Nutrition Society Silver Medal Lecture

Fatty acids and the immune system: from basic science to clinical applications

Parveen Yaqoob
Hugh Sinclair Unit of Human Nutrition, School of Food Biosciences, University of Reading, Whiteknights, PO Box 226, Reading RG6 6AP, UK

The very first review addressing the roles of fatty acids in the immune system was published by Meade & Mertin (1978), who, in their opening paragraph, comment that it is ‘early yet to know whether fatty acid research may finally find a niche in immunology’. They explain that their aim is to provide a new perspective rather than to summarize an established field and by ‘gathering together threads from the fields of immunology, biochemistry and nutrition’, they discuss ‘in a deliberately one-sided way’, whether there might be specific roles for fatty acids in the immune system in health and disease. While much of their review is highly speculative, Meade & Mertin (1978) show remarkable foresight by suggesting that there may be immunological explanations for data relating to the relationship between dietary fat and disease, which had commonly been interpreted without any reference to immunology. This idea, placed in the context of atherosclerosis in particular, was well ahead of its time. Of course, not all Meade & Mertin’s (1978) predictions were accurate. They speculated, for example, that the immunological basis of atherosclerosis might be a reaction to milk proteins! However, there is no doubt that they gave rise to a field that has seen major developments over the last 25 years.

In the present review some of the key developments since the publication of the Meade & Mertin (1978) review will be described and, hopefully, readers will be convinced that fatty acids might finally have found the niche in immunology that they envisaged.

Fatty acid structure and nomenclature

Fatty acids are hydrocarbon chains, which can be saturated, MUFA or PUFA. Unsaturated fatty acids contain double bonds between pairs of adjacent C atoms; MUFA contain one double bond, whereas PUFA contain more than one double bond. There are two essential fatty acids, linoleic and α-linolenic acid, that cannot be synthesized de novo in animal cells and, therefore, must be obtained from the diet. Linoleic acid is an n-6 PUFA, described by its shorthand notation of 18:2n-6, which refers to an C18 fatty acid with two double bonds, the first of which is on C-6 from the methyl end. α-Linolenic acid is an n-3 PUFA with a shorthand notation of 18:3n-3, describing an C18 fatty acid with three double bonds, the first being positioned at C-3 from the methyl end. Both essential fatty acids can be further elongated and desaturated in animal cells forming...

Abbreviations: AA, arachidonic acid; CRP, C-reactive protein; DHA, docosahexaenoic acid; EPA, eicosapentaenoic acid; ICAM, intercellular adhesion molecules; LT, leukotrienes; NK, natural killer; VCAM, vascular cell adhesion molecules.

Corresponding author: Dr P. Yaqoob, fax +44 118 931 0800, email P.Yaqoob@reading.ac.uk
the n-6 and n-3 families of PUFA (Fig. 1). The metabolism of the n-6 and n-3 fatty acids is competitive, since both pathways employ the same set of enzymes. The major end product of the n-6 pathway is arachidonic acid. This pathway is quantitatively the most important pathway of PUFA metabolism in man, because linoleic acid is abundant in vegetable oils and vegetable oil-based products, and is therefore consumed in greater quantities than α-linolenic acid, which is present in green leafy vegetables and some seed and vegetable oils. The major end products of the n-3 pathway are eicosapentaenoic acid (EPA) and docosapentaenoic acid (DPA); very little α-linolenic acid proceeds along the entire metabolic pathway to give rise to docosahexaenoic acid (DHA). However, oily fish contain lipid that has a high proportion of the long-chain n-3 PUFA, EPA and DHA, and are the chief sources of these fatty acids. GLA, γ-linolenic acid; DGLA, dihomo-γ-linolenic acid.

Fatty acids and the immune system: a historical perspective

The Meade & Mertin (1978) review was largely based on studies investigating the effects of fatty acids on the proliferation of lymphocytes in vitro. These types of studies continue to be published to some extent and demonstrate that saturated fatty acids have little effect on in vitro lymphocyte proliferation, while unsaturated fatty acids inhibit lymphocyte proliferation (see Calder et al. 1991). The most potent inhibitory effects tend to be observed when lymphocytes are incubated in the presence of AA or EPA at concentrations of ≥50 μM (Calder et al. 1991). Since the proliferation of lymphocytes plays an important role in the response of the immune system to a challenge, these results were interpreted to suggest that PUFA were immunosuppressive and that they may affect other aspects of the immune response. The in vitro studies inevitably led to investigations of the effects of dietary fatty acids on immune function, initially in animal models, and subsequently in human subjects.

Fatty acids and the immune system: evidence from animal studies

Studies investigating the effects of dietary fats on immune function in laboratory animals (usually rodents) have generally shown that high-fat diets suppress lymphocyte functions compared with low-fat diets, but the nature and extent of the impairment depends on the level and type of fat (see Calder et al. 2002). Saturated fatty acids and n-6 PUFA have little effect on lymphocyte proliferation (Yaqoob et al. 1994a, 1995a), cytokine production (Yaqoob & Calder, 1995a,b) or natural killer (NK) cell activity (Yaqoob et al. 1994b). In contrast, oleic acid (delivered in the form of olive oil) and n-3 PUFA (delivered as fish oil) have been demonstrated to inhibit both lymphocyte activation (Yaqoob et al. 1994a, 1995a; Jeffery et al. 1996; Jolly et al. 1997; Arrington et al. 2001) and NK cell activity (Yaqoob et al. 1994b; Jeffery et al. 1996) in animal studies. In addition, fish oil has been demonstrated to inhibit the production of inflammatory cytokines by lymphocytes (Yaqoob & Calder, 1995b; Jolly et al. 1997, 1998; Wallace et al. 2001) and macrophages (Billiar et al. 1988; Renier et al. 1993; Yaqoob & Calder, 1995a; Wallace et al. 2000a), to decrease the expression of adhesion molecules by lymphocytes (Sanderson et al. 1995a) and to decrease adhesion of lymphocytes to macrophage monolayers and to endothelial cells (Sanderson et al. 1998).

