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Abstract

In this paper we establish new optimal bounds for the derivative of some discrete maximal functions, in
both the centred and uncentred versions. In particular, we solve a question originally posed by Bober et al.
[‘On a discrete version of Tanaka’s theorem for maximal functions’, Proc. Amer. Math. Soc. 140 (2012),
1669–1680].
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1. Introduction

1.1. Background. Let M denote the centred Hardy–Littlewood maximal operator
on Rd, that is, for f ∈ L1

loc(Rd),

M f (x) = sup
r>0

1
m(Br(x))

∫
Br(x)
| f (y)| dy, (1.1)

where Br(x) is the ball centred at x with radius r and m(Br(x)) is its d-dimensional
Lebesgue measure. From classical results in harmonic analysis, M : Lp(Rd)→ Lp(Rd)
is a bounded operator for 1 < p ≤ ∞ and, for p = 1, M : L1(Rd)→ L1,∞(Rd) is also
bounded. In 1997, Kinnunen [11] showed that M : W1,p(Rd)→ W1,p(Rd) is bounded
for 1 < p ≤ ∞ and that was the starting point for the study of the regularity of maximal
operators acting on Sobolev functions. This result was later extended to multilinear,
local and fractional contexts in [7, 12, 13]. Due to the lack of reflexivity of L1, results
for p = 1 are subtler. For example, in [10, Question 1], Hajłasz and Onninen asked
whether the operator f 7→ |∇M f | is bounded from W1,1(Rd) to L1(Rd). Progress on
this question (and its variant for functions of bounded variation) has been restricted to
dimension d = 1.

Let M̃ denote the uncentred maximal operator (defined similarly to (1.1), with the
supremum taken over all balls containing the point x in its closure). Refining the work
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of Tanaka [18], Aldaz and Pérez Lázaro [2] showed that if f is of bounded variation
then M̃ f is absolutely continuous and

Var M̃ f ≤ Var f , (1.2)

where Var f denotes the total variation of f . The inequality (1.2) is sharp. Kurka [14]
considered the centred maximal operator in dimension d = 1 and proved that

Var M f ≤ C Var f with C = 240 004. (1.3)

It is currently unknown if one can reduce the constant to C = 1 in the centred case.
Other interesting works related to this theory are [1, 4, 8, 9, 16, 17].

1.2. Discrete setting. In this paper we consider similar questions in the discrete
setting. Let us start with some definitions.

We denote a vector ~n ∈ Zd by ~n = (n1, n2, . . . , nd). For a function f : Zd → R, we
define its `p-norm as usual:

‖ f ‖`p(Zd) =

(∑
~n∈Zd

| f (~n)|p
)1/p

if 1 ≤ p <∞; ‖ f ‖`∞(Zd) = sup
~n∈Zd
| f (~n)|.

We define its total variation Var f by

Var f =

d∑
i=1

∑
~n∈Zd

| f (~n + ~ei) − f (~n)|,

where ~ei = (0, 0, . . . , 1, . . . , 0) is the canonical ith basis vector. Also, we say that a
function f : Zd → R is a delta function if there exist ~p ∈ Zd and k ∈ R such that

f (~p) = k and f (~n) = 0 for all ~n ∈ Zd \ {~p}.

1.2.1. A sharp inequality in dimension one. For f : Z→ R, we define its centred
Hardy–Littlewood maximal function M f : Z→ R+ as

M f (n) = sup
r∈Z+

1
(2r + 1)

r∑
k=−r

| f (n + k)|,

while the uncentred maximal function M̃ f : Z→ R+ is given by

M̃ f (n) = sup
r,s∈Z+

1
(r + s + 1)

s∑
k=−r

| f (n + k)|.

In [3], Bober et al. proved the inequalities

Var M̃ f ≤ Var f ≤ 2‖ f ‖`1(Z) (1.4)

and
Var M f ≤

(
2 +

146
315

)
‖ f ‖`1(Z). (1.5)
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The leftmost inequality in (1.4) is the discrete analogue of (1.2). The rightmost
inequality in (1.4) is simply the triangle inequality. Both inequalities in (1.4) are
sharp (for example, equality is attained if f is a delta function). On the other hand,
(1.5) is not optimal, and it was asked in [3] whether the sharp constant for (1.5) is in
fact C = 2. Our first result answers this question affirmatively and characterises the
extremal functions.

