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Abstract

Contemporaneous aggregation of N independent copies of a random-coefficient AR(1)
process with random coefficient a ∈ (−1, 1) and independent and identically distributed
innovations belonging to the domain of attraction of an α-stable law (0 < α < 2) is
discussed. We show that, under the normalization N1/α , the limit aggregate exists, in
the sense of weak convergence of finite-dimensional distributions, and is a mixed stable
moving average as studied in Surgailis, Rosiński, Mandrekar and Cambanis (1993). We
focus on the case where the slope coefficient a has probability density vanishing regularly
at a = 1 with exponent b ∈ (0, α− 1) for α ∈ (1, 2). We show that in this case, the limit
aggregate {X̄t } exhibits long memory. In particular, for {X̄t }, we investigate the decay of
the codifference, the limit of partial sums, and the long-range dependence (sample Allen
variance) property of Heyde and Yang (1997).

Keywords: Aggregation; random-coefficient AR(1) process; infinite variance; mixed
stable moving average; codifference; self-similar process; long memory

2010 Mathematics Subject Classification: Primary 62M10
Secondary 60G18; 60G52

1. Introduction

It is well known that heavy-tailedness and long memory are among the most important
empirical ‘stylized facts’ of financial time series. See, e.g. Mikosch (2003) and the references
therein. Since economic reasons for long memory in financial data are not very clear, attempts
have been made to explain it using simple heterogeneous dynamic models involving regime
shifts or aggregation. One of the most successful approaches in this direction, originat-
ing in Robinson (1978) and Granger (1980), is based on contemporaneous aggregation of
heterogeneous random-coefficient AR(1) processes near the nonstationarity regime. Further
justification of the aggregation procedure in linear models was provided in Gonçalves and
Gouriéroux (1988), Oppenheim and Viano (2004), Zaffaroni (2004), and Celov et al. (2007).
Contemporaneous aggregation of heterogeneous heteroscedastic models was discussed in Ding
and Granger (1996), Leipus and Viano (2002), Kazakevičius et al. (2004), Zaffaroni (2007a),
(2007b), and Giraitis et al. (2010).

Almost all of the above-mentioned papers refer to the case of finite-variance processes.
Because heavy tails are important in financial modeling, aggregation of infinite-variance
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dynamic models also presents considerable interest. Puplinskaitė and Surgailis (2009) dis-
cussed contemporaneous aggregation of heterogeneous random-coefficient AR(1) models with
common innovations in the domain of attraction of an α-stable law, 0 < α < 2, and long-
memory properties of the limiting aggregated process. They showed that in such cases, the
limit aggregated process is a moving average with independent and identically distributed
(i.i.d.) innovations, whose coefficients may depend hyperbolically as jd−1 with the lag, for
0 < d < 1 − 1/α, 1 < α < 2. Let us note that the above aggregation scheme with a particular
choice of beta-distributed slope coefficient leads to a FARIMA(0, d, 0) process with α-stable
innovations (see Puplinskaitė and Surgailis (2009)).

In the present paper we discuss contemporaneous aggregation of infinite-variance het-
erogeneous AR(1) processes with idiosyncratic innovations (in other words, aggregation of
independent copies of random-coefficient AR(1) processes). We show that, under some natural
assumptions on the AR(1) noise and distribution of the slope coefficient, the limit aggregated
process exists and is a so-called mixed stable moving average given in (1.3), below. The class
of mixed stable moving average processes, introduced in Surgailis et al. (1993) extends (usual)
α-stable moving average processes, and plays an important role in the general theory of
stationary α-stable processes (see Rosiński (1995)).

Let us describe the main results of this paper. Let {Xt, t ∈ Z} be a stationary solution of
the AR(1) equation

Xt = aXt−1 + εt , (1.1)

where {εt , t ∈ Z} are i.i.d. random variables (RVs) in the domain of the (normal) attraction of
an α-stable law, 0 < α < 2, and where a is an RV, independent of {εt } and satisfying |a| < 1
almost surely (a.s.). Let theXit = aiXi,t−1 +εit , i = 1, 2, . . . , be independent copies of (1.1).
If the distribution of a satisfies the condition that, for some p < α,

E(1 − |a|p)−1 < ∞
then

N−1/α
N∑
i=1

Xit
fdd→ X̄t , (1.2)

in the sense of weak convergence of finite-dimensional distributions, where the limit process is
written as the stochastic integral

X̄t =
∑
s≤t

∫
(−1,1)

at−sMs(da), (1.3)

where {Ms, s ∈ Z} are i.i.d. copies of an α-stable random measure M on (−1, 1) with control
measure proportional to the distribution � of the RV a (Theorem 2.1). Below, we call � the
mixing distribution of {X̄t }. The class of processes in (1.3) is quite numerous since different
mixing distributions � yield different processes {X̄t } (Proposition 2.2).