The experiments described above represent ex vivo effects of fatty acids on immune function, since the tests of immune response are conducted in vitro following a period of dietary manipulation in the animal. Thus, NK cell activity is assessed by the ability of lymphocytes (from animals subjected to specific dietary regimens) to lyse tumour cells ex vivo. While these ex vivo tests are a useful tool for examining the influence of dietary fatty acids on immune function, some assays (such as lymphocyte proliferation) involve rather extended periods of cell culture, during which, it could be argued, any changes in the fatty acid composition of the cells brought about by dietary manipulation, might be lost. There does indeed appear to be some loss, which can be prevented by culturing cells in autologous serum rather than foetal calf serum (Yaqoob et al. 1994a, 1995b) or by conducting lymphocyte proliferation assays in whole-blood cultures (Yaqoob et al. 1995a, 1999). Thus, cell culture conditions may be at least partly responsible for the fact that some studies report no effect or even an enhancement in lymphocyte proliferation as a result of feeding olive oil to rodents (Berger et al. 1993; De Pablo et al. 1998a).
The effects of dietary fatty acids on immune function in laboratory animals have also been investigated using in vivo tests of immune response, which overcomes the criticism associated with the loss of dietary-induced changes during cell culture. Both olive oil and fish oil decreased the graft v. host response in rats (see Fig. 2) compared with a low-fat diet or high-fat diets containing saturated fatty acids or n-6 PUFA (Table 1; Sanderson et al. 1995b). Dietary fish oil has also been demonstrated to decrease the delayed-type hypersensitivity response (Taki et al. 1992) and to prolong the survival of skin, kidney and heart transplants in rodents (Calder, 1998).

A further criticism levelled at the animal studies described earlier is that they have tended to employ very large amounts of fish oil in the diet; often these diets contain as much as 200 g fish oil/kg, equating to approximately 12% of dietary energy being contributed by n-3 PUFA. However, in order to overcome this criticism, studies have tested the effects of n-3 PUFA in rats at approximately 1-7% dietary energy and demonstrated that even at this low level of intake dietary n-3 PUFA inhibit lymphocyte proliferation (Jolly et al. 1997; Peterson et al. 1998b).

Fatty acids and the immune system: evidence from human studies

The first human studies to investigate the effects of dietary fatty acids on immune function tested the effects of fish oil on a number of immune variables (Endres et al. 1989, 1993). However, these studies were open uncontrolled trials on small numbers of subjects and did not unequivocally support the animal data. Some of the more recent double-blind placebo-controlled studies do support the animal data to some extent. Thies et al. (2001a,b) demonstrated that fish oil suppressed both lymphocyte proliferation and NK cell activity compared with a placebo treatment in healthy subjects aged 55–75 years and several studies have shown that fish oil supplementation decreased the ex vivo production of the inflammatory cytokines, TNF-α, IL-1 and IL-6 (for example, see Gallai et al. 1993; Caughey et al. 1996). However, many studies report no effect of fish oil on the production of inflammatory cytokines ex vivo (Molvig et al. 1991; Cooper et al. 1993; Cannon et al. 1995; Schmidt et al. 1996; Blok et al. 1997; Yaqoob et al. 2000). The considerable inconsistency in the reported effects of n-3 PUFA on ex vivo production of inflammatory cytokines was initially thought to be a result of differences in administered doses. However, this explanation does not fully account for the inconsistency, since some studies employing high doses of n-3 PUFA showed no effect on cytokine production, whereas others using low doses reported inhibition (for references, see Yaqoob, 2003b). Mantzioris et al. (2000) adopted the approach of setting target tissue concentrations of EPA, rather than target dietary intakes; they aimed to increase the mononuclear cell EPA content to 1.5 g/100 g total fatty acids by 2 weeks of dietary modification, a strategy based on the observation by Caughey et al. (1996) that the EPA content of mononuclear cells is strongly associated with ex vivo production of IL-1β and TNF-α and that 1.5 g EPA/100 g total fatty acids results in maximum suppression of cytokine synthesis. However, a study using a high dose of 2.1 g EPA/d plus 1.1 g DHA/d showed no effect of fish oil supplementation on ex vivo production of cytokines, despite achieving mononuclear cell EPA levels of 2.5 g/100 g total fatty acids after 4 weeks and 3.3 g/100 g total fatty acids at 12 weeks (Yaqoob et al. 2000). Similarly, Soyland et al. (1994) and Molvig et al. (1991) reported no effect of 5 or 3-2 g n-3 PUFA/d respectively on ex vivo cytokine production and although fatty acid composition data for mononuclear cells were not reported, it is likely by comparison with the study by Yaqoob et al. (2000) that the EPA content was >1.5 g/100 g total fatty acids in those studies. Thus, while the approach suggested by Mantzioris et al. (2000) is interesting, it does not adequately explain

Table 1. Effects of dietary fatty acids on the graft v. host response†

(data from Sanderson et al. 1995b)

<table>
<thead>
<tr>
<th>Diet</th>
<th>Popliteal lymph node wt (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low fat</td>
<td>102.7 ± 8.2</td>
</tr>
<tr>
<td>Coconut oil</td>
<td>101.8 ± 14.9</td>
</tr>
<tr>
<td>Olive oil</td>
<td>77.3* ± 7.5</td>
</tr>
<tr>
<td>Safflower oil</td>
<td>92.3 ± 6.3</td>
</tr>
<tr>
<td>Fish oil</td>
<td>67.8* ± 5.7</td>
</tr>
</tbody>
</table>

Mean values were significantly different from that for the low-fat diet: *P < 0.05.

†The in vivo graft v. host model was based on the subcutaneous injection of lymph node lymphocytes from adult male Lewis rats into the footpad of weanling male DA/Lewis rats, with the control leg for each rat being injected with saline (9 g NaCl/l). The animals were killed 7d after injection and the popliteal lymph nodes dissected and weighed (see Fig. 2).
the discrepancies in the literature. Differences in dosage also do not fully explain the inconsistencies in the reported effects of fish oil supplementation on lymphocyte functions (Meydani et al. 1991; Gallai et al. 1993; Yaqoob et al. 2000; Thies et al. 2000a,b). However, some of these studies suggest that older subjects may be more susceptible to the immunomodulatory effects of fish oil than younger subjects. The study by Yaqoob et al. (2000) demonstrated no effect of 3.2 g n-3 PUFA/d on lymphocyte proliferation in healthy subjects aged <60 years (n 8), whereas Thies et al. (2001b) demonstrated a significant inhibitory effect of only 1 g n-3 PUFA/d in subjects aged >55 years (n 8). (C). Before supplementation; (●), after supplementation. Stimulation index, uptake of [3H] thymidine by stimulated cells divided by that of unstimulated cells. Values are means with their standard errors represented by vertical bars. Mean value after supplementation was significantly different from that for the corresponding placebo: *P < 0.05.