Theorem 1.1. Let f : Z→ R be a function in `1(Z). Then

Var M f ≤ 2‖ f ‖`1(Z), (1.6)

and the constant C = 2 is the best possible. Moreover, the equality is attained if and
only if f is a delta function.

Remark 1.2. In [19], Temur proved the analogue of (1.3) in the discrete setting:

Var M f ≤ C Var f (1.7)

with constant C = (72 000)212 + 4. This inequality is qualitatively stronger than (1.6)
(in fact, Var f should be seen as the natural object to be on the right-hand side), but it
does not imply (1.6). By the triangle inequality, (1.6) suggests that it may be possible
to prove (1.7) with constant C = 1, but this is currently an open problem.

1.2.2. Sharp inequalities in higher dimensions. We now aim to extend
Theorem 1.1 to higher dimensions. In order to do so, we first recall the notion of
maximal operators associated to regular convex sets as considered in [5].

Let Ω ⊂ Rd be a bounded open convex set with Lipschitz boundary, and such that
~0 ∈ int(Ω) and ±~ei ∈ Ω for 1 ≤ i ≤ d. For r > 0, write

Ωr(~x0) = {~x ∈ Rd : r−1(~x − ~x0) ∈ Ω} and set Ω0(~x0) = {~x0}.

Whenever ~x0 = ~0, we shall write Ωr = Ωr
(~0) for simplicity. This object plays the

role of the ‘ball of centre ~x0 and radius r’ in our maximal operators below. For
instance, to work with regular `p-balls, consider Ω = Ω`p = {~x ∈ Rd : ‖~x‖p < 1}, where
‖~x‖p = (|x1|

p + |x2|
p + · · · + |xd |

p)1/p for ~x = (x1, x2, . . . , xd) ∈ Rd and 1 ≤ p < ∞, and
‖~x‖∞ = max{|x1|, |x2|, . . . , |xd |}.

Given f : Zd → R, we denote by Ar f (~n) the average of | f | over the Ω-ball of centre
~n and radius r, that is,

Ar f (~n) =
1

N(r)

∑
~m∈Ωr

| f (~n + ~m)|,

where N(~x, r) is the number of lattice points in the set Ωr(~x) (and N(r) := N(~0, r)). We
denote by MΩ the discrete centred maximal operator associated to Ω,

MΩ f (~n) = sup
r≥0

Ar f (~n) = sup
r≥0

1
N(r)

∑
~m∈Ωr

| f (~n + ~m)|,
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and we denote by M̃Ω its uncentred version

M̃Ω f (~n) = sup
Ωr(~x0)3~n

Ar f (~x0) = sup
Ωr(~x0)3~n

1
N(~x0, r)

∑
~m∈Ωr(~x0)

| f (~m)|.

It should be understood throughout the rest of the paper that we always consider Ω-
balls with at least one lattice point. These convex Ω-balls have roughly the same
behaviour as the regular Euclidean balls from the geometric and arithmetic points of
view, in the sense that for large radii, the number of lattice points inside the Ω-ball is
roughly equal to the volume of the Ω-ball (see [15, Ch. VI, Section 2, Theorem 2]).

Given f ∈ `1loc(Zd), the discrete centred maximal operator associated to Ω`p is

Mp f (~n) = MΩ`p f (~n) for 1 ≤ p <∞ and M f (~n) = MΩ`∞ f (~n) for p =∞.

Analogously, we denote by M̃p f and M̃ f the uncentred versions of the discrete
maximal operators associated to Ω`p for 1 ≤ p ≤ ∞. Note that in dimension d = 1
we have Mp = M and M̃p = M̃ for all 1 ≤ p ≤ ∞.