The main incentive of our work was answering the question of whether aggregation of the
infinite-variance AR(1) series can lead to long memory. To this end, similarly to Zaffaroni
(2004), we assume that the mixing distribution is concentrated in the interval (0, 1) and has a
density φ such that

φ(x) ∼ ψ(1)(1 − x)b as x → 1 (1.4)

for some ψ(1) > 0 and b > −1. In Section 3 we study the long-memory properties of the
mixed α-stable moving average in (1.3). Clearly, the usual definitions of long memory in
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terms of the covariance/spectrum do not apply in our case. Alternative notions of long memory
which are applicable to infinite-variance processes have been proposed in the literature. Among
them, we mention the (decay rate of) the codifference (see Samorodnitsky and Taqqu (1994,
pp. 103–106)), distributional long memory (see Cox (1984)), and the long-range dependence
(sample Allen variance) (LRD(SAV)) property of Heyde and Yang (1997) (see Section 3 for
definitions). These three properties are established for the aggregated process {X̄t } in (1.3)
under assumption (1.4) in the parameter range

0 < b < α − 1, 1 < α < 2;
see Theorems 3.1, 3.2, and 3.3, below. In particular, normalized partial sums of {X̄t } in
(1.3) tend to an α-stable stationary increment process {Z(τ)}, which is self-similar with index
H = 1 − (b/α) ∈ (1/α, 1) and is written as a stochastic integral

Z(τ) :=
∫

R+×R

(f (x, τ − s)− f (x,−s))ν(dx, ds), (1.5)

f (x, t) :=
{

1 − e−xt , if x > 0 and t > 0,

0, otherwise,

with respect to an independently scatteredα-stable random measure ν on (0,∞)×R with control
measure ψ(1)xb−α dx ds; see Theorem 3.1 for precise formulations. The value b = α − 1
seems to separate long memory and short memory in the above aggregation scheme; indeed,
in the case b > α − 1 the aggregated process has the short-range dependence (sample Allen
variance) (SRD(SAV)) property and its partial sums tend to an α-stable Lévy process with
independent increments (see Section 3). Let us note that α-stable self-similar processes of
the type in (1.5) were discussed in Surgailis et al. (1992), Cioczek-Georges et al. (1995), and
Cioczek-Georges and Mandelbrot (1995). Also, note that (1.5) is different from the (more
usual) α-stable fractional Lévy motion. Since the latter process arises in a similar context by
aggregating AR(1) processes with common infinite-variance innovations (see Puplinskaitė and
Surgailis (2009)), we can conclude that, in the infinite-variance case, the distinctions between
dependent and independent aggregation schemes are deeper than in the case of finite variance;
see also Remark 2.4, below. On the other hand, there are certain similarities between the
two aggregation schemes and long-memory properties of the limiting aggregated processes,
including the relation in (3.9), below, between exponents of the mixing density near a = 1.
See Remarks 3.1 and 3.2, below.

The notion of long memory is polysemous, especially for infinite-variance processes, and
is not limited to the three characterization properties mentioned above. Samorodnitsky (2004)
associated long memory with the rate of growth of maxima and partial maxima of a stationary
α-stable process. Theorem 4.1 of the above paper says that partial maxima of an SαS process
generated by a dissipative flow always grow at the rate n1/α . Therefore, the rate of growth of
the sequence of partial maxima is incapable of discriminating between long memory and short
memory in the aggregate process in (1.3), since this process is a particular case of the class of
mixed moving averages generated by dissipative flows. An interesting characterization of long
memory by the behavior of ruin probabilities in risk insurance models with α-stable claims is
given in Mikosch and Samorodnitsky (2000). See Remark 3.3, below.

In what follows, C stands for a constant whose precise value is unimportant and which may

change from line to line. Also, we write ‘
d−→’, ‘

fdd→’, ‘
d=’, and ‘

fdd= ’ for the (weak) convergence
and equality of distributions and finite-dimensional distributions, respectively. The proofs are
presented in Appendix A.
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2. Existence of the limiting aggregated process

Definition 2.1. Write ε ∈ D(α), 0 < α ≤ 2, if

(i) α = 2 and E ε = 0, σ 2 := E ε2 < ∞, or

(ii) 0 < α < 2 and there exist some constants c1, c2 ≥ 0, c1 + c2 �= 0, such that

lim
x→∞ x

α P(ε > x) = c1 and lim
x→−∞ |x|α P(ε ≤ x) = c2;

moreover, E ε = 0 whenever 1 < α < 2, while, forα = 1, we assume that the distribution
of ε is symmetric.