Table 2. Effect of olive oil on the expression of intercellular adhesion molecule-1 (ICAM-1) by human peripheral blood mononuclear cells (data are taken from Yaqoob et al. 1998)

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>1 month</th>
<th>2 months</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>SE</td>
<td>Mean</td>
</tr>
<tr>
<td>Control</td>
<td>19·0</td>
<td>1·3</td>
<td>19·1</td>
</tr>
<tr>
<td>Olive oil</td>
<td>20·8</td>
<td>1·4</td>
<td>16·4</td>
</tr>
<tr>
<td></td>
<td>15·9*</td>
<td>1·1</td>
<td>1·5</td>
</tr>
</tbody>
</table>

Mean value was significantly different from that at baseline and from that of the control group: *P < 0.05.

Effects of eicosapentaenoic acid v. docosahexaenoic acid on immune function

Although some studies demonstrate immunomodulatory effects of n-3 PUFA, it is not yet clear whether they are associated with EPA or DHA, or a combined effect of these two n-3 PUFA. Animal studies tend to suggest that both EPA and DHA have immunomodulatory effects. Both EPA and DHA, fed to rats at 4·4 g/100 g total fatty acids, inhibited lymphocyte proliferation, although only EPA inhibited NK cell activity (Peterson et al. 1998a). In a study conducted in mice both EPA and DHA suppressed the proliferation and production of IL-2 by splenic lymphocytes (Jolly et al. 1997). However, two animal models of inflammation demonstrate differential effects of EPA and DHA, one suggesting reduced inflammation by DHA (Tomobe et al. 2000) and the other suggesting that EPA is the most anti-inflammatory (Volker et al. 2000).

In human subjects, a comparison of the effects of 3.8 g EPA/d or 3.6 g DHA/d, with a control treatment of linoleic acid, reported no differential effects of the n-3 PUFA on the phagocytic activity of monocytes (Halvorsen et al. 1997). Thies et al. (2001b) compared the effects of supplementation with fish oil (<1 g/d), highly-purified DHA (<1 g/d) and a placebo on lymphocyte proliferation in healthy subjects and demonstrated that fish oil suppressed lymphocyte proliferation, whereas DHA had no effect. This finding could be taken to suggest that either EPA is responsible for the inhibitory effect or that both EPA and DHA are required. In the same study fish oil, but not DHA, decreased NK cell activity (Thies et al. 2001a). Kelley et al. (1998, 1999) examined the effects of a much higher dose of 6 g DHA/d, which replaced 200 mg/g linoleic acid in the diet, on a number of immune responses. They reported no effect of DHA on lymphocyte proliferation, production of IL-2, antibody production or delayed-type hypersensitivity (Kelley et al. 1998). In contrast, DHA did appear to decrease NK cell activity and production of the inflammatory cytokines, TNF-α and IL-1β (Kelley et al. 1999). In a recent study comparing the effects of

Fig. 3. Older subjects may be more susceptible to the immunomodulatory effects of fish oil than young subjects. There is some inconsistency in the literature regarding the effects of fish oil on immune function. Several studies have demonstrated that older subjects appear to be more susceptible to the immunomodulatory effects of fish oil than younger subjects. The study by Yaqoob et al. (2000) demonstrated no effect of 3·2 g/n-3 PUFA/d on lymphocyte proliferation in healthy subjects aged <60 years (n 8), whereas Thies et al. (2001b) demonstrated a significant inhibitory effect of only 1 g/n-3 PUFA/d in subjects aged >55 years (n 8). (C). Before supplementation; (●), after supplementation. Stimulation index, uptake of [3H] thymidine by stimulated cells divided by that of unstimulated cells. Values are means with their standard errors represented by vertical bars. Mean value after supplementation was significantly different from that for the corresponding placebo: *P < 0.05.
highly-purified oils rich in either EPA or DHA (supplemented at approximately 5 g/d for 4 weeks) v. an olive oil placebo, none of the treatments affected monocyte or neutrophil phagocytosis, the expression of a number of adhesion molecules or the productions of a range of cytokines (Kew et al. 2004). However, the DHA treatment, but not the EPA treatment, reduced the expression of CD69, an early marker of T-lymphocyte activation (Kew et al. 2004; see Fig. 4). This observation does not appear to be consistent with the lack of effect of DHA on lymphocyte proliferation reported by Thies et al. (2001b) or Kelley et al. (1998). However, both these studies assessed markers of cell division, whereas the study by Kew et al. (2004) assessed the expression of CD69 and it was the intensity of expression, rather than the percentage of cells expressing CD69, that was altered by DHA. While the percentage of CD69-positive cells correlates with the extent of lymphocyte proliferation at different concentrations of mitogen, the fluorescence intensity does not. It could be argued, therefore, that cell division itself is not affected by DHA, but that there is a lower level of expression of CD69 on the cell surface and therefore a lower level of activation of the lymphocyte population. Since the function of CD69 is not known, the implications of this effect are unclear, but it remains possible that DHA could affect lymphocyte function without altering proliferation. However, another important consideration in the interpretation of these data is that at high doses of DHA treatment there is evidence for retroconversion to EPA (Kew et al. 2004). This evidence makes it difficult to draw the conclusion that DHA alone exerts effects on T-lymphocyte activation, since there remains a possibility that the increase in the proportion of EPA in these cells might also contribute.

Dietary fatty acids and host defence

If some classes of fatty acid possess immunosuppressive properties, it is reasonable to suggest that they may impair host resistance to infection and therefore have undesirable effects. This issue has been subject to controversy. While there have been a few clinical trials investigating the relationship between enterally-delivered n-3 PUFA and infectious disease in surgical and critically-ill patients, the data are equivocal and difficult to interpret because of the inclusion of multiple nutrients rather than n-3 PUFA alone (for review, see Heyland et al. 2001). Furthermore, since they were conducted in patient groups, it would not be appropriate to extrapolate their findings to the general population. Studies conducted in animals, investigating the influence of dietary fatty acids on host survival and/or pathogen clearance in animals challenged with a live infectious agent are also inconclusive, some studies showing that n-3 PUFA improve host defence and others showing impairment (Anderson & Fritsche, 2002). A recent review suggests that these studies lack depth and breadth, and that a direct examination of the influence of n-3 PUFA on human infectious disease resistance is warranted (Anderson & Fritsche, 2002).

