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Abstract

Knowledge on the role of early nutritional stimuli as triggers of metabolic pathways in fish is extremely scarce. The objective of the present

study was to assess the long-term effects of glucose injection in the yolk (early stimulus) on carbohydrate metabolism and gene regulation

in zebrafish juveniles challenged with a high-carbohydrate low-protein (HC) diet. Eggs were microinjected at 1 d post-fertilisation (dpf)

with either glucose (2 M) or saline solutions. Up to 25 dpf, fish were fed a low-carbohydrate high-protein (LC) control diet, which was

followed by a challenge with the HC diet. Survival and growth of 35 dpf juveniles were not affected by injection or the HC diet. Glucose

stimulus induced some long-term metabolic changes in the juveniles, as shown by the altered expression of genes involved in glucose

metabolism. On glycolysis, the expression levels of hexokinase 1 (HK1) and phosphofructokinase-6 (6PFK) were up-regulated in the visc-

eral and muscle tissues, respectively, of juveniles exposed to the glucose stimulus, indicating a possible improvement in glucose oxidation.

On gluconeogenesis, the inhibition of the expression levels of PEPCK in fish injected with glucose suggested lower production of hepatic

glucose. Unexpectedly, fructose-1,6-bisphosphatase (FBP) expression was induced and 6PFK expression reduced by glucose stimulus,

leaving the possibility of a specific regulation of the FBP–6PFK metabolic cycle. Glucose metabolism in juveniles was estimated using

a [14C]glucose tracer; fish previously exposed to the stimulus showed lower retention of [14C]glucose in visceral tissue (but not in

muscle tissue) and, accordingly, higher glucose catabolism, in comparison with the saline group. Globally, our data suggest that glucose

stimulus at embryo stage has the potential to alter particular steps of glucose metabolism in zebrafish juveniles.
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The ability of fish to use dietary carbohydrates is widely vari-

able among and within species and closely associated with

their feeding habits. Fish species that show high dietary

protein requirements and, therefore, usually presented as

‘carnivorous’ fish are generally considered to be poor utilisers

of dietary carbohydrates(1–4). In spite of the significant

research efforts devoted to this theme, the physiological

basis for such apparent glucose intolerance in fish is not

fully understood. Despite having the whole enzymatic

machinery required for carbohydrate utilisation(3), fish react

with a prolonged postprandial hyperglycaemia after the

ingestion of carbohydrate-rich diets(1). Various hypotheses

have been proposed to explain this poor utilisation of

dietary carbohydrates by fish. Insulin deficiency, lack of

insulin-dependent GLUT and lack of an inducible hepatic

glucokinase have been proven to be false hypotheses(5–8).

In contrast, the lower potency of glucose over amino acids as

insulin secretagogues; a relatively low number of insulin recep-

tors; the lack of an adequate balance between hepatic glucose

uptake (glycolysis) and production (gluconeogenesis); and

poor hepatic lipogenesis from glucose have been proven to

be valid hypotheses(4,5,9–13). Furthermore, the ubiquitous

presence of most key enzymes involved in carbohydrate

metabolic pathways among fish species indicate that the

poor utilisation may be due to an anomalous hormonal and

nutritional regulation caused by evolutionary adaptation(4,14).

The concept of early nutritional programming is being

largely studied in mammals to understand how nutritional
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events during critical periods of development can result in

persistent physiological changes in adulthood(15). In fish

nutrition, this raises the possibility of tailoring specific

metabolic pathways or functions in juvenile fish, such as the

improvement in the use of dietary carbohydrates as energy

substrates(16,17). Glucose, as a simple monosaccharide, is a

primary source of energy for cells. Immediately after egg

fertilisation, glucose derived from maternal glycogen reserves

is the first nutrient to be catabolised for cellular division.

However, glycogen stores in fertilised fish eggs are extremely

low and rapidly depleted(18,19). Under these circumstances,

glucose is not expected to play a pivotal role in nutrient-

sensing pathways during embryogenesis. However, recent

studies have suggested that glucose levels, used as a cofactor,

can induce modifications on certain epigenetic mechanisms

such as histone acetylation and contribute to genomic imprint-

ing, which, in some cases, can be transgenerational(20,21).

Together, these factors support glucose as a suitable nutrient

for studying the effectiveness of nutritional programming

in fish.

Recently, early zebrafish embryos at 0·2 d post-fertilisation

(dpf) were successfully enriched with glucose by means of

direct microinjection into the yolk reserves(17). In this previous

study, we reported that glucose conditioning had no marked

beneficial effects on the ability of juvenile fish to cope with

high dietary glucose levels, at least at a molecular level; how-

ever, a short-term effect (although transient) related to

the early stimulus was observed with the down regulation of

several metabolic-related genes. Despite being rather weak

effects and based only on molecular data, zebrafish juveniles

conditioned by an early glucose stimulus showed some

indications of enhanced capacity for glucose storage in the

muscle, lower glucose production in the liver and lower

glucose transport in the intestinal lumen. However, doubts

subsisted whether such effects would be more pronounced

if we had exerted the glucose stimulus at a later development

stage with fully functional metabolic pathways and with a

lower supplemental dose of glucose to avoid a potential over-

load status and, consequently, cellular damage. Meanwhile,

Fang et al.(16) recently showed that a high dietary carbo-

hydrate stimulus exerted at first feeding stages (3–5 dpf)

significantly altered the molecular regulation of carbohydrate

utilisation, production, digestion and transport in adult

zebrafish.

In this context, the objective of the present study was to

explore the effects of glucose injection (nutritional stimulus)

in the egg at the late embryo stage of 1 dpf on gene expression

of target metabolic pathways and [14C]glucose metabolism in

juvenile zebrafish challenged with a high-carbohydrate diet.

