf{y}_1 G \neq \mathbf{y}_2 G$, whence $W_H(z) = \sum_{\mathbf{y} \in GR(R,m)^k} z^{w(\mathbf{y}G)}$. From Lemma 2.3(ii),

$$W_H(z) = \sum_{t_1=0}^k \sum_{t_2=0}^k \sum_{\mathcal{U} \in \mathcal{T}(t_1, t_2)} \sum_{\mathbf{y} \in \widehat{\mathcal{U}}} z^{w(\mathbf{y}G)}.$$

https://doi.org/10.1017/S0004972715000052 Published online by Cambridge University Press

For $\mathbf{y} \in \widehat{\mathcal{U}}$,

$$w(\mathbf{y}G) = \sum_{\mathbf{x}\in \mathbb{R}^k} \mu(\mathbf{x})w(\mathbf{y}\cdot\mathbf{x}) = n - \sum_{\mathbf{x}\in\mathcal{U}} \mu(\mathbf{x}) = n - \mu(\mathcal{U}).$$

Therefore,

$$\begin{split} W_{H}(z) &= \sum_{t_{1}=0}^{k} \sum_{t_{2}=0}^{k} \sum_{\mathcal{U} \in \mathcal{T}(t_{1},t_{2})}^{k} \sum_{\mathbf{y} \in \widehat{\mathcal{U}}}^{k} z^{n-\mu(\mathcal{U})} \\ &= \sum_{t_{1}=0}^{k} \sum_{t_{2}=0}^{k} \sum_{\mathcal{U} \in \mathcal{T}(t_{1},t_{2})}^{k} [m]_{k-t_{1},k-t_{2}} z^{n-\mu(\mathcal{U})} \\ &= \sum_{t_{1}=0}^{k} \sum_{t_{2}=0}^{k} \sum_{\mathcal{U} \in \mathcal{T}(k-t_{1},k-t_{2})}^{k} [m]_{t_{1},t_{2}} z^{n-\mu(\mathcal{U})}. \end{split}$$

From Lemmas 2.1 and 2.2,

$$\sum_{\mathcal{U}\in\mathcal{T}(k-t_1,k-t_2)} z^{n-\mu(\mathcal{U})} = \sum_{C\in\mathcal{F}(t_1,t_2)} z^{n-\mu(\mathcal{S}_C^{\perp})}$$
$$= \sum_{C\in\mathcal{F}(t_1,t_2)} z^{w_s(C)}$$
$$= A^{(t_1,t_2)}(z),$$

which implies that

$$W_H(z) = \sum_{t_1=0}^k \sum_{t_2=0}^k [m]_{t_1,t_2} A^{(t_1,t_2)}(z).$$

If $m \le k$ and $t_1, t_2 > m$, then $[m]_{t_1, t_2} = 0$. If m > k and $t_1, t_2 > k$, then $A^{(t_1, t_2)} = 0$. Hence,

$$W_H(z) = \sum_{t_1=0}^k \sum_{t_2=0}^k [m]_{t_1,t_2} A^{(t_1,t_2)}(z) = \sum_{t_1=0}^m \sum_{t_2=0}^m [m]_{t_1,t_2} A^{(t_1,t_2)}(z).$$

Let $\mathscr{C}^{\perp} \subseteq \mathbb{R}^n$ be the dual code of \mathscr{C} and $(\mathscr{C}^{(m)})^{\perp} \subseteq \operatorname{GR}(\mathbb{R}, m)^n$ be the dual code of $\mathscr{C}^{(m)}$. Clearly, $(\mathscr{C}^{(m)})^{\perp}$ is also generated by the parity-check matrix of \mathscr{C} . Denote by $W_H^m(z)$ the Hamming weight enumerator of $(\mathscr{C}^{(m)})^{\perp}$ and $B^{(t_1,t_2)}(z)$ the (t_1, t_2) th support weight distribution of \mathscr{C}^{\perp} . Then, by Proposition 3.1,

$$W_{H}^{m}(z) = \sum_{t_{1}=0}^{m} \sum_{t_{2}=0}^{m} [m]_{t_{1},t_{2}} B^{(t_{1},t_{2})}(z).$$
(3.1)

THEOREM 3.2. For all $m \ge 1$,

$$\sum_{t_1=0}^{m} \sum_{t_2=0}^{m} [m]_{t_1,t_2} B^{(t_1,t_2)}(z) = \frac{1}{p^{2mk}} (1 + (p^{2m} - 1)z)^n \sum_{t_1=0}^{m} \sum_{t_2=0}^{m} [m]_{t_1,t_2} A^{(t_1,t_2)} \left(\frac{1-z}{1 + (p^{2m} - 1)z}\right).$$

349

[5]

J. Gao

PROOF. Recall the MacWilliams-type identity for the Hamming weight of the linear code over GR(R, m):

$$\operatorname{Ham}_{(\mathscr{C}^{(m)})^{\perp}}(x,z) = \frac{1}{|\mathscr{C}^{(m)}|} \operatorname{Ham}_{\mathscr{C}^{(m)}}(x+(p^{2m}-1)z,x-z).$$

From this identity,

$$W_{H}^{m}(z) = \frac{1}{|\mathscr{C}^{(m)}|} (1 + (p^{2m} - 1)z)^{n} W_{H} \left(\frac{1 - z}{1 + (p^{2m} - 1)z}\right)$$
(3.2)

and the desired result follows by substituting (3.2) into (3.1).

Acknowledgements

This research is supported by the National Key Basic Research Program of China (Grant No. 2013CB834204) and the National Natural Science Foundation of China (Grant No. 61171082).

References

- [1] J. Cui, 'Support weight distribution of Z₄-linear codes', *Discrete Math.* **247** (2002), 135–145.
- [2] J. Cui and J. Pei, 'Generalized MacWilliams identities for Z₄-linear codes', *IEEE Trans. Inform. Theory* 50 (2004), 3302–3305.
- [3] A. Kaya, B. Yildiz and I. Siap, 'Quadratic residue codes over $\mathbb{F}_p + v\mathbb{F}_p$ and their Gray images', *J. Pure Appl. Algebra* **218** (2014), 1999–2011.
- [4] T. Kløve, 'Support weight distribution of linear codes', *Discrete Math.* **106** (1992), 311–316.
- [5] J. Simonis, 'The effective length of subcodes', *Appl. Algebra Engrg. Comm. Comput.* 5 (1992), 371–377.
- [6] V. K. Wei, 'Generalized Hamming weights for linear codes', *IEEE Trans. Inform. Theory* **37** (1991), 1412–1418.
- [7] S. Zhu and L. Wang, 'A class of constacyclic codes over $\mathbb{F}_p + v\mathbb{F}_p$ and its Gray image', *Discrete Math.* **311** (2011), 2677–2682.
- [8] S. Zhu, Y. Wang and M. Shi, 'Some results on cyclic codes over \mathbb{F}_2 + v\mathbb{F}_2', IEEE Trans. Inform. Theory 56 (2010), 1680–1684.

JIAN GAO, Chern Institute of Mathematics and LPMC, Nankai University, China e-mail: dezhougaojian@163.com