If olive oil suppresses immune function, then applying the same principles it is possible that it too could have a detrimental effect on host defence. This possibility was investigated by Wallace et al. (2000b), who examined the influence of a range of dietary fatty acids on macrophage-mediated cytotoxicity towards two tumour cell lines (P815 and L929). Feeding olive oil inhibited the killing of these tumour cells compared with a low-fat diet, but other high-fat diets, including those containing safflower oil and coconut oil, had similar effects. Thus, it is not clear whether the effect of the olive oil diet was in fact a result of the amount of fat (Wallace et al. 2000b). In the same study the olive oil diet decreased the ex vivo production of TNF-α and nitrite by macrophages compared with the low-fat diet, but once again the effect may have been associated with the amount of fat (Wallace et al. 2000b).

Only a fish oil-containing diet appeared to have a specific effect on these responses (Wallace et al. 2000b). Puertolano et al. (2002) examined the effects on in vitro cellular responses to Listeria monocytogenes of feeding a low-fat diet or high-fat diets containing 200 g hydrogenated coconut oil, olive oil or fish oil/kg to Balb/c mice. Feeding olive oil did not affect spleen lymphocyte proliferation, but it enhanced the cytotoxicity of the pathogen towards splenic cells compared with the low-fat diet and the hydrogenated-coconut-oil diet, suggesting a potentially detrimental effect of olive oil (Puertolano et al. 2002). However, feeding olive oil did not affect the ability of...
Listeria monocytogenes to adhere to or invade the cells in vitro (Puertollano et al. 2002). Also, the same group investigated the effects of diets containing hydrogenated coconut oil, sunflower oil and olive oil on phagocytic activity in Balb/c mice and demonstrated that the olive oil diet enhanced phagocytic activity and production of IL-1 relative to the other groups (De Pablo et al. 1998b). Thus, the impact of olive oil on host defence is not yet clear.

Mechanisms underlying the immunomodulatory effects of n-3 PUFA

Despite the lack of consistency in the reported effects of n-3 PUFA, advances in the understanding of the structural organisation and physiological roles of fatty acids within cells have identified new mechanisms by which fatty acids might modulate immune function. Fatty acids play diverse roles in all cells. They are important as a source of energy, as structural components of cell membranes and as signalling molecules. In addition, AA (n-6 PUFA) and EPA (n-3 PUFA), can both serve as precursors for the synthesis of eicosanoids, a family of hydroxylated PUFA with a wide range of functions. Over the last few years major developments in the understanding of the organisation of lipids within cells have been demonstrated to be particularly relevant to cells of the immune system. The notion that there are ‘lipid domains’ in cellular membranes has given way to the recognition of lipid rafts and caveolae, which are highly-organized microenvironments with a number of important functions. The presence of intracellular lipid bodies, putatively containing precursors for the rapid production of eicosanoids within inflammatory cells, has been demonstrated. The characterization of new families of nuclear receptors, which can be activated by fatty acids, has led to speculation about the mechanisms by which intracellular fatty acids might be channelled towards these receptors to influence target genes related to immunity and inflammation.

Lipid rafts as platforms for cell activation in the immune system

Lipid rafts are dynamic microenvironments in the exoplasmic leaflets of the phospholipid bilayer of plasma membranes, which are rich in saturated fatty acids, sphingolipids, cholesterol and glycosylphosphatidylinositol-anchored proteins (Simons & Ikonen, 1997; Simons & Toomre, 2000; Horejsi, 2003). Rafts preferentially group proteins according to their function, e.g. a number of proteins involved in signalling are commonly found in lipid rafts and many of these are palmitoylated (Katagiri et al. 2001). Rafts are generally thought to serve as platforms to facilitate apical sorting, the association of signalling molecules and interactions and crosstalk between cell types (Simons & Ikonen, 1997; Simons & Toomre, 2000; Katagiri et al. 2001; Horejsi, 2003). To date, a number of methods have been used to study raft composition, most of them based on the fact that rafts contain large complexes of lipids and proteins, which are to some extent resistant to solubilization by non-ionic detergents. The detergent-resistant complexes can, therefore, be floated on sucrose gradients and their composition analysed. However, differences in detergent and extraction conditions can produce different results, and it is not clear how closely the composition of biochemically-isolated rafts corresponds with the presumed native structure (Horejsi, 2003).

Activation of the proteins within rafts by an extracellular ligand can result in rapid clustering, which appears to be important for signal transduction in both T- and B-lymphocytes (Katagiri et al. 2001; Pierce, 2002; Horejsi, 2003). The T-cell receptor clusters within lipid rafts on contact with an antigen-presenting cell, forming an ‘immunological synapse’, or contact zone, where intracellular signalling is thought to be initiated, and for this reason T-lymphocyte activation has become a model for studying lipid rafts.

The Src kinases play an important role in T-cell activation and their myristoylation or palmitoylation is regarded as essential for targetting them to rafts, since proteins can be artificially targeted to rafts by acylation (Zlatkine et al. 1997). Lck and Fyn, which are members of the Src family of kinases, are concentrated on the cytoplasmic side of lipid rafts and become activated in response to stimulation of the T-cell receptor, triggering a number of downstream signalling events (Liang et al. 2001). Lipid rafts from Jurkat cells treated with AA in vitro have a reduced content of Lck and Fyn, a decline in Ca signalling and a decline in some other downstream events (Stulnig et al. 2001). Of major interest is the fact that PUFA treatment results in remodelling of murine T-cell lipid rafts (Fan et al. 2003), and may even result in PUFA acylation of Fyn itself. This process is thought to be possible because palmitoyl acyltransferase is a relatively promiscuous enzyme that is able to form covalent attachments between a wide range of fatty acids and proteins (Webb et al. 2000; Liang et al. 2001). However, it is not clear whether this phenomenon is physiological. The transmembrane adaptor protein, linker for activation of T cells, is another signalling molecule constitutively present in rafts, and when phosphorylated binds to several other molecules, including phospholipase Cγ1, initiating key pathways in T-cell activation (Zhang et al. 1998). The functionality of the linker for activation of T cells is dependent on its palmitoylation. Treatment of Jurkat cells with the n-3 PUFA EPA, but not stearic acid, diminished the phosphorylation of the linker for activation of T cells and phospholipase Cγ1, and it was suggested that this effect was a result of selective displacement of the linker for activation of T cells from lipid rafts (Zeyda et al. 2002). Another example of alteration of lymphocyte function as a result of modulation of raft fatty acid composition is the displacement and subsequent activation of phospholipase D by the n-3 PUFA DHA in human T-lymphocytes (Diaz et al. 2002). The authors suggest that this activation of phospholipase D might be responsible for the anti-proliferative effects of DHA in lymphoid cells (Diaz et al. 2002). However, it would be important to determine whether there is a physiological threshold for these reported disruptive effects of PUFA on lipid rafts, and indeed whether all PUFA exert the same effect.
Eicosanoids are a family of oxygenated derivatives of AA, dihomo-γ-linolenic acid and EPA. Eicosanoids include PG, thromboxanes, leukotrienes (LT), lipoxins, hydroxyeicosatetraenoic acids and hydroxyeicosatetraenoic acids. Monocytes and macrophages are important sources of eicosanoids, and their membranes typically contain large amounts of AA, compared with dihomo-γ-linolenic acid and EPA, AA is usually the principal precursor for eicosanoid synthesis. AA in the monocyte and macrophage can be mobilized by various phospholipase enzymes, most notably phospholipase A2, and the free AA can subsequently act as a substrate for cyclooxygenase. Monocytes and macrophages to synthesize eicosanoids from AA. This effect has been demonstrated many times in a variety of animal models (for example, see Magrum & Johnston, 1983; Brouard & Pascaud, 1990; Chapkin et al. 1992; Yaqoob & Calder, 1995a) and in human subjects (Lee et al. 1985; Sperling et al. 1993). In addition to effects on generation of eicosanoids from AA, EPA is potentially able to act as a substrate for both cyclooxygenase and 5-lipoxygenase (Fig. 5), giving rise to derivatives that have a different structure from those produced from AA (i.e. 3-series PG and 5-series LT). Thus, the EPA-induced suppression in the production of AA-derived eicosanoids can potentially be mirrored by an elevation in the production of EPA-derived eicosanoids. However, the generation of EPA-derived COX metabolites following fish oil feeding has not been demonstrated, suggesting that, at the concentrations incorporated into membrane phospholipids, EPA may be a relatively poor substrate for COX.