In [5], Carneiro and Hughes showed that, for any regular set Ω as above and
f : Zd → R, there exist constants C(Ω, d) and C̃(Ω, d) such that

Var MΩ f ≤ C(Ω, d)‖ f ‖`1(Zd) (1.8)

and
Var M̃Ω f ≤ C̃(Ω, d)‖ f ‖`1(Zd). (1.9)

Inequalities (1.8) and (1.9) were extended to a fractional setting in [6, Theorem 3].
Here we extend Theorem 1.1 to higher dimensions in two distinct ways. We find
the sharp form of (1.8) when d ≥ 1 and Ω = Ω`1 (a rhombus), and the sharp form
of (1.9) when d ≥ 1 and Ω = Ω`∞ (a regular cube). As we shall see below, we use
different techniques in the proofs of these two extensions, taking into consideration
the geometry of the chosen sets Ω.

For d ≥ 1 and k ≥ 0, we write N1,d(k) = |(Ω`1 )k| = |{~x ∈ Zd : ‖~x‖1 ≤ k}|.

Theorem 1.3. Let d ≥ 2 and f : Zd → R be a function in `1(Zd). Then

Var M1 f ≤ 2d
(
1 +

∑
k≥1

N1,d−1(k) − N1,d−1(k − 1)
N1,d(k)

)
‖ f ‖`1(Zd) =: C(d)‖ f ‖`1(Zd), (1.10)

and the constant C(d) is the best possible. Moreover, the equality is attained if and
only if f is a delta function.

Remark 1.4. Note that C(d) <∞, because there exists a constant C such that

N1,d(k) = Ckd + O(kd−1),

where C = m(Ω`1 ) (see [15, Ch. VI. Section 2, Theorem 2]). For sufficiently large k,

N1,d−1(k) − N1,d−1(k − 1)
N1,d(k)

∼
1
k2 .
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In particular, for d = 2,

C(2) = 4 + 8
∑
k≥1

1
k2 + (k + 1)2 .

Our proof of Theorem 1.3 is the natural extension of the proof of Theorem 1.1 but
we decided to present Theorem 1.1 separately since it contains the essential idea with
less technical details. The next result is the sharp version of (1.9) for the discrete
uncentred maximal operator with respect to cubes (that is, `∞-balls). This proof
follows a different strategy from Theorems 1.1 and 1.3.

Theorem 1.5. Let d ≥ 1 and f : Zd → R be a function in `1(Zd). Then

Var M̃ f ≤ 2d
(
1 +

∑
k≥1

1
k

(( 2
k + 1

+
2k − 1

k

)d−1
−

(2k − 1
k

)d−1))
‖ f ‖`1(Zd)

=: C̃(d)‖ f ‖`1(Zd), (1.11)

and the constant C̃(d) is the best possible. Moreover, the equality is attained if and
only if f is a delta function.

Remark 1.6. In particular, C̃(1) = 2 (and we recover (1.4)) and C̃(2) = 12.

For the proofs of these three theorems we may assume throughout the rest of the
paper, without loss of generality, that f ≥ 0.

2. Proof of Theorem 1.1

Since f ∈ `1(Z), for all n ∈ Z there exists rn ∈ Z such that M f (n) = Arn f (n). Define

X− = {n ∈ Z : M f (n) ≥ M f (n + 1)} and X+ = {n ∈ Z : M f (n + 1) > M f (n)}.

Then

Var M f =
∑
n∈Z

|M f (n) − M f (n + 1)|

=
∑
n∈X−

(M f (n) − M f (n + 1)) +
∑
n∈X+

(M f (n + 1) − M f (n))

≤
∑
n∈X−

(Arn f (n) − Arn+1 f (n + 1)) +
∑
n∈X+

(Arn+1 f (n + 1) − Arn+1+1 f (n)). (2.1)

Given p ∈ Z, we find the maximal contribution of f (p) to the right-hand side of (2.1).

Case 1: n ∈ X− and n ≥ p. If p < n − rn, the contribution of f (p) to the term
Arn f (n) − Arn+1 f (n + 1) is 0; if n − rn ≤ p, the contribution is

1
2rn + 1

−
1

2rn + 3
=

2
(2rn + 1)(2rn + 3)

≤
2

(2(n − p) + 1)(2(n − p) + 3)
=

1
2(n − p) + 1

−
1

2(n − p) + 3
,

and equality is attained if and only if rn = n − p.
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Case 2: n ∈ X+ and n ≥ p. If p < n + 1 − rn+1, the contribution of f (p) to
Arn+1 f (n + 1) − Arn+1+1 f (n) is nonpositive; if n + 1 − rn+1 ≤ p, the contribution is

1
2rn+1 + 1

−
1

2rn+1 + 3
=

2
(2rn+1 + 1)(2rn+1 + 3)

≤
2

(2(n + 1 − p) + 1)(2(n + 1 − p) + 3)

=
1

2(n + 1 − p) + 1
−

1
2(n + 1 − p) + 3

<
1

2(n − p) + 1
−

1
2(n − p) + 3

.