Additionally, the effect of early glucose stimulus on the gene

regulation of yolk-sac feeding larvae was also assessed in

order to identify possible short-term effects.

Materials and methods

Microinjection procedure

Fertilised zebrafish eggs were obtained from natural spawning

of wild-type breeding fish (Centre of Marine Sciences).

Embryos were injected into the yolk with 4·6 nl of either a

saline solution (Danieau) or 2 M-glucose solution, at the late

embryo stage of 1 dpf (during the pharyngula period, accord-

ing to the method described by Kimmel et al.(22)). Solutions

were prepared according to the procedures described by

Rocha et al.(17). Microinjection was performed using a

0·5 mm-diameter glass capillary inserted on a nanolitre injector

(World Precision Instruments) following the same procedures

as described by Rocha et al.(17).

Fish rearing and experimental feeds

The present experiment was carried out in compliance with

the Guidelines of the European Union Council (2010/63/EU)

legislation for the use of vertebrate animals(23). After glucose

and saline injections (described above), embryos and larvae

were raised in triplicate tanks (n 200) at an initial density

of 100 larvae/l, under standardised conditions (288C) as

described previously by Westerfield(24). An additional group

of non-injected embryos was reared simultaneously to moni-

tor egg quality and embryonic development. From 5 dpf,

larvae were fed Artemia nauplii, which were gradually

replaced by an inert diet from 10 to 15 dpf. After day 15,

larvae were fed exclusively on a low-carbohydrate high-

protein (LC) diet used as the control (Fig. 1). From 25 to

Injection

0 1 4 5 15 24 34 35 dpf

Molecular analysis

Exogenous feedingYolk reserves

Saline

Glucose
Artemia
nauplii

LC diet

HC diet

Molecular analysis

[14C]Glucose trial

Fig. 1. Experimental set-up for zebrafish rearing and feeding regimen up to 35 d post-fertilisation (dpf). Embryos were injected into the yolk at 1 dpf either with a

saline or 2 M-glucose solution. At the beginning of exogenous feeding, larvae were fed with Artemia nauplii, which were gradually replaced by a low-carbohydrate

high-protein (LC) control diet. Juveniles were subjected to a 10 d dietary challenge, being fed exclusively on a high-carbohydrate low-protein (HC) diet. Sampling

points for the metabolic trial and gene expression were marked. Age is expressed as dpf at 288C.
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35 dpf, all fish from both injection treatments were subjected

to a dietary challenge with a high-carbohydrate low-protein

(HC) diet (Fig. 1). Throughout the trial, larvae and juvenile

zebrafish were fed by hand (four meals/d) until visual satia-

tion. Both diets were well accepted by the fish. Fish mortality

was daily monitored, and survival rate was determined at the

end of the trial.

Formulation of the experimental diets was based on the use of

purified ingredients in order to guarantee a high control of nutri-

tional changes among thediets (Table 1). The LCcontrol diet had

a high incorporation level of concentrated protein sources

(casein, soya isolate, wheat gluten and fish gelatin),

guaranteeing a high level of crude protein (70 %) and a low

level of carbohydrates (6 %). In the HC (or challenge) diet, the

crude protein level was drastically reduced (25 %), whereas

carbohydrate level (51 %) was increased through the incor-

poration of maize dextrin, a highly digestible carbohydrate.

Both diets were isolipidic (12 %) and dully supplemented

with selected crystalline indispensable amino acids

and monocalcium phosphate to avoid essential amino acid

or phosphorus imbalance. The experimental diets were

manufactured by SPAROS Lda. Powder ingredients were

grinded (below 100mm) in a micropulveriser hammer mill

(Hosokawa Micron). Powder ingredients and oil sources

were then mixed accordingly to the target formulation in a

mixer (Sammic BM5E), and the mixture was humidified with

25 % water. The diets were manufactured by temperature-

controlled extrusion (pellet size 2·0 mm) by means of a

low-shear extruder (Italplast P55). Upon extrusion, all feed

batches were dried in a convection oven (OP 750-UF; LTE

Scientifics) for 3 h at 408C. Dry feed pellets were then grinded

in a coffee mill and sieved manually to retrieve the desired

particle size (100–200 and 200–400mm). The diets were ana-

lysed for proximate composition according to the following

procedures: DM after drying at 1058C for 24 h; ash content

by incineration in a muffle furnace at 5008C for 12 h; crude

protein (N £ 6·25) by a flash combustion technique followed

by a gas chromatographic separation and thermal conductivity

detection (LECO FP428); fat by dichloromethane extraction

(Soxhlet); gross energy in an adiabatic bomb calorimeter

(IKA C2000); total phosphorus according to the ISO/DIS

6491 method using the vanado-molybdate reagent.

Biological and analytical sampling

Immediately after injection, samples (n 30) of glucose- and

saline-injected eggs were collected for the analysis of glucose

levels by fluorescent spectroscopy using a commercial kit

(Amplit Glucose Quantitation Kit; AAT Bioquest). Fluorescence

readings were performed in triplicate using a Synergye 4

Multi-Mode Microplate Reader controlled by Gen5e software

(BioTek Instruments). At the end of the experiment (35 dpf),

juveniles (n 20 per treatment) were individually sampled for

growth determination based on dry weight and total length

parameters. Total length was determined using the AxioVision

4.8.2 (Carl Zeiss Limited) program for image analysis, and dry

weight measurements were obtained from freeze-dried

samples using a precision scale. For gene expression analysis,

samples of whole-body larvae (n 20) from each replicate of

glucose- and saline-injected treatments were collected during

the endogenous feeding period (4 dpf). At the end of the

trial, liver and muscle from individual fish (n 6 per treatment)

were sampled 6 h after feeding for the same purpose. All

samples were randomly collected, snap-frozen in liquid N2

and kept at (808C until analysis.