Remark 2.1. Condition ε ∈ D(α) implies that the RV ε belongs to the domain of normal
attraction of an α-stable law; in other words,

n−1/α
n∑
i=1

εi
d−→ Z, (2.1)

where Z is an α-stable RV; see Feller (1971, pp. 574–581). The symmetry of ε in the case
α = 1 is not necessary for (2.1) and the subsequent discussion; however, it is imposed to avoid
some technical and notational complications. The characteristic function of the RV Z in (2.1)
is given by

E eiθZ = e−|θ |αω(θ), θ ∈ R,

where

ω(θ) :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

�(2 − α)

1 − α

(
(c1 + c2) cos

(
πα

2

)
− i(c1 − c2) sgn(θ) sin

(
πα

2

))
, α �= 1, 2,

(c1 + c2)
π

2
, α = 1,

σ 2

2
, α = 2.

(2.2)

The following proposition is easy. See, e.g. Brandt (1986) and Puplinskaitė and Surgailis
(2009).

Proposition 2.1. Let ε ∈ D(α) for some 0 < α ≤ 2. Then there exists a unique stationary
solution to the AR(1) equation (1.1) given by the series

Xt =
∞∑
k=0

akεt−k. (2.3)

The series in (2.3) converges conditionally a.s. and in Lp for any p < α and almost every
a ∈ (−1, 1). Moreover, if

E

[
1

1 − |a|p
]
< ∞ (2.4)

for some 0 < p < α, then the series in (2.3) converges unconditionally in Lp.
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Let the {Xit }, i = 1, 2, . . . , be independent copies of (2.3). We are interested in the existence
and properties of the limiting aggregated process {X̄t } as defined by (1.2).

Introduce an independently scattered α-stable random measure M = {Ms(da), s ∈ Z, a ∈
(−1, 1)} on Z × (−1, 1) with the characteristic functional

E exp

{
i
∑
s∈Z

θsMs(As)

}
= exp

{
−

∑
s∈Z

|θs |αω(θs)�(As)
}
, (2.5)

where θs ∈ R and As ⊂ (−1, 1) are arbitrary Borel sets.

Theorem 2.1. Let ε ∈ D(α) for some 0 < α ≤ 2, and let condition (2.4) be satisfied. Then
the limiting aggregated process {X̄t } in (1.2) exists. It is stationary, ergodic, has α-stable
finite-dimensional distributions, and a stochastic integral representation as in (1.3), where M
is an α-stable random measure as defined in (2.5).

Remark 2.2. If the distribution � is concentrated at a finite number of points a1, . . . , ak ∈
(−1, 1) and φi := P(a = ai) > 0, the process in (1.3) can be written as a sum of independent
α-stable AR(1) processes:

X̄t =
k∑
i=1

Yit , Yit :=
∑
s≤t

at−si ζis , (2.6)

where {ζis := Ms({ai}), s ∈ Z} is an i.i.d. sequence ofα-stable RVs with E eiζisθ = e−|θ |αω(θ)φi .
For a general mixing distribution�, the process in (1.3) can be approximated by finite sums of
AR(1) processes as in (2.6). The process in (1.3) is well defined (see Surgailis et al. (1993)) if
and only if ∑

s∈Z

E |at−s |α 1(s ≤ t) =
∞∑
k=0

E |a|αk = E

[
1

1 − |a|α
]
< ∞,

which agrees with (2.4). The characteristic function of (1.3) is given by

E exp

{
i
m∑
t=1

θt X̄t

}
= exp

{
−

∑
s∈Z

E

[∣∣∣∣
m∑
t=1

θta
t−s 1(s ≤ t)

∣∣∣∣
α

ω

( m∑
t=1

θta
t−s 1(s ≤ t)

)]}
.

(2.7)

Remark 2.3. For α = 2, the limit process in (1.3) is Gaussian and its covariance function is
given by

cov(X̄0, X̄t ) = σ 2
∑
s≤0

∫
(−1,1)

at−sa−s�(da) = σ 2 E
at

1 − a2 = cov(X0, Xt ) (2.8)

and coincides with the covariance of the original series in (2.3). For α = 2, the statement of
Theorem 2.1 is well known; see Oppenheim and Viano (2004) and Zaffaroni (2004).