Case 3: n ∈ X− and n < p. If p > n + rn, the contribution of f (p) to the term
Arn f (n) − Arn+1 f (n + 1) is nonpositive; if n + rn ≥ p, the contribution is

1
2rn + 1

−
1

2rn + 3
=

2
(2rn + 1)(2rn + 3)

≤
2

(2(p − n) + 1)(2(p − n) + 3)

=
1

2(p − n) + 1
−

1
2(p − n) + 3

<
1

2(p − n − 1) + 1
−

1
2(p − n − 1) + 3

.

Case 4: n ∈ X+ and n < p. If p > n + 1 + rn+1, the contribution of f (p) to
Arn+1 f (n + 1) − Arn+1+1 f (n) is 0; if n + 1 + rn+1 ≥ p, the contribution is

1
2rn+1 + 1

−
1

2rn+1 + 3
=

2
(2rn+1 + 1)(2rn+1 + 3)

≤
2

(2(p − n − 1) + 1)(2(p − n − 1) + 3)

=
1

2(p − n − 1) + 1
−

1
2(p − n − 1) + 3

,

and equality is attained if and only if rn+1 = p − n − 1.

Conclusion. The contribution of f (p) to the right-hand side of (2.1) is bounded by∑
n≥p

( 1
2(n − p) + 1

−
1

2(n − p) + 3

)
+

∑
n<p

( 1
2(p − n − 1) + 1

−
1

2(p − n − 1) + 3

)
= 2.

Since p is arbitrary, this establishes (1.6). If f is a delta function, we can easily see
that

Var M f = 2‖ f ‖`1(Z).
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On the other hand, let f : Z→ R be a function such that Var M f = 2‖ f ‖`1(Z) and f ≥ 0.
If P = {t ∈ Z : f (t) , 0}, then

Var M f = 2
∑
t∈P

f (t)

and, given t1 ∈ P, the contribution of f (t1) to (2.1) is 2. Therefore, by the previous
analysis, for all n ≥ t1 we must have n ∈ X− and rn = n − t1. If we take t2 ∈ P, the
same conclusion holds, so t1 = t2 and therefore P = {t1}. This proves that f is a delta
function and the proof is concluded.

3. Proof of Theorem 1.3

3.1. Preliminaries. Since f ∈ `1(Zd), there exists r~n ∈ Zwith M1 f (~n) = Ar~n f (~n). For
all ~m = (m1,m2, . . . ,md) ∈ Zd, define

|~m|1 =

d∑
i=1

|mi|

and, for 1 ≤ j ≤ d, set I j = {l ⊂ Zd : l is a line parallel to the vector ~e j},

X−j = {~n ∈ Zd : M1 f (~n) ≥ M1 f (~n + ~e j)} and X+
j = {~n ∈ Zd : M1 f (~n + ~e j) > M1 f (~n)}.

We then have

Var M1 f =
∑
~n∈Zd

d∑
j=1

|M1 f (~n) − M1 f (~n + ~e j)|

≤

d∑
j=1

∑
l∈I j

∑
~n∈l∩X−j

(Ar~n f (~n) − Ar~n+1 f (~n + ~e j))

+

d∑
j=1

∑
l∈I j

∑
~n∈l∩X+

j

(Ar~n+~e j
f (~n + ~e j) − Ar~n+~e j +1 f (~n)). (3.1)

For a fixed point ~p = (p1, p2, . . . , pd) ∈ Zd, we want to evaluate the maximal
contribution of f (~p) to the right-hand side of (3.1).

3.2. Auxiliary results. We now prove the following lemma of arithmetical
character, which will be particularly useful in the rest of the proof.