Local generation of fatty acid-derived mediators by lipid bodies in inflammatory cells

It is becoming clear that the regulation of eicosanoid formation involves activation of enzymes at specific intracellular sites, and that this local generation of eicosanoids may be facilitated by the presence of lipid bodies present within many (if not all) cell types. Lipid bodies within eosinophils increase in number following an inflammatory stimulus and appear to contain all the enzymes necessary for eicosanoid synthesis (Bandeira-Melo et al. 2002). Unlike lipid rafts, these distinct

![Diagram of Eicosanoid Generation](https://www.cambridge.org/core)
intracellular domains are not resistant to detergent solubilization and there are consequently some methodological limitations to their study. However, novel techniques have been used to cross-link newly-synthesized LTC4 at sites of synthesis within eosinophils and to follow its fate on stimulation (Bandeira-Melo et al. 2002). This approach demonstrated that LTC4 formation does indeed occur in lipid bodies and that, depending on the nature of the stimulus, LTC4 can be either targeted towards the perinuclear membrane or released extracellularly (Bandeira-Melo et al. 2001, 2002). Like lipid rafts, the distribution of lipid bodies can be polarized, but it is not clear whether those producing eicosanoids destined to be secreted are located close to the plasma membrane, while those that are perinuclear produce eicosanoids only for autocrine effects (Bandeira-Melo et al. 2002).

Interactions between fatty acids and nuclear transcription factors in cells of the immune system

PPAR are ligand-activated transcription factors present in a variety of cell types, with diverse actions, mainly in lipid metabolism. A range of synthetic PPAR-γ and PPAR-α ligands have been demonstrated to inhibit phorbol ester-stimulated cytokine production by monocytic cells (Jiang et al. 1998) and studies using PPAR-α knock-out mice have demonstrated prolonged inflammatory responses (Devchand et al. 1996), suggesting that PPAR may be anti-inflammatory. PPAR-α is the predominant isoform expressed in murine T- and B-lymphocytes, whereas PPAR-γ dominates in myeloid cells (Jones et al. 2002). Following activation of T cells, PPAR-α expression is decreased, whereas PPAR-γ expression is increased (Jones et al. 2002). PPAR-γ ligands have been reported to decrease the production of interferon γ and IL-2 by mitogen-activated splenocytes (Cunard et al. 2002), inhibit proliferation of human T cells (Clark et al. 2000; Harris & Phipps, 2001) and promote apoptosis in murine helper-T-cell clones (Clark et al. 2000). To date, most of the research examining the biological effects of PPAR has employed synthetic agonists at concentrations that are higher than their dissociation constants for binding to PPAR. The reliance on synthetic activators of PPAR has meant that there is still very little information about the physiological roles of the natural ligands of these transcription factors. It is often assumed that because some fatty acids and their metabolites have been demonstrated to act as PPAR ligands in competitive binding and/or reporter assays, they must act as natural ligands. This assumption has led to considerable speculation about the potential for specific classes of fatty acids (particularly the n-3 PUFA) to mediate effects on cell function through PPAR. However, there appears to be no distinction between the n-3 PUFA and the n-6 PUFA in their binding affinity and/or activating capacity, and no relationship with chain length or number of double bonds (Forman et al. 1997; Kliwer et al. 1997; Krey et al. 1997; Lin et al. 1999; Wolfrum et al. 2001; Xu et al. 2001). Thus, there is a lack of plausible evidence to support the idea that any particular class of fatty acids has a superior capacity to act as ligands for PPAR in the immune system in vivo. However, it has been suggested that fatty acid-binding proteins are able to interact physically with both PPAR-α and PPAR-γ to direct ligands to their responsive genes, in what has been described as a ‘cytosolic gateway’ (Tan et al. 2002). If the presence of this gateway can be established, it would represent an elegant mechanism by which intracellular fatty acids could be directed to interact with a target gene. A recent review suggests that fatty acids act as gatekeepers in immune cell regulation, in the sense that their location and organization within cellular lipids have a direct influence on the behaviour of a number of proteins involved in immune cell activation (Yaqoob, 2003a).

Clinical applications

The suggestion that n-3 PUFA might possess anti-inflammatory properties has generated considerable interest in their potential application as therapeutic agents in chronic inflammatory disorders. Unfortunately, for most inflammatory disorders, evidence for therapeutic effects of n-3 PUFA is very weak (see Yaqoob, 2003b). The only condition for which the evidence is consistently positive is rheumatoid arthritis. At least thirteen double-blind placebo-controlled trials of fish oil supplementation have been conducted to date, all of which demonstrate at least modest improvements in clinical symptoms and severity of disease in the treatment groups (for review, see Calder & Zurier, 2001). In recent years, the n-3 PUFA have been suggested as therapeutic agents in another chronic inflammatory disease that affects many thousands of individuals worldwide, atherosclerosis. This condition, which describes the gradual process by which lesions form in arterial walls, has only recently been recognized as an inflammatory disease. Even when Meade & Mertin (1978) speculated that there might be an immunological basis for data relating to dietary fat and chronic disease, they could not have imagined the importance of their predictions in relation to atherosclerosis.