Metabolic trial

Tube-feeding method

At 1 d before the final sampling (34 dpf), juveniles from each

treatment (n 10) were randomly harvested from the tanks and

transferred to the flux laboratory for overnight acclimatisation

at room temperature (288C). Fish were deprived from feed for

16 h before the metabolic trail. The in vivo method of con-

trolled tube-feeding, as described by Rust et al.(25) and later

Table 1. Formulation and composition of the low-carbohydrate
high-protein (LC) control and the high-carbohydrate low-protein (HC)
challenge diets

Diets LC control HC challenge

Ingredients (%)
Fish gelatin* 17·0 5·0
Casein† 25·0 5·0
Soya protein isolate‡ 25·0 5·0
Wheat gluten§ 12·8 5·0
Yellow maize dextrink – 50·1
Fish oil{ 11·7 12·0
Vitamin and mineral premix** 2·0 2·0
Monocalcium phosphate†† 3·0 3·5
Guar gum‡‡ 2·0 2·0
L-Arg‡‡ – 1·5
L-His‡‡ – 0·6
L-Ile‡‡ – 0·5
L- Leu‡‡ – 2·3
L-Lys‡‡ 1·0 2·8
L-Thr‡‡ – 0·8
L-Trp‡‡ – 0·2
DL-Met‡‡ 0·5 1·2
L-Val‡‡ – 0·5

Proximate composition (as-fed basis)
Moisture (%) 6·32 6·57
Crude protein (%) 70·12 25·32
Crude fat (%) 12·34 12·23
Carbohydrates (%)§§ 5·93 51·56
Ash (%) 5·29 4·32
Total P (%) 1·21 0·98
Gross energy (kJ/g) 22·11 19·35

* Pharma Grade bloom 240: 92 % CP, LAPI Gelatine SPA.
† Edible acid casein 90 mesh: 85 % CP, EPI Ingredients.
‡ SEAH Soy Instant: 87 CP%, Seah International.
§ VITEN: 86 % CP, 1·3 %, Roquette.
kTACKIDEX C070: Roquette.
{Marine oil omega-3: Henry Lamotte Oils GmbH.
** PREMIX Lda. Vitamins (mg/kg diet): DL-a-tocopherol acetate, 100 mg; sodium

menadione bisulphate, 25 mg; retinyl acetate, 6·9 mg; DL-cholecalciferol, 0·05 mg;
thiamin, 30 mg; riboflavin, 30 mg; pyridoxine, 20 mg; cyanocobalamin, 0·1 mg;
nicotinic acid, 200 mg; folic acid, 15 mg; ascorbic acid, 1000 mg; inositol, 500 mg;
biotin, 3 mg; calcium pantothenate, 100 mg; choline chloride, 1000 mg; betaine,
500 mg. Minerals (g or mg/kg diet): cobalt carbonate, 0·65 mg; copper sulphate,
9 mg; ferric sulphate, 6 mg; potassium iodide, 0·5 mg; manganese oxide, 9·6 mg;
sodium selenite, 0·01 mg; zinc sulphate,7·5 mg; NaCl, 400 mg; calcium carbonate,
1·86 g; excipient wheat middlings.

†† Monocalcium phosphate: 22 % P, 16 % Ca, Fosfitalia.
‡‡ Sigma-Aldrich Quimica SA.
§§ Carbohydrate content calculated as: 100–(moisture þ protein þ fat þ ash).
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modified by Rønnestad et al.(26), for marine fish was adapted

to supply nutrients to freshwater species. This approach was

used to assess the effects of both nutritional conditioning

(early glucose injection) and increase in dietary carbohydrates

on the metabolic handling of glucose by zebrafish juveniles.

Following a 16 h fasting period, zebrafish juveniles were

allowed to feed on the HC diet for a period of 40 min. This

feeding period was suitable for the uptake of a full meal, as

confirmed by observation of the gastrointestinal tract, and

within the beginning of the zebrafish gastrointestinal

transit(27). Following this single meal, fish were anaesthetised

with 33mM-tricaine methanesulfonate (Sigma-Aldrich). Sub-

sequently, the radioactive label D-[14C(U)]glucose (9·25 MBq;

American Radiolabeled Chemicals, Inc.) was added to Ringer

salt solution and tube-fed to all fish using a 0·19 mm-diameter

plastic capillary (Sigma-Aldrich) inserted on a nanolitre

injector (World Precision Instruments). Thereafter, three con-

secutive injections of 4·6 nl were administered into the fish

gut. This injection volume (13·8 nl) was in the range of that

previously used for marine species in late larval stages

(.25 d after hatching): Senegalese sole(28,29); gilthead seab-

ream(30); white seabream(31). After capillary withdrawal, fish

were gently rinsed for spillage through two successive wells

filled with clean freshwater and transferred into sealed

incubation chambers containing 6·5 ml of freshwater. The

incubation water was considered to contain all labelled 14C

resulting from fish evacuation (evacuated fraction). In

addition, an airflow connection was provided between each

incubation chamber and a KOH trap (5 ml, 0·5 M), in order

to collect all 14CO2 released by the fish through glucose

metabolism (catabolised fraction). After an incubation period

of 24 h, juveniles from each injection treatment were sampled

individually for muscle and viscera, in order to determine the

amount of 14C retained in tissues (retained fraction). Tissue

samples were immediately solubilised with Solvable (500ml;

PerkinElmer) and kept at 508C for 24 h. Following larval

sampling, the incubation chambers were resealed and 1 ml

HCl (0·1 M) was added in a series of gradual steps, resulting

in a progressive decrease of pH that causes the rapid diffusion

of any remaining 14CO2 from the water into the metabolic trap

(catabolised fraction)(26). For radioactive counting, dpm were

determined in all samples by adding the Ultima Gold XR

scintillation cocktail (PerkinElmer) and counting in a TriCarb

2910TR Low Activity Liquid Scintillation analyser (PerkinElmer).