Lemma 3.1. If d ≥ 1, then

N1,d(k)2 > N1,d(k + 1)N1,d(k − 1) for all k ≥ 1.

Proof. We prove this via induction. For d = 1, we have N1,1(k) = 2k + 1 and therefore

N1,1(k)2 = 4k2 + 4k + 1 > (2k + 3)(2k − 1) = N1,1(k + 1)N1,1(k − 1).
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Since N1,d(k) = |{(x1, . . . , xd) ∈ Zd : |x1| + · · · + |xd | ≤ k}|, fixing the value of the last
variable, we can verify that

N1,d(k) = N1,d−1(k) + 2
k−1∑
j=0

N1,d−1( j). (3.2)

Now, let us assume that the result is true for d, that is,

N1,d(k)2 > N1,d(k + 1)N1,d(k − 1) for all k ≥ 1. (3.3)

For simplicity, write g(k) := N1,d(k) and f (k) := N1,d+1(k) for all k ≥ 0. Thus, by (3.3),

g(1)
g(0)

>
g(2)
g(1)

> · · · >
g(k)

g(k − 1)
>

g(k + 1)
g(k)

> · · · (3.4)

and, by (3.2),

f (k) = g(k) + 2
k−1∑
j=0

g( j) for all k ≥ 0.

The latter implies that

f (k + 1) − f (k) = g(k + 1) + g(k) for all k ≥ 0.

Therefore, by (3.4),

g(k + 1)
g(k)

>
g(k + 2) + g(k + 1)

g(k + 1) + g(k)
and

g(k + 1) + 2
∑k

j=1 g( j)

g(k) + 2
∑k

j=1 g( j − 1)
>

g(k + 1)
g(k)

.

Combining these inequalities, we arrive at

f (k + 1)
f (k)

≥
g(k + 1) + 2

∑k
j=1 g( j)

g(k) + 2
∑k

j=1 g( j − 1)
>

g(k + 1)
g(k)

>
g(k + 2) + g(k + 1)

g(k + 1) + g(k)

=
f (k + 2) − f (k + 1)

f (k + 1) − f (k)

and hence
f (k + 1) − f (k)

f (k)
>

f (k + 2) − f (k + 1)
f (k + 1)

.

This implies that
f (k + 1)

f (k)
>

f (k + 2)
f (k + 1)

for all k ≥ 0,

which gives the result for d + 1 and establishes the lemma by induction. �

Corollary 3.2. If d ≥ 1,

1
N1,d(k)

−
1

N1,d(k + 1)
>

1
N1,d(k + 1)

−
1

N1,d(k + 2)
for all k ≥ 0. (3.5)
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Proof. We notice that (3.5) is equivalent to

N1,d(k + 1)
N1,d(k)

+
N1,d(k + 1)
N1,d(k + 2)

> 2.

This follows from Lemma 3.1 and the arithmetic–geometric mean inequality because

N1,d(k + 1)
N1,d(k)

+
N1,d(k + 1)
N1,d(k + 2)

>
N1,d(k + 2)
N1,d(k + 1)

+
N1,d(k + 1)
N1,d(k + 2)

≥ 2. �

3.3. Proof of Theorem 1.3. Let us simplify notation by writing N1(k) := N1,d(k).
Given 1 ≤ j ≤ d, using Corollary 3.2, we make the following observations.

Case 1: ~n ∈ X−j and n j ≥ p j. If |~n − ~p|1 > r~n, the contribution of f (~p) to Ar~n f (~n) −
Ar~n+1 f (~n + ~e j) is nonpositive; if |~n − ~p|1 ≤ r~n, the contribution is

1
N1(r~n)

−
1

N1(r~n + 1)
≤

1
N1(|~n − ~p|1)

−
1

N1(|~n − ~p|1 + 1)

=
1

N1(|~n − ~p|1)
−

1
N(|~n + ~e j − ~p|1)

.

The equality is attained if and only if r~n = |~n − ~p|1.