Inflammation in atherosclerosis

Atherosclerosis is characterized by the accumulation of monocytes and lymphocytes through all stages of its pathogenesis, beginning with the formation of fatty streaks underlying the endothelium of large arteries. The infiltration of monocytes and lymphocytes occurs as a result of the secretion of chemoattractant molecules (e.g. monocyte chemoattractant protein-1) and the expression of adhesion molecules by endothelial cells lining the artery wall in a manner identical to that observed in the inflammatory response to an infection. Several stimuli for the inflammatory response in atherosclerosis have been proposed, including oxidized LDL, homocysteine, free radicals and infectious micro-organisms. However, the nature of the immune response towards these stimuli is not clear. While the precise inflammatory nature of oxidized LDL is not entirely clear, it is accepted that monocytes that have infiltrated the arterial intima and differentiated into macrophages take up oxidized LDL through scavenger receptors in an unregulated manner, accumulating large amounts of cholesterol and becoming foam cells. Although homeostatic responses exist to remove cholesterol from
macrophages, they progressively fail in atherosclerosis, and when the macrophages eventually die, through necrosis or apoptosis, the lipid is deposited within the core of the developing plaque. Cytokines secreted by both lymphocytes and macrophages within the plaque exert pro- and anti-atherogenic effects on components of the vessel wall (Ross, 1999; Glass & Witzum, 2001). Smooth muscle cells migrate from the medial portion of the arterial wall towards the intima and secrete extracellular matrix proteins that form a fibrous cap. The cap separates the highly thrombogenic contents of the plaque lipid core from the potent coagulation system contained within the circulating blood. Analysis of advanced human plaques suggests that they undergo repetitive cycles of microhaemorrhage and thrombosis, which predominantly occur at the shoulder regions (Glass & Witzum, 2001). Matrix metalloproteinases secreted by macrophages degrade extracellular matrix proteins and contribute to the weakening of the fibrous cap, which can lead to plaque rupture (Libby et al. 1996). The resulting thrombosis can lead to a fatal occlusion of the artery.

While much of the inflammatory activity in atherosclerosis is located in the arterial intima, there is compelling evidence to suggest that it is reflected by a persistent low-grade inflammation in the circulation. This chronic low-grade inflammation is likely to be the result of a ‘spilling over’ of inflammatory molecules (cytokines secreted by monocytes and soluble adhesion molecules shed from the surface of endothelial cells) from the vessel wall into the circulation, where they subsequently act on the liver to induce the secretion of acute-phase proteins, including C-reactive protein (CRP), fibrinogen and serum amyloid A.

The protective effects of n-3 PUFA in atherosclerosis may involve effects on inflammation

There is epidemiological evidence that consumption of fish or long-chain n-3 PUFA found in oily fish and fish oils protects against CVD in Western populations (Miettinen et al. 1982; Kromhout et al. 1985, 1995; Shekelle et al. 1985; Norell et al. 1986; Feskens et al. 1993; Siscovick et al. 1995; Daviulis et al. 1997; Albert et al. 1998, 2002; Hu et al. 2002). Long-chain n-3 PUFA lower fasting plasma triacylglycerol concentrations (Harris, 1996) and reduce the postprandial lipidaemic response (Williams, 1997). Several secondary prevention studies, providing long-chain n-3 PUFA to patients who had already suffered a myocardial infarction, demonstrate substantial benefit (for example, see Burr et al. 1989; Singh et al. 1997; GISSI Prevenzione, 1999; Marchioli et al. 2002), although one study demonstrated a higher risk of cardiac death, which could not be explained (Burr et al. 2003). A recent meta-analysis of randomized controlled trials, which compared dietary or non-dietary intake of n-3 PUFA with a control diet or placebo in patients with CVD, identified eleven trials fitting specific criteria relating to length of study, clinical outcomes etc., and concluded that n-3 PUFA reduce total mortality, fatal myocardial infarction and sudden death (Bucher et al. 2002). This reduction in mortality might be a result of anti-thrombotic and anti-arrhythmic actions of n-3 PUFA (Leaf et al. 1998), although n-3 PUFA might also contribute to the stabilization of atherosclerotic plaques by reducing inflammation.

Effects of n-3 PUFA on systemic markers of inflammation

CRP is an acute-phase reactant synthesized by the liver and regulated principally by the cytokine IL-6. High serum concentrations of CRP correlate with the presence of subclinical CVD and the risk of acute cardiovascular events. Several large-scale prospective epidemiological studies have shown that the plasma level of CRP is a strong independent predictor of future myocardial infarction, stroke and pulmonary vascular disease among individuals without known CVD (Kuller et al. 1996; Ridker et al. 1997; Ridker et al. 1998, 2000; Koenig et al. 1999; Danesh et al. 2000; Mendall et al. 2000). Some studies have suggested that the addition of ‘high-sensitivity’ CRP to lipid screening improves the estimation of vascular risk over the use of lipid screening alone, since ‘high-sensitivity’ CRP has been shown to be an important predictor of risk, even in individuals with normal LDL-cholesterol levels (Ridker et al. 2000). This finding is pertinent, since a high proportion of myocardial infarctions occur in individuals with normal plasma lipid levels. It is interesting to note in this context that the relationship between LDL-cholesterol and ‘high-sensitivity’ CRP is weak, which has led to the suggestion that hyperlipidaemia and enhanced inflammation are separate but interactive processes (Ridker et al. 2000). It is unclear at present whether CRP is simply a marker of the inflammatory process associated with atherosclerosis, or whether it plays an aetiological role in atherogenesis. It is possible that both are partially true and that serum concentrations of CRP (as well as other acute-phase proteins) reflect the inflammatory response to atherosclerotic damage, but in addition enhance clot formation, lipid oxidation and cell activation (Tracy, 1998).

The question of whether alleviation of the inflammatory component of CVD may provide additional benefits to other treatments has not been studied to a great extent in the context of CRP. DeMaat et al. (1994) have reported that short-term treatment (1 week) with fish oil at a high dose of 30 g/d had no significant effect on CRP levels in healthy young subjects. Furthermore, Chan et al. (2002) demonstrated that treatment for 6 weeks with statin, but not fish oil (4 g/d), reduced CRP and IL-6 concentrations in individuals with visceral obesity. Thus, there is currently no evidence to suggest that n-3 PUFA are able to modulate plasma levels of CRP.