Metabolic budgets were calculated after subtracting blanks of

each fraction (evacuated, catabolised and retained). Results

for each fraction are expressed as a percentage of total label

tube-fed, i.e. the sum of dpm in all the compartments of the

metabolic chamber and fish.

Gene expression analysis

Real-time PCR

Analyses of mRNA levels were performed at two distinctive

periods and sample types: at 4 dpf in whole-body larvae,

for assessing the short-term effect of early glucose stimulus

(injection), and at 35 dpf in the visceral and muscle tissues

of juveniles, for assessing the effects of both early glucose

stimulus and dietary challenge. Juvenile fish were sampled

6 h after the last meal, based on previous data identifying

this period as relevant for examining the postprandial

response of genes in zebrafish(32,33). Total RNA was extracted

from all samples using 1 ml TRIzolw reagent (Invitrogen).

From the resulting total RNA, 1mg was reverse transcribed

into complementary DNA using the SuperScript III RNase H

Reverse Transcriptase Kit (Invitrogen) with random primers

(Promega). Molecular analysis was focused on the expression

of target genes related to glycolysis (GK, glucokinase; HK1,

hexokinase 1; 6PFK, phosphofructokinase-6; PK-L, PK-M,

pyruvate kinase, both liver and muscle isoforms), gluconeo-

genesis (PEPCK, phosphoenolpyruvate carboxykinase, both

cytosolic and mitochondrial isoforms; FBP, fructose-1,6-

bisphosphatase; G6Pase, glucose-6-phosphatase), lipogenesis

(FAS, fatty acid synthase; G6PDH, glucose-6-phosphate

dehydrogenase; MEc, cytosolic malic enzyme) and glycogen

metabolism (GS, glycogen synthase; GP, glycogen phospho-

rylase). These primers were considered as good molecular

markers for nutritional studies in zebrafish(17,33). Gene

expression levels were determined by quantitative real-time

RT-PCR performed by means of the iCycler iQ (Bio-Rad).

Analyses were performed on 5ml of diluted complementary

DNA using the iQ SYBRw Green supermix in a total PCR

volume of 15ml containing, 200 nM of each primer. Thermal

cycling was initiated with the incubation at 958C for 90 s for

Taq DNA polymerase activation, then thirty-five steps of PCR

were performed, each one consisting of heating at 958C for

20 s for denaturing and at 558C or 628C for 30 s for annealing

and extension, depending on the primers. After the final

cycle of the PCR, melting curves were systematically moni-

tored (558C temperature gradient at 0·58C/s from 55 to 948C).

Each quantitative PCR run included duplicates of samples

(reverse transcription) and negative controls (samples without

RT or mRNA or complementary DNA). Target gene expression

analysis of whole-body larvae and visceral tissue from juven-

iles was performed using elongation factor-1 (EF1a) as the

reference gene, while 18S rRNA was used as the reference

gene for muscle samples, once EF1a was not being stably

expressed in this tissue. Both EF1a and 18S were employed

as non-regulated reference genes and their gene expression

values did not significantly change over the respective

time frame or tissue type(34) (data not shown). Relative

quantification of gene expression was performed using the

mathematical model described by Pfaffl(35).

Statistical analysis

Data are presented as means with their standard errors of

the mean. Criteria expressed as a percentage were arcsine

transformed previously to the statistical analysis. The effects

of glucose injection on the several analysed parameters in

larvae and juvenile fish were tested using SPSSw statistics

software 16.0 for Windows by means of an unpaired two-

tailed Student’s t test. Differences were considered significant

at P,0·05. For relative quantification of gene expression in

juvenile fish, the control group was set as the saline-injected

HC diet-fed group.
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Results

Glucose supplementation, growth performance and
survival rate

In comparison with eggs of the saline treatment, those micro-

injected with a 2 M-glucose solution (9·2 nmol/egg) showed a

6-fold increase in glucose levels. No permanent damage on

egg chorion or signs of leakage through the puncture hole

was recorded after the injection. Zebrafish growth and survival

was affected neither by early glucose stimulus nor by the dietary

challenge with high carbohydrates (P.0·05). At the end of the

experiment, juveniles showed similar mean values for dry

weight (4·7–4·8 mg) and total length (10·0–11·1 mm) (Table 2).

The survival rate varied between 61 and 68 % and values

were within the expected range for zebrafish fed with live

feed and purified diets. Carvalho et al.(36) showed that 27-d-

old zebrafish fed from mouth-opening with a semi-purified

diet reached a good growth (7·0 (SD 0·2) mm) and survival

(55 %) rate.

Effects of early glucose stimulus on [14C]glucose
metabolism in fish fed with carbohydrates

The survival rate of zebrafish after 24 h of incubation in

metabolic chambers was 89 and 100 % for the glucose- and

saline-injected treatments, respectively. The results showed

that in juvenile fish, glucose evacuation and absorption was

not significantly affected by early glucose conditioning

(P.0·05; Fig. 2(a)). Zebrafish presented high levels of glucose

absorption (over 87 %) under the same intake amount of

carbohydrates. Juveniles subjected to the early glucose stimu-

lus showed significantly lower (P , 0·05) retention of glucose

in visceral tissue (but not in muscle tissue) and, consequently,

higher glucose catabolism (P¼0·072) in comparison with the

saline-injected group. Retention efficiency in visceral tissue

was significantly reduced in juveniles injected with glucose

compared with the saline-injected group (6·0 and 11·5 %,

respectively; Fig. 2(b)).

Although no significant differences were found, glucose

catabolism showed a trend towards an increase in the

glucose-injected fish rather than in the saline-injected fish

(75·8 and 68 %, respectively) (Fig. 2(b)).