Case 2: ~n ∈ X+
j and n j ≥ p j. If |~n + ~e j − ~p|1 > r~n+~e j , the contribution of f (~p) to

Ar~n+~e j
f (~n + ~e j) − Ar~n+~e j +1 f (~n) is nonpositive; if |~n + ~e j − ~p|1 ≤ r~n+~e j , the contribution is

1
N1(r~n+~e j )

−
1

N1(r~n+~e j + 1)
≤

1
N1(|~n + ~e j − ~p|1)

−
1

N1(|~n + ~e j − ~p|1 + 1)

=
1

N1(|~n − ~p|1 + 1)
−

1
N1(|~n − ~p|1 + 2)

<
1

N1(|~n − ~p|1)
−

1
N1(|~n − ~p|1 + 1)

=
1

N1(|~n − ~p|1)
−

1
N(|~n + ~e j − ~p|1)

.

Case 3: ~n ∈ X−j and n j < p j. If |~n − ~p|1 > r~n, the contribution of f (~p) to
Ar~n f (~n) − Ar~n+1 f (~n + ~e j) is nonpositive; if |~n − ~p|1 ≤ r~n, the contribution is

1
N1(r~n)

−
1

N1(r~n + 1)
≤

1
N1(|~p − ~n|1)

−
1

N1(|~p − ~n|1 + 1)

<
1

N1(|~p − ~n − ~e j|1)
−

1
N1(|~p − ~n|1)

.
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Case 4: ~n ∈ X+
j and n j < p j. If |~p − ~n − ~e j|1 > r~n+~e j , the contribution of f (~p) to

Ar~n+~e j
f (~n + ~e j) − Ar~n+~e j +1 f (~n) is nonpositive; if |~p − ~n − ~e j|1 ≤ r~n+~e j , the contribution is

1
N1(r~n+~e j )

−
1

N1(r~n+~e j + 1)
≤

1
N1(|~p − ~n − ~e j|1)

−
1

N1(~p − ~n − ~e j|1 + 1)

=
1

N1(|~p − ~n − ~e j|1)
−

1
N1(|~p − ~n|1)

.

The equality is achieved if and only if r~n+~e j = |~p − ~n − ~e j|1.
Conclusion. Given a line l in the lattice, we define the distance from ~p to l by

d(l, ~p) = min{|~m − ~p|1 | ~m ∈ l}.

If the direction of l is the same as the direction of ~e j, by intersecting l with the
hyperplane H j = {~z ∈ Zd : z j = p j} we obtain the point that realises the distance from p
to l. By the previous analysis, the contribution of f (~p) to∑

~n∈l∩X−j

(Ar~n f (~n) − Ar~n+1 f (~n + ~e j)) +
∑
~n∈l∩X+

j

(Ar~n+~e j
f (~n + ~e j) − Ar~n+~e j +1 f (~n))

is less than or equal to
2

N1,d(d(l, ~p))
. (3.6)

As p belongs to d lines of the lattice, there are d(N1,d−1(k) − N1,d−1(k − 1)) lines such
that d(l, ~p) = k for a given k ∈ N. Thus, the contribution of f (~p) to the right-hand side
of (3.1) is less than or equal to

2d +
∑
k≥1

2d(N1,d−1(k) − N1,d−1(k − 1))
N1,d(k)

,

and this yields the desired inequality.
If f is a delta function, then there exist ~y ∈ Zd and k ∈ R such that

f (~y) = k and f (~x) = 0 for all ~x ∈ Zd \ {y}.

Considering the contribution of | f (~y)| to a line l in the lattice Zd, we have equality in
(3.6) and hence in (1.10). On the other hand, suppose that f : Zd → R is a nonnegative
function that gives equality in (1.10). Define P = {~t ∈ Zd : f (~t) , 0}. Then

Var M1 f =

(
2d +

∑
k≥1

2d(N1,d−1(k) − N1,d−1(k − 1))
N1,d(k)

)∑
~t∈P

f (~t).