It is clear from (2.7) that the distribution (i.e. finite-dimensional distribution) of {X̄t } is
uniquely determined by the distributions of the RVs a and Z in (2.1). It is also clear that the
distribution of {X̄t } (particularly, the marginal α-stable distribution of X̄0) uniquely determines
the parameter α. Part (i) of Proposition 2.2, below, shows that the class of mixed stable moving
averages in (1.3) is nonparametric and very large, since different mixing distributions lead
to different processes. Part (ii) says that this class is different from (usual) α-stable moving
averages, except for a trivial mixing distribution �.
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Proposition 2.2. Let 0 < α < 2.

(i) The distribution of {X̄t } in (1.3) uniquely determines the distribution �.

(ii) Let {X̄t } fdd= {Yt }, Yt := ∑∞
j=0 cj ζt−j , where {ζt } is an i.i.d. sequence having the same

distribution as the α-stable RV in (2.1), and let cj , j ≥ 0, be real coefficients with∑∞
j=0 |cj |α < ∞. Then there exist a0 ∈ (−1, 1) and ε ∈ {−1, 1} such that cj = εa

j
0

and � = δa0 .

Let us note that condition (2.4) is crucial for the existence of the nontrivial limit of aggregated
AR(1) processes. Note also that condition (2.4) does not depend on p > 0 since

sup
0≤a<1

1 − aq

1 − ap
< ∞

for any p, q > 0. Below we show that if condition (2.4) is violated and the mixing density
has a power-law behavior at a = 1 with negative exponent b ∈ (−1, 0), the limit aggregated
process is a random α(1+b)-stable constant whose stability index α(1+b) < α. For notational
simplicity, we assume that the noise belongs to the domain of attraction of a symmetric α-stable
law.

Proposition 2.3. Assume that ε ∈ D(α), 0 < α ≤ 2, and that ω(θ) ≡ 1 in (A.1). Moreover,
assume that the mixing density has the form

φ(a) = ψ(a)(1 − a)b, a ∈ (0, 1), (2.9)

where b ∈ (−1, 0) and ψ is an integrable function on (0, 1) having a limit

ψ(1) := lim
a→1

ψ(a) > 0.

Then

N−1/α(1+b)
N∑
i=1

Xit
fdd→ Z̃,

where the limit process Z̃ does not depend on t and is an α(1+b)-stable RV with characteristic
function E eiθZ̃ = e−K|θ |α(1+b)

, where K is given in (A.9).

Note that, for the mixing density in (2.9) with b > 0, Theorem 2.1 applies and, therefore,
b = 0 is a critical point resulting in completely different limits of the aggregated process in the
cases b > 0 and b < 0. The fact that the limit is degenerate in the latter case can be explained as
follows. It is clear that, with b decreasing, the dependence increases in the random-coefficient
AR(1) process {Xt }, as well as in the limiting aggregated process {X̄t }. In Section 3 we show
that the dependence in {X̄t } decays hyperbolically with the lag, with an exponent which depends
on b and α and which tends to 0 as b ↓ 0. Therefore, for negative b < 0, the dependence in
the aggregated process becomes extremely strong so that the limit process is degenerate and
completely dependent.

Remark 2.4. LetM be theα-stable random measure in (2.5), and let {ζs := Ms(−1, 1), s ∈ Z}
be the corresponding i.i.d. sequence of α-stable RVs. Let {X̄t } be the aggregated mixed α-stable
moving average in (1.3), and let 1 < α ≤ 2. Then

E[X̄t | ζs, s ∈ Z] =
∑
s≤t

E[at−s]ζs, t ∈ Z. (2.10)
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Relation (2.10) follows from a general ‘interpolation formula’ for independently scattered
random measures (see Surgailis (1979, Proposition 1.3)). For the reader’s convenience, we
present this formula for the α-stable measure M in Proposition 2.4, below. Recall from
Puplinskaitė and Surgailis (2009) that the right-hand side of (2.10) represents the limiting
aggregated process in theAR(1) aggregation scheme with commonα-stable innovations εs = ζs ,
s ∈ Z. Thus, (2.10) establishes a link between the aggregated processes in the two aggregation
schemes. It also suggests that the latter aggregation scheme leads to a simpler aggregated
process when compared to process (1.3) in the present paper. In particular, the moving
average on the right-hand side of (2.10) may be invertible (which occurs, e.g. in the case
of FARIMA(0, d, 0) coefficients E[at−s] mentioned in the introduction), while, for the mixed
moving average in (1.3), the usual definition of invertibility does not apply and the possibility
of ‘recovering’Mt(A) fromXs, s ≤ t , seems unlikely. On the other hand, in the finite-variance
case, α = 2, the aggregated process {X̄t } is Gaussian with covariance given in (2.8); hence,
it is also invertible under known conditions on the spectral density. (A particular form of the
mixing density φ leading to the FARIMA(0, d, 0) Gaussian process {X̄t } was found in Celov
et al. (2007).) The above discussion complies with the remark in the introduction that the
distinctions between dependent and independent aggregation schemes in the infinite-variance
case are deeper than in the finite-variance case.