Effects of early glucose stimulus on metabolic gene
expression in yolk-sac larvae

The RNA levels of enzymes involved in the intermediary

metabolism of yolk-sac larvae (4 dpf) were compared between

the saline- and glucose-injected groups (Table 3). For the

majority of the analysed genes, mRNA levels remained unal-

tered between the saline- and glucose-injected treatments.

Only the PK gene (muscle isoform) was significantly up-

regulated in glucose-injected larvae (P,0·05; Table 3), while

the MEc gene showed a slight but not significant decrease

in its expression (P¼0·056). These results suggest that the

glucose stimulus had no marked effects on gene regulation

in 4 dpf larvae.

Effects of early glucose stimulus on metabolic gene
expression in fish fed with carbohydrates

The same set of target genes was analysed in two tissue types

of juvenile fish (35 dpf): viscera and muscle. The long-term

effects on gene expression in fish injected with glucose at

an early embryo stage and later subjected to a feeding chal-

lenge with high carbohydrates are given in Table 3.

In viscera, the gene expression of GK was unaltered

regardless of the injection treatment (glucose stimulus). In

contrast, the expression of HK1 was significantly up-regulated

Table 2. Survival (n 3) and growth (n 20) of zebrafish juveniles initially
injected with a saline or glucose solution and challenged with a
high-carbohydrate low-protein diet*

(Mean values with their standard errors)

Saline Glucose

Mean SEM Mean SEM

Survival (%) 68·0 6·1 61·1 5·8
TL (mm/fish) 11·1 0·5 10·0 0·5
TL variation coefficient (%) 21·7 21·4
Dry weight (mg/fish) 4·8 0·7 4·7 0·6

TL, total length.
* Student’s t test.
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Fig. 2. Study of glucose metabolism in zebrafish juveniles. (a) Percentage of the absorbed (black bar) and evacuated (white bar) [14C]glucose in tube-fed zebra-

fish juveniles initially subjected to either a saline or glucose injection (stimulus) and fed a high-carbohydrate low-protein (HC) diet. (b) Percentage of [14C]glucose

retained in muscle tissue (dark-grey bar) and visceral tissue (medium-grey bar), and percentage of [14C]glucose catabolised (light-grey bar) in tube-fed zebrafish

juveniles initially subjected to either a saline or glucose injection (stimulus) and fed a HC diet. Retention and catabolism fractions are associated with the absorbed

label in the fish. Values (absorption, evacuation, retention and catabolism) are means, with their standard errors represented by vertical bars (n 10). *Mean value

was significantly different from that of the saline-injected group (P,0·05; Student’s t test).
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(P¼0·04), while that of 6PFK was down-regulated (P¼0·009)

in glucose-injected fish, in comparison with the control

group (saline-injected). Also, the transcript levels of PK-L

were not affected by the early glucose stimulus in the long

term. On the gluconeogenic pathway, the expression levels

of PEPCKc and PEPCKm were inhibited in glucose-injected

fish (P¼0·000 and P¼0·002, respectively), while that of the

G6Pase gene was not affected in the long term. Surprisingly,

the gene expression level of FBP was reverse-regulated as

expected for this pathway: juveniles that were exposed to

the glucose stimulus showed higher levels of expression

than the saline group (P¼0·034). For genes involved in lipo-

genesis and energy production (FAS, G6PDH and MEc), no

long-term effects related to the glucose stimulus were found

(Table 3). Similar observations were found for GS and GP

genes responsible for glycogen metabolism (Table 3).

In the muscle tissue of juvenile fish, only the gene

expression level of 6PFK was found to be significantly

up-regulated (P¼0·038) by early glucose injection (Table 3).

Therefore, glucose injection increased the expression of

6PFK in juvenile fish, whereas genes encoding for glycolysis

(HK1 and PK-M) and glycogen metabolism (GS and GP)

were not affected, in the long term, by early glucose con-

ditioning (Table 3).

Discussion

Fish nutritionists struggle to establish balanced formulations

where large amounts of plant ingredients could be included

without compromising the nutritional requirements and a

good acceptance of the diet by the fish(37). The inclusion of

plant ingredients, be it dietary protein or starch sources,

enhances the overall intake of carbohydrates. However, the

ability of fish to use dietary carbohydrates as an energy-

yielding substrate is widely variable among species with

different feeding habits. New trends in the field of fish

Table 3. Relative expression of metabolic genes involved in glycolysis (A), gluconeogenesis (B),
lipogenesis (C) and glycogen metabolism (D) in whole-body larvae (4 d post-fertilisation (dpf))
and visceral and muscle tissues from zebrafish juveniles (35 dpf), initially injected with a saline
(control) or glucose (stimulus) solution and challenged with a high-carbohydrate low-protein diet*

(Mean values with their standard errors; n 6)

Saline injection Glucose injection

Pathways Gene Mean SEM Mean SEM P

Whole-body larvae (4 dpf)
A GK 1·1 0·23 1·5 0·32 0·351
A HK1 1·0 0·09 0·9 0·04 0·280
A 6PFK 1·0 0·16 0·7 0·04 0·094
A PK-L 1·8 0·14 1·8 0·12 0·955
A PK-M 1·0 0·05 1·2 0·06 0·038
B PEPCKc 1·0 0·09 0·9 0·07 0·290
B PEPCKm 1·0 0·10 0·8 0·02 0·159
B FBP 1·0 0·03 1·0 0·08 0·979
B G6Pase 1·0 0·13 0·8 0·07 0·138
C FAS 1·1 0·19 0·9 0·07 0·333
C G6PDH 1·0 0·14 0·9 0·04 0·250
C MEc 1·0 0·03 0·8 0·07 0·056
D GS 1·0 0·04 1·1 0·06 0·111
D GP 1·0 0·03 1·0 0·07 0·936