By the previous analysis, given ~s = (s1, s2, . . . , sd) ∈ P and a line l in the lattice, the
contribution of f (~s) to l in (3.6) must be 2/N1,d(d(l, ~s)). If there exists ~u ∈ P \ {~s}, the
contribution of f (~u) to l in (3.1) must also be 2/N1,d(d(l, ~u)). Assume without loss
of generality that sd > ud and consider the line l = {(s1, s2, . . . , sn−1, x) : x ∈ Z}. Since
we have equality in (1.10), given ~n ∈ l such that nd ≥ sd, we must have ~n ∈ X−j and
|~n − ~s|1 = r~n = |~n − ~u|1, which gives a contradiction. Thus, f must be a delta function.
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4. Proof of Theorem 1.5

4.1. Preliminaries. As before, since f ∈ `1(Zd), for each ~n ∈ Zd there exist r~n ∈ R+

and c~n ∈ Rd such that ~n ∈ c~n + Q(r~n) and M̃ f (~n) = Ar~n f (c~n), where Qr~n is the cube
Qr~n = {m ∈ Zd : |m|∞ ≤ r~n} = {m ∈ Zd : max{|m1|, . . . , |md |} ≤ r~n}. We now introduce the
local maxima and minima of a discrete function g : Z→ R. We say that an interval
[n,m] is a string of local maxima of g if

g(n − 1) < g(n) = · · · = g(m) > g(m + 1).

If n = −∞ or m = ∞ (but not both simultaneously), we modify the definition
accordingly, eliminating one of the inequalities. The rightmost point m of such a
string is a right local maximum of g, while the leftmost point n is a left local maximum
of g. We define string of local minima, right local minimum and left local minimum
analogously.

Given a line l in the lattice Zd parallel to ~ed, there exists n′ ∈ Zd−1 such that
l = {(n′,m) : m ∈ Z}. Let us assume that M̃ f (n′, x) is not constant as a function of
x (otherwise the variation of the maximal function over this line will be zero). Let
{[a−j , a

+
j ]} j∈Z and {[b−j , b

+
j ]} j∈Z be the ordered strings of local maxima and local minima

of M̃ f (n′, x) (we allow the possibilities of a−j or b−j = −∞ and a+
j or b+

j =∞), that is,

· · · < a−−1 ≤ a+
−1 < b−−1 ≤ b+

−1 < a−0 ≤ a+
0 < b−0 ≤ b+

0 < a−1 ≤ a+
1 < b−1 ≤ b+

1 < · · · .

This sequence may terminate on one or both sides and we adjust the notation and the
proof below accordingly. We have at least one string of local maxima since M̃ f (~n)→ 0
as |~n|∞ → ∞. Therefore, if the sequence terminates on one or both sides, it must
terminate in a string of local maxima. The variation of the maximal function on l is

2
∑
j∈Z

(M̃ f (n′, a+
j ) − M̃ f (n′, b−j )) ≤ 2

∑
j∈Z

(Ar(n′ ,a+
j )

f (c(n′,a+
j )) − Ar(n′ ,a+

j )+|a
+
j −b−j | f (c(n′,a+

j ))).

(4.1)

Lemma 4.1. Given ~q ∈ Zd and a line l in the lattice Zd, there exists at most one string of
local maxima of M̃ f on l such that there exists ~n in the string for which the contribution
of f (~q) to Ar~n f (c~n) is positive.

Proof. Assume, without loss of generality, that l = {(m1,m2, . . . ,md−1, x) : x ∈ Z} =

{(m′, x) : x ∈ Z}. Consider a string of local maxima of M̃ f on l, say

M̃ f (m′, a − 1) < M̃ f (m′, a) = · · · = M̃ f (m′, a + n) > M̃ f (m′, a + n + 1). (4.2)

Let
M̃ f (m′, a + i) = Ar(m′ ,a+i) f (c(m′,a+i)) for 0 ≤ i ≤ n.

Given ~q = (q1, q2, . . . , qd) ∈ Zd, a necessary condition for the contribution of f (~q) to
Ar(m′ ,a+i) f (c(m′,a+i)) to be positive for some i is that a − 1 < qd < a + n + 1 (otherwise this
would violate one of the end-point inequalities in (4.2)). This gives the result. �
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4.2. Proof of Theorem 1.5. Given ~p ∈ Zd and a line l in the lattice Zd, we define
d(l, ~p) = min{|~p − ~m|∞ : ~m ∈ l} and d(l, ~p)+ = max{1, d(l, ~p)}. By Lemma 4.1, given
~p = (p1, p2, . . . , pd−1, pd) ∈ Zd and a line l = {(n1, n2, . . . , nd−1, x) ∈ Zd : x ∈ Z} such
that |{i ∈ {1, 2, . . . , d − 1} : |ni − pi| = d(l, ~p)}| = j, the contribution of f (~p) to the right-
hand side of (4.1) is less than or equal to