Let Lα(Z× (−1, 1)) denote the class of all measurable functions h : Z× (−1, 1) → R with∑
t∈Z

E |h(s, a)|α < ∞, 1 < α ≤ 2.

The stochastic integral

M(h) :=
∑
s∈Z

∫
(−1,1)

h(s, a)Ms(da)

is well defined for anyh ∈ Lα(Z×(−1, 1)); see Samorodnitsky and Taqqu (1994, pp. 111–167).

Proposition 2.4. Let M and {ζs, s ∈ Z} be the same as in Remark 2.4, and let 1 < α ≤ 2.
Then, for any h ∈ Lα(Z × (−1, 1)),

E[M(h) | ζs, s ∈ Z] =
∑
s∈Z

h̄(s)ζs; h̄(s) := E h(s, a). (2.11)

3. Long-memory properties of the aggregated process

Definition 3.1. A strictly stationary time series {Yt } is said to have distributional long memory
or distributional short memory if there exist some constants An → ∞ (n → ∞) and Bn, and a
stochastic process {J (t), t ≥ 0} �≡ 0 with dependent increments or, respectively, independent
increments such that

A−1
n

[nt]∑
s=1

(Ys − Bn)
fdd→ J (t). (3.1)

Definition 3.1 is due to Cox (1984). Lamperti (1962) showed that, under mild additional
assumptions, the normalizing constants An in (3.1) grow as nH with some H > 0; more
precisely, An = L(n)nH , where L(n) is a slowly varying function at ∞, and the limit process
{J (t), t ≥ 0} is self-similar with index H .
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Recall the definition of the process {Z(τ), τ ∈ R} in (1.5). This process is well defined for
any 0 < b < α − 1 and α ∈ (1, 2), and its characteristic functional is given by

E exp

{
i
m∑
i=1

θiZ(τi)

}

= exp

{
−ψ(1)

∫
R

∫
R+

∣∣∣∣
m∑
i=1

θi(f (x, τi − s)− f (x,−s))
∣∣∣∣
α

× ω

( m∑
i=1

θi(f (x, τi − s)− f (x,−s))
)
xb−α ds dx

}
, (3.2)

where τi, θi ∈ R, i = 1, . . . , m,m = 1, 2, . . . . The process {Z(τ)} is self-similar with index

H = 1 − b

α
∈

(
1

α
, 1

)
, (3.3)

which follows from (3.2) by the change of variables s → λs, x → x/λ(λ > 0), and hasα-stable
finite-dimensional distributions and stationary increments. From these facts and Kolmogorov’s
moment criterion, it follows that {Z(τ)} has a sample continuous version. See also Surgailis et
al. (1992, Corollary 4).

Theorem 3.1. Let {X̄t } be the aggregated process in (2.1) with mixing density as in (2.9), where
b > 0 and ψ is integrable on (0, 1) and has a limit lima→1− ψ(a) =: ψ(1) > 0.

(i) Let 1 < α < 2 and 0 < b < α − 1. Let H = 1 − b/α, as in (3.3). Then

1

nH

[nτ ]∑
t=1

X̄t
fdd→ Z(τ), (3.4)

where the limit process is given in (1.5).

(ii) Let 0 < α < 2 and b > max(α − 1, 0). Then

1

n1/α

[nτ ]∑
t=1

X̄t
fdd→ L(τ), (3.5)

where {L(τ), τ ≥ 0} is an α-stable homogeneous Lévy process with characteristic
function

E eiθL(τ) = e−K|θ |αω(θ)τ , K :=
∫ 1

0
(1 − x)−αφ(x) dx.

Since the process {Z(τ)} in (3.4) has dependent increments while the Lévy process {Z(τ)} in
(3.5) has independent increments, from Theorem 3.1 we conclude that the aggregated process
{X̄t } with mixing density as in (2.9) has distributional long memory for 0 < b < α − 1, 1 <
α < 2, and distributional short memory for b > max(α − 1, 0).

Next, we turn to the study of the LRD(SAV) property, as defined in Heyde and Yang (1997).