The hepatic synthesis of CRP is largely under the control of the pro-inflammatory cytokine, IL-6. Leucocytes are thought to be an important source of circulating IL-6, although it has been estimated that as much as one-third of total circulating IL-6 can originate from adipose tissue, depending on the extent of adiposity (Yudkin et al. 2000). A limited number of animal and human studies report the effects of dietary n-3 PUFA on circulating inflammatory cytokine concentrations (in contrast to the numerous...
studies examining the effects of n-3 PUFA on ex vivo cytokine production by leucocytes, described earlier). Mice fed fish oil had lower plasma concentrations of TNF-α, IL-1β and IL-6 following endotoxin injection than did mice fed safflower oil (Sadeghi et al. 1999). This observation might be linked to better survival of fish oil-fed animals when exposed to endotoxin (for references, see Calder, 2001). Fish oil-containing parenteral nutrition decreased serum TNF-α, IL-6 and IL-8 concentrations in burned rats compared with n-6 PUFA-rich parenteral nutrition (Hayashi et al. 1998; Tashiro et al. 1998). Likewise, surgical patients infused with a fish oil-rich emulsion showed lower TNF-α concentrations in the bloodstream at some time points compared with patients receiving a control infusion (Wachtl et al. 1997). However, the influence of n-3 PUFA on subclinical levels of circulating inflammatory cytokines is not known.

Adhesion molecules mediate the attachment of leucocytes to the endothelium, their transmigration into the subendothelial space and their retention and accumulation within the artery wall. Several families of adhesion molecules are known to exist. The key adhesion molecules, in terms of atherosclerosis, are the selectins, ICAM and vascular cell adhesion molecules (VCAM). The surface expression of these molecules can be up regulated very rapidly because they exist within an intracellular pool and translocate to the plasma membrane following cell activation. Here they engage with their complementary adhesion molecule or are recycled. At the cell surface these adhesion molecules may also be cleaved to form soluble fragments that enter the circulation. Soluble forms of ICAM-1 and VCAM-1 are found in the plasma, probably as a result of shedding from the surface of activated endothelial cells (Rothlein et al. 1991).

Plasma concentrations of soluble ICAM-1 and soluble-VCAM-1 have been reported in some studies to be higher in individuals with CVD and pulmonary vascular disease than in controls (Blann & McCollum, 1994; Haught et al. 1996; Morisaki et al. 1997; Caulin-Glaser et al. 1998). However, the results of such studies are not entirely consistent and a recent meta-analysis has demonstrated that soluble adhesion molecules are unlikely to add much predictive information to that provided by established risk factors (Malik et al. 2001).

Studies investigating the effects of supplementation with fish oil on serum soluble adhesion molecule levels have also reported equivocal findings (Abe et al. 1998; Seljeft et al. 1998; De Caterina et al. 2000). Several studies have shown no effect on levels of soluble VCAM-1, while one study reported an increase (Johansen et al. 1999) and one study reported that supplementation with a moderate dose of fish oil (1-2 g EPA + DHA/d) for 12 weeks decreased plasma levels of soluble VCAM-1 in older subjects, but did not have any effect in young males (Miles et al. 2001). Most studies show no effect on plasma soluble ICAM-1 levels (Abe et al. 1998; Miles et al. 2001). Two studies showed that fish oil increased plasma soluble E-selectin (Johansen et al. 1999; Miles et al. 2001); in one of these studies soluble E-selectin was increased by fish oil in young subjects, but not in older subjects (Miles et al. 2001).

Effects of n-3 PUFA on monocyte and macrophage chemotaxis

Chemotaxis of monocytes and macrophages could be affected by changes in the fatty acid composition of membrane phospholipids that might influence the binding of chemotactic agents to their receptors, the subsequent signalling pathways or the cytoskeletal rearrangements that occur. Modulation of chemotaxis by n-3 PUFA could potentially influence the extent of infiltration of monocytes into the arterial intima. Chemotaxis of blood monocytes towards the chemo-attractants LTB$_4$ and formyl-methionyl-leucyl-phenylalanine was found to be suppressed following supplementation of the human diet with approximately 5.5 g EPA + DHA/d for 6 weeks (Lee et al. 1985; Schmidt et al. 1992). However, there was no effect of a much lower (and more nutritionally relevant) dose of n-3 PUFA (0.65 g/d for 12 weeks) on monocyte chemotaxis towards pooled human serum (Schmidt et al. 1996).

Effects of n-3 PUFA on adhesion molecule expression

As described earlier, adhesion molecules are involved in interactions between leucocytes and endothelial cells, which may facilitate movement of leucocytes into the arterial wall. *In vitro* studies have highlighted the potential for n-3 PUFA to modulate the expression of adhesion molecules by some cell types. Calder et al. (1990) observed that murine peritoneal macrophages cultured in the presence of EPA or DHA were less adherent to artificial surfaces than those cultured with other fatty acids. Incubation of human monocytes with EPA has also been shown to result in reduced expression of ICAM-1, while DHA had no effect (Hughes et al. 1996b). The reduction in ICAM-1 expression on human monocytes was also observed following dietary supplementation with n-3 PUFA (Hughes et al. 1996a). In animal feeding studies Sanderson et al. (1995b, 1998) demonstrated that fish oil reduced the expression of specific adhesion molecules on concanavalin A-stimulated lymphocytes and their adhesion to macrophage and endothelial cell monolayers.

Effects of n-3 PUFA on the expression of scavenger receptors

Scavenger receptors take up modified forms of LDL in an unregulated manner, leading to foam cell formation. A few studies have examined the effects of n-3 PUFA on scavenger receptor expression by monocytes or macrophages. An animal study demonstrated that feeding a fish oil-rich diet to mice resulted in down-regulation of macrophage scavenger receptors AI and AII, while coconut oil and sunflower oil had no effect, when compared with the standard diet fed to the animals (Miles et al. 2000). Pietsch et al. (1995) reported a down-regulation of the expression of CD36 by the human monocyte U937 cell line after incubation with EPA (5 μm) or DHA, but not with linoleic acid or AA. In another study EPA (30–240 μm) was shown to inhibit the proliferation of the same cell line in a dose-dependent manner and, at the
highest concentrations, induced apoptosis (Finstad et al. 1998). Expression of CD36 was lower in cells treated with EPA (60 μM) or oleic acid compared with untreated cells (Finstad et al. 1998). However, EPA unexpectedly caused greater accumulation of lipid droplets in the cells than oleic acid, although the effects were reversed when cells were re-incubated in EPA-free medium. This finding leaves the question of the precise nature of the effects of fatty acids on foam cell formation unresolved.