2

(d(l, ~p) + 1) j(d(l, ~p))d− j
+

. (4.3)

In fact, if an `∞-cube contains ~p and a point in l then it must have side at least
d(l, ~p), and it must contain d(l, ~p) + 1 lattice points in each direction ~ei for i such
that |ni − pi| = d(l, ~p). In the other d − j directions the cube contains at least d(l, ~p)
lattice points. This leads to (4.3).

If equality in (4.3) is attained for a point ~p and a line l, then there is a point ~q ∈ l
that realises the distance to ~p, belongs to a string of local maxima of l and for which
~p ∈ c~q + Q(r~q). Moreover, this string of local maxima must be unique, otherwise f (~p)
would also have a negative contribution coming from a string of minima in (4.1). In
particular, this implies that M̃ f (~p) ≥ M̃ f (~n) for all ~n ∈ l. If we fix a point ~p and assume
that equality in (4.3) is attained for all lines l in our lattice, then M̃ f (~p) ≥ M̃ f (~n) for
all ~n ∈ Zd.

Now ~p belongs to d lines of the lattice Zd and, given k ∈ N and j ∈ {1, 2, . . . , d − 1},
there exist 2 j

(
d−1

j

)
(2(k − 1) + 1)d−1− j lines l = {(n1, n2, . . . , nd−1, x) | x ∈ Z} such that

d(l, ~p) = k and |{i ∈ {1, 2, . . . , d − 1} : |ni − pi| = k}| = j. Thus, the contribution of f (~p)
to the variation of the maximal function in Zd is less than or equal to

2d + d
∑
k≥1

d−1∑
j=1

2 j
(
d − 1

j

)
(2k − 1)d−1− j 2

(k + 1) jkd− j

= 2d +
∑
k≥1

2d
k

d−1∑
j=1

(
d − 1

j

) (
2

k + 1

) j (2k − 1
k

)d−1− j

= 2d +
∑
k≥1

2d
k

(( 2
k + 1

+
2k − 1

k

)d−1
−

(2k − 1
k

)d−1)
.

This concludes the proof of (1.11).
If f is a delta function, with f (~n) = 0 for all n ∈ Zd \ {~p} for some p ∈ Zd, it is easy

to see that we have equality in (4.3) for the contribution of | f (~p)| to all lines l, which
implies equality in (1.11). On the other hand, assume that f : Zd → R is a nonnegative
function that gives equality in (1.11). Define P = {~t ∈ Zd : f (~t) , 0}. Then

Var M̃ f =

(
2d +

∑
k≥1

2d
k

(( 2
k + 1

+
2k − 1

k

)d−1
−

(2k − 1
k

)d−1))∑
t∈P

f (t).
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Then, given ~s ∈ P, if there exists ~u ∈ P \ {~s}, we consider a line l in the lattice Zd such
that ~s ∈ l and ~u < l. The contribution of f (~s) to l must be 2, M̃ f (~s) = f (~s) belongs to
the unique string of local maxima of M̃ f on l and the right-hand side of (4.1) must be
2 f (~s), by the previous analysis. Therefore, the contribution of f (~u) to the line l is 0 and
f (~u) does not provide the maximum contribution as predicted in (4.3). Thus, equality
in (1.11) cannot be attained. We conclude that f must be a delta function.

Acknowledgements

I am deeply grateful to my advisor Emanuel Carneiro for encouraging me to work
on this problem, for all the fruitful discussions and for his guidance throughout the
preparation of this paper. I would like to thank Renan Finder and Esteban Arreaga for
all the interesting discussions related to the proof of Lemma 3.1. I also want to thank
Mateus Sousa for a careful review of the paper.

References

[1] J. M. Aldaz, L. Colzani and J. Pérez Lázaro, ‘Optimal bounds on the modulus of continuity of the
uncentered Hardy–Littlewood maximal function’, J. Geom. Anal. 22 (2012), 132–167.
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