Viscera tissue (35 dpf)
A GK 1·1 0·18 0·9 0·24 0·657
A HK1 1·0 0·16 2·5 0·58 0·040
A 6PFK 1·0 0·08 0·7 0·06 0·009
A PK-L 1·0 0·10 0·8 0·14 0·219
B PEPCKc 1·0 0·05 0·5 0·06 0·000
B PEPCKm 1·0 0·06 0·6 0·07 0·002
B FBP 1·1 0·24 39·5 12·28 0·034
B G6Pase 1·0 0·11 0·8 0·06 0·171
C FAS 1·3 0·36 1·9 0·37 0·292
C G6PDH 1·1 0·11 1·0 0·15 0·830
C MEc 1·1 0·25 0·9 0·11 0·374
D GS 1·1 0·24 1·6 0·38 0·291
D GP 1·1 0·15 1·3 0·20 0·424

Muscle tissue (35 dpf)
A HK1 1·1 0·19 0·9 0·15 0·537
A 6PFK 1·0 0·15 1·6 0·18 0·048
A PK-M 1·0 0·10 0·7 0·06 0·055
B GS 1·0 0·08 0·9 0·08 0·315
B GP 1·8 1·02 0·4 0·09 0·252

* Expression values of larvae and visceral tissue were normalised with a-elongation factor 1 transcripts (EF1a),
while that of muscle tissue was normalised with 18S transcripts. Relative fold differences between the
treatments were analysed by Student’s t test (P,0·05). Age is expressed as dpf at 288C. For a description of
the gene symbols, refer to the ‘Gene expression analysis’ section.
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nutrition begin to emerge, such as the concept of early

nutritional programming, as a promising strategy to enhance

the use of alternative feedstuffs(38,39). We believe that such an

approach has the potential to improve specific metabolic

pathways, through actions during embryonic development

that could permanently alter the capacity of adult fish to cope

with dietary sources rich in carbohydrates. However, studies

in mammals have shown that the period in which the program-

ming stimulus occurs is usually confined to early stages (pre- or

postnatal) that influence the ‘imprinting’ effect as well as the

long-lasting outcomes in adulthood(40,41). The goal of the

present study was to gain further knowledge on the effects

of a hyperglucidic stimulus during the final stage of fish embryo-

genesis on growth, nutrient metabolism and gene expression

regulation in zebrafish juveniles subjected to a drastic increase

in the ratio of dietary carbohydrates:proteins.

Effects of early glucose stimulus on the growth and
survival of zebrafish

In our previous study, the glucose injection used as a trigger for

nutritional programming in zebrafish eggs (0·2 dpf) was found

to suppress in the embryos (4 dpf) the transcription level of

several genes involved in glycolysis, glucose transport and

lipogenesis(17). The inhibition of these metabolic pathways

was somehow unexpected since the reverse (stimulation) was

observed in several fish species and at later life stages, after

the intake of high dietary carbohydrates(4). We, therefore, con-

sidered the possibility that glucose overload at this incipient

developmental stage induced cellular damages or compro-

mised key metabolic regulators. Here we explore a new

‘metabolic window’ for glucose delivery (stimulus) at a later

period of embryonic development (1 dpf). This period was

selected based on two important features: the level of endogen-

ous glucose in the yolk and the stage of embryo development.

Zebrafish dynamically regulates glucose during embryogenesis,

reaching the highest endogenous levels at 1 dpf, before

hatching(17,42,43). We hypothesised that supplementation with

high doses of glucose (9·2 nmol/egg) while endogenous

glucose levels are elevated would contribute to a better adap-

tation of embryos for hyperglycaemia conditions. A lower

dose may mask the stimulus effect by not altering enough the

ratio of carbohydrate over other macronutrients, taking into

account the overall low glucose level in cyprinid eggs(44). The

glucose injections (9·2 nmol/egg) increased by 6-fold the

glucose levels relative to those in 1 dpf embryos of the saline-

injected group (control). In absolute levels, the amount of

glucose injected into the egg was similar to basal glycaemia

levels found in adult zebrafish fasted for 24 h (about 2·5 mM;

40–45 mg/l)(45). Thus, the achieved glucose supplementation

can be considered within the physiological range for this

species. At the 1 dpf stage, major processes of organogenesis

are ongoing in several systems, such as the emergence of hepa-

tic and pancreatic buds (future key metabolic organs)(46,47),

the functioning of the heart and circulatory system and the

appearance of muscle spontaneous contractions(22,48). In

addition, the transcriptional regulation of the insulin gene

and the gluconeogenic genes fructose-bisphosphate aldolase

and phosphoenolpyruvate carboxykinase already occurs at

this early stage(42,49). Therefore, the stage of 1 dpf can be con-

sidered of high genetic plasticity, once important metabolic

pathways are newly established or in the process of becoming

active, suggesting that possible epigenetic alterations can

occur during this period due to early nutritional events(50).

To avoid the influence of sexual dimorphism on hepatic

gene transcription already reported in zebrafish(51), the pre-

sent trial was conducted up to 35 dpf (5 weeks) so that fish

could remain immature. Evidence on the proteomic field

had demonstrated that zebrafish can mature before reaching

3 months (90 dpf), in few cases from 30 dpf onwards(52),

suggesting that fish length (growth) can have a stronger

effect on sexual maturation rather than age(53). We found

that glucose supplementation by microinjection did not

impair embryonic development, and that the stimulus along

with a drastic increase in carbohydrate intake had no detri-

mental effects on the growth and survival of juvenile fish.

The lack of the negative effects on physiological parameters

is in conformity with other nutritional programming studies

performed in fish(16,17,38).