Effects of n-3 PUFA on thrombogenic potential of macrophages

Macrophages present in atherosclerotic lesions produce tissue factor, a highly thrombogenic agent which, when released as a result of plaque rupture, activates platelet aggregation and thrombosis. Analysis of human lesions in individuals with advanced atherosclerosis suggests that repetitive cycles of microhaemorrhage and non-fatal thrombosis occur (Glass & Witztum, 2001). Human monocytes that have been differentiated and transformed into foam cells in vitro have been demonstrated to express tissue factor (Colli et al. 1999). AA, but not EPA or DHA, enhanced both the expression of tissue factor and the procoagulant activity of human monocyte-derived macrophages by a mechanism suggested to involve the cyclooxygenase pathway (Cadroy et al. 1998).

Effects of n-3 PUFA on atherosclerotic plaque morphology and stability

The propensity of atherosclerotic plaques to rupture is influenced by their lipid content and the distribution of lipid within the plaque, by the extent of infiltration of inflammatory macrophages at the shoulder regions of the plaque and by the thickness of the fibrous cap (Davies et al. 1993; Libby et al. 1996; Plutzky, 1999). A greater lipid content, a high presence of inflammatory macrophages and a thin fibrous cap reflect a plaque that is vulnerable and likely to rupture. Macrophages secrete metalloproteinases (and induce smooth muscle cells to secrete them), which weaken the fibrous cap and, once rupture has occurred, can induce thrombosis by expressing tissue factor (Libby et al. 1996). The effects of specific fatty acids on plaque morphology and progression are not clear (Felton et al. 1997). However, given the evidence for the anti-coagulatory, anti-thrombotic and anti-inflammatory properties of n-3 PUFA, it is possible that alteration of the PUFA composition of the diet could affect plaque progression, stability and thrombus formation. If n-3 PUFA are to affect plaque stability it is likely that they must first be incorporated into the plaque. In a study by Rapp et al. (1991) patients destined to undergo carotid endarterectomy consumed fish oil for a period before surgery and the levels of EPA and DHA in the plaques removed at surgery were higher than those in plaques removed from control patients. However, the study used a very high dose of fish oil, 48–64 g/d providing 16–21 g EPA + DHA/d (Rapp et al. 1991). In comparison, habitual consumption of long-chain n-3 PUFA in most Western diets is <0.3 g/d, while secondary prevention studies demonstrate protective effects of <1.8 g EPA + DHA/d (Burr et al. 1989; GISSI Prevenzione, 1999; Marchioli et al. 2002). A recent study in patients awaiting carotid endarterectomy (fifty-nine or more patients per treatment group), investigated the effects of moderate doses of n-3 PUFA on plaque composition, morphology and stability (Thies et al. 2003). Patients were randomly assigned to either placebo (palm oil + soybean oil), sunflower oil or fish oil, with those in the fish oil group consuming an extra 1.4 g n-3 PUFA (EPA and DHA)/d, while those in the sunflower oil group consumed an extra 3.6 g linoleic acid/d (Thies et al. 2003). The duration of oil treatment was 7–189 (median 42) d, which represented the waiting time before surgical removal of the carotid plaques. The proportions of EPA and DHA were higher in carotid plaque phospholipids, cholesteryl esters and triacylglycerols in patients receiving fish oil compared with patients in the control group (Thies et al. 2003). Fewer plaques from patients being treated with fish oil had thin fibrous caps and signs of inflammation and more plaques had thick fibrous caps and no signs of inflammation, compared with the other two groups; these differences were significant in patients who had been treated with fish oil for >42 d (P < 0.05; Thies et al. 2003). The number of macrophages in the plaques from patients receiving fish oil for >42 d was lower than that in the other two groups (Thies et al. 2003). These results suggest that advanced atherosclerotic plaques are dynamic and readily incorporate n-3 PUFA, even when provided at relatively modest doses. Furthermore, incorporation of n-3 PUFA into carotid plaques was associated with a reduced number of macrophages and fewer signs of inflammation, suggesting that n-3 PUFA induce changes that may increase the stability of atherosclerotic plaques.

Conclusion

When Meade & Mertin (1978) published their highly speculative review, it is unlikely that they could have imagined the subsequent interest in the effects of fatty acids on the immune system. Over the last 25 years fatty acid research has gradually established its niche in immunology. Although there are still many questions regarding the exact nature of the modulation of immune responses by fatty acids, research is increasingly being conducted in human subjects and study design is gradually improving to overcome some of the criticisms of earlier studies. Advances in fatty acid biochemistry and molecular techniques are suggesting new mechanisms by which fatty acids could potentially alter cellular responses, many of them being particularly relevant to the immune system. Finally, there are exciting possibilities for the clinical applications of n-3 PUFA. The present review has focused on the hypothesis that the anti-inflammatory properties of n-3 PUFA in the arterial wall may contribute to the protective effects of n-3 PUFA in CVD, as suggested by epidemiological and secondary prevention studies. Studies are just beginning to show that dietary n-3 PUFA can be incorporated into plaque lipid in human subjects, where they may influence the morphology and stability of the atherosclerotic lesion.
Acknowledgements

In accepting the Nutrition Society Silver Medal 2003, I would like to express my thanks to a number of people without whom much of the work described in the present review would not have been possible. I thank the Ministry of Agriculture, Fisheries and Food (now the Food Standards Agency) for supporting me as a postdoctoral researcher at the Universities of Oxford and Southampton, and The Nutricia Research Foundation and the BBSRC, who provide funding for my work and, in doing so, have enabled me to establish an independent research group. I thank my DPhil supervisor, Professor Eric Newsholme, and colleagues at the University of Reading and University of Southampton for their support. I also thank my research group at Reading for their patience and hard work and my mentor, Professor Christine Williams, for her support and encouragement. Finally, I thank Professor Philip Calder for inspiring my ambition, motivation and fascination for fatty acid research.

References

Taki H, Morimaga SI, Yamazaki K, Hamazaki T, Suzuki H & Nakamura N (1992) Reduction of delayed-type hypersensitivity...
by the injection of n-3 polyunsaturated fatty acids in mice. Transplantation 54, 511–514.

Wallace FA, Miles EA & Calder PC (2000a) Activation state alters the effect of dietary lipids on proinflammatory mediator production by murine macrophages. Cytokine 12, 1374–1379.