Definition 3.2. (i) A strictly stationary zero-mean process {Yt , t ∈ Z} is called LRD(SAV) if(∑n
t=1 Yt

)2∑n
t=1 Y

2
t

(3.6)

tends to ∞ in probability as n → ∞.
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(ii) A strictly stationary zero-mean process {Yt , t ∈ Z} is called SRD(SAV) if the ratio in (3.6)
is bounded in probability.

Theorem 3.2. Let {X̄t } satisfy the conditions of Theorem 3.1.

(i) Let 1 < α < 2 and 0 < b < α − 1. Then {X̄t } is LRD(SAV).

(ii) Let 1 < α < 2 and b > α − 1. Then {X̄t } is SRD(SAV).

For a strictly stationary process {Yt }, let

UY (θ1, θ2; t) := cov(eiθ1Yt , eiθ0Y0) = E ei(θ1Yt−θ2Y0) − E eiθ1Yt E e−iθ2Y0 .

The long memory of {Yt } can be characterized by the decay rate of UY (θ1, θ2; t) as t → ∞.
Note that the existence of UY (θ1, θ2; t) does not require any moments. For stationary stable
or heavy-tailed moving averages and some other processes with long memory, the asymptotics
of UY (θ1, θ2; t) were investigated in Astrauskas (1983), Astrauskas et al. (1991), and Koul and
Surgailis (2001). A related quantity,

cod(Y0, Yt ) := log E ei(Yt−Y0) − log E eiYt − log E e−iY0 ,

called the codifference of the RVs Y0 and Yt , can also be used to characterize the long memory
of {Yt } and its intensity (see Samorodnitsky and Taqqu (1994), pp. 384–387). In particular, if
{Yt } is a stationary Gaussian process, with zero mean, unit variance, and covariance r(t) →
0 (t → ∞), then cod(Y0, Yt ) = 1

2 cov(Y0, Yt ) = 1
2 r(t), while

UY (θ1, θ2; t) = e−(θ2
1 +θ2

2 )/2(eθ1θ2r(t) − 1) ∼ θ1θ2e−(θ2
1 +θ2

2 )/2r(t) as t → ∞
decays as r(t).

Theorem 3.3, below, gives the decay rate of the codifference of the mixed stable moving
average in (1.3) and the mixing density in (3.7), below. A similar result can be proved for the
covariance UX̄(θ1, θ2; t). Write z̄ for the conjugate of a complex number z ∈ C.

Theorem 3.3. Let {X̄t } be the aggregated process in (1.3), with characteristic functional as in
(2.7), 0 < α < 2, and mixing density

φ(a) = ψ(a)

{
(1 − a)b1 , 0 < a < 1,

(1 + a)b2 , −1 < a < 0,
a ∈ (−1, 1), (3.7)

where 1 > b1, b2 > 0 are parameters and ψ is continuous at ±1 with lima→±1 ψ(a) =:
ψ(±1) ≥ 0. Then, as t → ∞,

cod(X̄0, X̄t ) = (C1 + o(1))t−b1 + (C2(t)+ o(1))t−b2 , (3.8)

where

C1 := ψ(1)α−1
∫ ∞

0
[ω(1)e−yα + ω(1)(1 − (1 − e−y)α)]yb1−1 dy,

C2(t) := ψ(−1)α−1Re(ω(1))
∫ ∞

0
[e−yα + 1 − (1 − (−1)te−y)α]yb2−1 dy.
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Remark 3.1. For 1 < α ≤ 2 and 0 < b < α − 1, introduce the parameter

d := α − 1 − b

α
, (3.9)

or b = α − 1 − αd . Note that b = 0 if and only if d = 1 − 1/α, and b = α − 1 if and
only if d = 0. Recall from Samorodnitsky and Taqqu (1994, Theorem 7.13.4) that, for the
FARIMA(0, d, 0) process {Yt } with α-stable innovations, 0 < d < 1 − 1/α, and 1 < α ≤ 2,

cod(Y0, Yt ) ∼ (constant)t1+αd−α as t → ∞. (3.10)

Therefore, Theorem 3.3 implies that the codifference of the aggregated process {X̄t } in (1.3)
with the mixing density in (2.9) and 0 < b < α − 1 decays similarly as the codifference of
an α-stable FARIMA(0, d, 0) process with parameter d given in (3.9). From Theorem 3.1 we
see that the above similarity between {X̄t } and FARIMA(0, d, 0) with parameter d in (3.9)
also extends to the normalization exponentH of partial sums of both processes: for the former
process, H = 1 − b/α and, for the latter process, H = d + 1/α. Clearly, 1 − b/α = d + 1/α
is equivalent to (3.9). In other words, if b and d are related as in (3.9) then partial sums of {X̄t }
and partial sums of the FARIMA(0, d, 0) process converge under the same normalization and
the limits are self-similar processes with the same parameter H .