Immediate and persistent effects of early glucose stimulus
on gene expression and metabolic utilisation of glucose
in juvenile fish

In mammals, prenatal exposure to high glucose levels can

permanently alter adult metabolism and trigger diet-related

diseases such as diabetes, the metabolic syndrome and obes-

ity(54). Despite the lack of full knowledge on the mechanisms

involved in metabolic regulation by nutritional factors, there is

strong evidence that the genome can be ‘imprinted’ to store

the memory of the early nutritional event(15). However, cau-

tion should be taken in extrapolating the programming

concept from mammals to fish. Mammals and fish exhibit

very distinct embryonic development (in uterus v. ex uterus);

thus, stimulus delivery during a sensitive phase becomes more

restricted to the control and manipulation of fish, mostly

because fish embryos operate as energetically closed systems

during yolk reserve consumption(19). Furthermore, fish have

a poor control over glucose homeostasis and exhibit slow

metabolic rates for glucose utilisation compared with

mammals(2). Therefore, the results from the present study

addressing metabolic programming by early glucose stimulus

will be cautiously discussed in comparison with mammals,

whenever possible.

Short-term effect of early glucose stimulus on metabolic

gene expression. The short-term effect related to glucose

injection (stimulus) on the gene expression of free-swimming

4 dpf larvae that still rely exclusively on endogenous yolk

reserves for nutrient supply was assessed. From the metabolic

genes analysed, only the expression level of PK (muscle

isoform) was up-regulated in the glucose-injected group. In

mammals, the expression of PK is regulated by both dietary

carbohydrates and hormones (insulin and glucagon) at a

pre- and post-translational level(55). Such dynamic regulation

is thought to occur in adult zebrafish according to different

feeding conditions: refeeding a commercial diet poorly
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regulates the postprandial expression of PK, while a high

carbohydrate meal induces its expression(33), with the latter

being in line with the higher PK mRNA levels after the delivery

of the glucose stimulus at 4 dpf. Overall, the early glucose

stimulus had a poor short-term effect on the transcript levels

of zebrafish larvae, which may be due to the 3 d gap between

glucose injection (at 1 dpf) and sampling (at 4 dpf). However,

this does not exclude the possibility of a long-term effect of

glucose injection at a later life stage, when the fish are con-

fronted again to a challenging nutritional condition. Indeed,

sea bass larvae fed diets containing different highly unsatu-

rated fatty acid levels showed no change in the expression

levels of several lipogenic enzymes during the first days of

stimulus, whereas long-term molecular changes were found

in juvenile fish fed a highly unsaturated fatty acid-deficient

diet(39). In terms of short-term effects, we obtained less

responsiveness of metabolic genes towards glucose stimulus

delivered at 1 dpf in comparison with our previous study,

where glucose was injected at 0·2 dpf(17). Although the

glucose stimulus was the same in both studies (9·2 nmol/egg),

the shift of stimulus delivery towards a ‘window’ of high

embryonic development (1 dpf) did not inhibit gene

expression, which allowed excluding the hypothesis of cell

damage due to glucose overload.

Long-term effect of early glucose stimulus on metabolic

gene expression. The long-term effect was evaluated in

juvenile fish (35 dpf) after being challenged for 10 d with the

HC diet, with the idea that the early glucose injection may

generate a ‘metabolic memory’ for improving the future use

of carbohydrates. The present study confirms the potential

of a single glucose injection (at 1 dpf) to induce persistent

molecular changes, as shown by the enhanced expression of

genes involved in the first step of glycolysis and gluconeogen-

esis pathways in the visceral tissue of juveniles conditioned

by the glucose stimulus. The increase in the expression level

of HK1 and the simultaneous decrease in the expression of

PEPCK suggest a higher capacity for glucose phosphorylation

as well as a lower glucose production, and thus, the possibility

of glucose stimulus to ‘programme’ these two major pathways

towards a more efficient control of glucose homeostasis

when subjected again to hyperglycaemic conditions. Although

not fully understood, the persistent hyperglycaemia observed

in several fish species after high carbohydrate intakes

has been ascribed to an atypical regulation of hepatic

gluconeogenesis(56,57). More specifically, in contrast to mam-

mals, fish transcriptional regulation of gluconeogenic genes

does not seem to be down-regulated by high dietary carbo-

hydrate intakes(12,57–59). As such, the possibility to programme

and decrease this pathway in conditions of hyperglycaemia

(through an early glucose stimulus) is encouraging. Here we

found that both mitochondrial and cytosolic isoforms of the

PEPCK gene were affected by the stimulus at the late juvenile

stage. A similar down-regulation of PEPCKc was also reported

in zebrafish juveniles from our previous study following

glucose injections at 0·2 dpf(17), which reinforces our hypoth-

esis of early nutritional programming. Also, the expression

of the glycolytic HK1 gene, known to be poorly regulated

by dietary carbohydrates in fish(60,61) but found here to be

enhanced by the early stimulus, appears as a relevant indi-

cation for the occurrence of genomic imprinting. Furthermore,

the beneficial effects of glucose injection at 1 dpf upon HK1

regulation contrast with our data obtained after glucose

injection at 0·2 dpf, where HK1 was down-regulated(17). The

analysis of HK1 enzyme activity in viscera is, however,

needed to confirm the physiological relevance. A recent

study on metabolic programming of adult zebrafish, but exert-

ing the nutritional stimulus at the larval first-feeding stage

showed the same molecular pattern of glycolysis stimulation

and gluconeogenesis inhibition following early high carbo-

hydrate intakes(16). In contrast, the gene expression of GK

that is highly responsive in fish to rises in dietary carbohydrate

intake(7,33,60,62,63) was not persistently affected by the glucose

stimulus, which is in line with our previous data(17). The lack

of programming effects for the GK gene could be related to

the lower sensitivity of the GK enzyme to punctual hyperglu-

cidic stimuli delivered during early stages of fish development,

as observed in zebrafish and rainbow trout(16,38).