Remark 3.2. Recall that a second-order stationary process is said to have covariance long
memory if the sum of the absolute values of covariances diverges. In the case of an infinite-
variance process, the divergence of the absolute values of codifferences also indicates the
presence of long memory. From Theorems 3.1–3.3 we see that the codifference of {X̄t } is
nonsummable for any 0 < b < 1, irrespective of the value of α, while at the same time this
process may have the SRD(SAV) property and distributional short memory, provided α − 1 <
b < 1 and 1 < α < 2. These results might look strange and a peculiarity of the process in
(1.3) at first glance; however, similar facts also hold for moving averages Yt = ∑∞

j=0 cj εt−j
in i.i.d. innovations εt ∈ D(α) with regularly decaying coefficients cj ∼ jd−1. Indeed, for
such {Yt }, the codifference decays as in (3.10) for any 0 < α < 2 and d < 1 − 1/α, so that∑∞
j=0 |cod(Y0, Yj )| = ∞ and

∑∞
j=0 |cj | < ∞ hold for 1 − 2/α < d < 0. Since {Yt } has

distributional short memory for d < 0 and
∑∞
j=0 cj �= 0 (see, e.g. Astrauskas (1983)), we have

exactly the same situation as in the case of {X̄t }, with parameters d and b related as in (3.9).

Remark 3.3. Mikosch and Samorodnitsky (2000) discussed the asymptotic behavior of the
ruin probability

ψ(u) := P
(

sup
n≥0
(X1 + · · · +Xn − nµ) > u

)
as u → ∞, where ‘claims’ {Xt } form a stationary α-stable process, 1 < α < 2, and µ > EX1
is a given constant. They associated the ‘classical’ decay rate ψ(u) = O(u−(α−1)) with short-
range dependence and the decay rateψ(u) = O(u−ν)with exponent ν < α−1 with long-range
dependence of the claim sequence {Xt }. In the case when the Xt s are stationary increments of
a linear α-stable fractional motion with self-similarity parameter H ∈ (1/α, 1), Mikosch and
Samorodnitsky (2000, Proposition 4.4) obtained a decay rate ψ(u) ∼ (constant)u−α(1−H) of
the ruin probability. Let us note that increments of an α-stable fractional motion satisfy the
distributional long-memory property and also exhibit the decay of codifference as in (3.10),
with d and H related as in Remark 3.1 (see Samorodnitsky and Taqqu (1994, pp. 380–387)).
Therefore, the above characterization of long memory via ruin probabilities seems to agree with
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other characterizations of long memory discussed in this paper, at least for α-stable moving
averages. An interesting open problem is to extend the asymptotics of the ruin probability
from Mikosch and Samorodnitsky (2000, Proposition 4.4) to the aggregate process {X̄t } in
Theorem 3.1.

Appendix A. Proofs

Proof of Theorem 2.1. The characteristic function of the RV ε ∈ D(α) has the following
representation in a neighborhood of the origin (see, e.g. Ibragimov and Linnik (1971, Theo-
rem 2.6.5)): there exists an ε > 0 such that

E eiθε = e−|θ |αω(θ)h(θ), |θ | < ε, (A.1)

where h is a positive function tending to 1 as θ → 0. Denote

ϑ(s, a) :=
m∑
t=1

θta
t−s 1(s ≤ t). (A.2)

Then N−1/α ∑m
t=1 θtXt = N−1/α ∑

s∈Z
ϑ(s, a)εs . Since m and θt , t = 1, . . . , m, are fixed

and a is bounded, it is clear that |ϑ(s, a)| ≤ C for a constant C independent of a and s, and,
therefore, |N−1/αϑ(s, a)| < ε for all N > N0 large enough. Therefore, using (A.1), we can
write

E exp

{
iN−1/α

N∑
i=1

m∑
t=1

θtXit

}

=
(

E exp

{
iN−1/α

m∑
t=1

θtXt

})N

=
(

E exp

{
−N−1

∑
s∈Z

|ϑ(s, a)|αh(N−1/αϑ(s, a))ω(ϑ(s, a))

})N
.