On the downstream reactions of both pathways, the long-

term effect of glucose stimulus on the expression of 6PFK

(key glycolytic enzyme) and FBP (the opposing gluconeo-

genic enzyme) genes was unexpected. Results in viscera

demonstrated that both genes were regulated in the reverse

way of what was anticipated: the glycolytic flux was reduced

(6PFK down-regulated), whereas gluconeogenesis was

increased (FBP up-regulated). Given the similarities between

fish and mammals on this enzyme-substrate cycle, the pro-

gramming effect of glucose stimulus on these genes could

have been masked by other factors such as hormonal or

allosteric control(3,58). However, the expression of 6PFK was

regulated differently according to tissue type: being down-

regulated in viscera but up-regulated in the muscle by the

glucose injection. In addition, it was the only gene to be posi-

tively altered in muscle tissue, as a long-term consequence

of the glucose stimulus. So far, these results present the first

indication that the 6PFK–FBP loop can be a target of nutri-

tional programming by early glucose stimulus; however, the

reason why the ‘memory’ stored at the genome after the

stimulus resulted in such an unexpected programming of

6PFK–FBP remains unclear. Finally, the last step of both

metabolic pathways regulated by PK (glycolysis) and G6Pase

(gluconeogenesis) enzymes was not affected at a molecular

level by early glucose injection, suggesting that the stimulus

was not suitable for a permanent imprinting of these genes.

For the PK gene, the short-term induction recorded at 4 dpf

might indicate that some short-term effects related to the

stimulus can be reversible at later stages of development.

Likewise, previous studies showed no long-term effects of

early glucidic stimuli on G6Pase and PK mRNA levels in juven-

ile rainbow trout and zebrafish(16,17,38). However, it has been

shown that PK gene expression can be up-regulated by the

increase in dietary carbohydrates, as in mammals(33,55,64), in

contrast to G6Pase which, depending on fish species, appears

to be poorly or even not regulated(12,62,65,66). Therefore, the

regulation of a certain metabolic gene in response to higher

carbohydrate intake cannot be used as an indicator of

possible long-term effects related to early glucidic stimulus.
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The different susceptibilities of each gene to epigenetic

modifications as well as all the different epigenetic mechan-

isms that can be involved after an early nutritional event are

important factors to be considered for possible programming

effects(50,67).

Concerning the genes involved in lipogenesis and glycogen

metabolism, the early glucose stimulus had no long-term

effects as all the analysed genes had the same level of

expression between the saline- and glucose-injected fish.

This result with respect to lipogenesis is in line with our earlier

data on zebrafish conditioned to glucose at 0·2 dpf(17), but

disagrees with the hypothesis of increased lipogenesis as

a consequence of the early glucose stimulus as anticipated

from feeding studies with fish using high dietary

carbohydrates(64,68). Studies on the time course of adaptation

of lipogenic enzymes in coho salmon revealed that at least

2–3 weeks are required to cause changes in the activities of

these enzymes in response to dietary changes(69). For lipogen-

esis, our sampling after 10 d of HC dietary challenge may,

therefore, not represent metabolically steady-state conditions

fully under the influence of the nutritional history of the

glucose stimulus. In contrast, since the stimulus did not

improve glycogenesis (glucose storage in muscle), as occurred

previously in zebrafish(17), one could consider that glycogen

synthesis may have been affected by the reduced amino

acid levels in the HC diet. Knowing that amino acids are

potent insulin secretagogues in mammals(70) as in fish(9,11),

glycogen metabolism could be regulated in a way similar

to that in mammals. In this way, the drastic reduction in

protein level towards carbohydrate incorporation in the HC

challenge diet and the subsequent lowering of amino acids

may have limited the full potential of glucose stimulus to

program glycogen metabolism in juvenile zebrafish.

Long-term effect of early glucose stimulus on glucose

use. The metabolic fate of the tube-fed [14C]glucose tracer

revealed that juvenile zebrafish can achieve high absorption

levels (over 87 %) of dietary glucose for subsequent retention

in tissues or catabolism, regardless of the early nutritional

history. Juveniles that were exposed to the glucose stimulus

had significantly lower [14C]glucose retention in visceral

tissue and, accordingly, higher catabolism, in comparison

with the saline-injected group, suggesting an enhancement

of glucose oxidation and even a possible decrease in glycogen

storage. However, given that no further analysis on glycogen

or lipid content in tissues was performed, our hypotheses

concerning [14C]glucose retention in tissues are limited.

Nevertheless, these results agree with those observed at a

molecular level, as fish injected with glucose showed an

up-regulation of the expression of HK1 (viscera) and 6PFK

(muscle) genes involved in glucose oxidation. Clearly, glucose

is an important substrate for oxidation in zebrafish; however,

its metabolic utilisation can be enhanced by means of early

programming, as demonstrated herein. Such an approach

raises the possibility of even greater results upon carnivorous

species with less capacity to use dietary carbohydrates as

an energy source.

Conclusion

We demonstrated that the late embryo stage is a period of high

genetic plasticity and better suitable for nutritional stimulus

delivery in zebrafish, when compared with incipient stages

of 0·2 dpf. Our data suggest that, at least at a molecular

level, the two major pathways for glucose metabolism were

permanently modified by early glucose stimulus at specific

key metabolic steps. Although few genes were modified by

the early stimulus, juvenile fish fed high carbohydrates

showed an improved capacity for glucose phosphorylation

and lower glucose production in viscera. The metabolic fate

of dietary carbohydrates showed that the early glucose injec-

tion lowered the retention of [14C]glucose in visceral tissue,

thereby promoting higher catabolism by oxidative processes.

The present study contributes to the generation of new knowl-

edge on nutritional programming on fish following glucose

injection during embryogenesis.
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