Clearly, for any a ∈ (−1, 1),∑
s∈Z

|ϑ(s, a)|αh(N−1/αϑ(s, a))ω(ϑ(s, a)) →
∑
s∈Z

|ϑ(s, a)|αω(ϑ(s, a)) (A.3)

as N → ∞, and ∣∣∣∣ ∑
s∈Z

|ϑ(s, a)|αh(N−1/αϑ(s, a))ω(ϑ(s, a))

∣∣∣∣ ≤ C

1 − |a|α (A.4)

for a constant C < ∞ independent of a. Define

�N := N E

[
exp

{
−N−1

∑
s∈Z

|ϑ(s, a)|αh(N−1/αϑ(s, a))ω(ϑ(s, a))

}
− 1

]
.

Using (A.3), (A.4), condition (2.4), the fact that 0 ≤ h(θ) ≤ C, the inequality |ez − 1| ≤ |z|
(z ∈ C,Rez ≤ 0), and the dominated convergence theorem, we obtain

lim
N→∞�N = −

∑
s∈Z

E[|ϑ(s, a)|αω(ϑ(s, a))].
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Therefore,

lim
N→∞ E exp

{
iN−1/α

N∑
i=1

m∑
t=1

θtXit

}
= lim
N→∞

(
1 + �N

N

)N

= exp

{
−

∑
s∈Z

E[|ϑ(s, a)|αω(ϑ(s, a))]
}
,

which coincides with (2.7). The properties of {X̄t } mentioned in the statement of the theorem
follow from Surgailis et al. (1993). This completes the proof.

Proof of Proposition 2.2. (i) By separately considering the real and imaginary parts of the
logarithm of the characteristic function in (2.7), we see that it suffices to prove the proposition
for the symmetric case ω ≡ 1 only.

LetLα(Z) be the space of all real sequencesg = (gt , t ∈ Z)with ‖g‖αα := ∑
t∈Z

|gt |α < ∞.
Let B(Lα(Z)) be the σ -algebra of Borel sets of Lα(Z). A Borel set A ⊂ Lα(Z) is said to be
symmetric if −A = A and shift invariant if UtA = A for every t ∈ Z, where Us, s ∈ Z, is the
group of shift operators on Lα(Z), (Usg)t := gt−s . Let Binv(Lα(Z)) denote the class of all
open symmetric and shift-invariant sets A ⊂ Lα(Z).

According to Surgailis et al. (1993, Theorem 2 and Lemma 1), the characteristic function in
(2.7) uniquely determines the measure

µ(A) :=
∫
Lα(Z)

1
(

g

‖g‖α ∈ A
)

‖g‖ααλ(dg), (A.5)

on open symmetric and shift-invariant sets A ∈ Binv(Lα(Z)) and vice versa; here

λ(A) := P((a−t 1(t ≤ 0), t ∈ Z) ∈ A), A ∈ B(Lα(Z)), (A.6)

is a probability measure concentrated on the set {g = (gt , t ∈ Z) ∈ Lα(Z) : gt = a−t 1(t ≤ 0),
there exists a ∈ (−1, 1)} of geometric progressions.

Let V ⊂ (−1, 1) be an open set, and let

A(V ) :=
⋃
s∈Z

⋃
δ=±1

As,δ(V ), (A.7)

As,δ(V ) := {f = (ft , t ∈ Z) ∈ Lα(Z) : ft = δ(1 − |v|α)1/αvs−t 1(t ≤ s),

there exists v ∈ V }.
Note that, As,δ(V ) are disjoint sets for distinct pairs (s, δ), the set A(V ) is open, symmetric
and shift invariant, and µ(As,δ(V )) = 0 unless (s, δ) = (0, 1). Moreover,

µ(A(V )) = µ(A(0,1)(V )) = E

[
1(a ∈ V )
1 − |a|α

]
=

∫
V

�(da)

1 − |a|α =: G(V )

according to the definitions in (A.5)–(A.6). Therefore, the characteristic function in (2.7)
uniquely determines the measureG on the interval (−1, 1). Since�(V ) = ∫

V
(1 − |a|α)G(da),

part (i) of the proposition follows.
(ii) As in (i), it suffices to discuss the case ω ≡ 1. Let µ = µX̄ be as defined in (A.5), and

let

µY (A) := ‖c‖αα 1
(

c

‖c‖α ∈ A
)
, c := (c−t 1(t ≤ 0), t ∈ Z) ∈ Lα(Z),
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be the measure on the unit sphere of Lα(Z), corresponding to the moving average {Yt }. By
definition, µY is concentrated on a single element c/‖c‖α ∈ Lα(Z).

As mentioned above in the proof of (i), {X̄t } fdd= {Yt } implies that

µY (A) = µX̄(A), A ∈ Binv(Lα(Z)). (A.8)

Consider the set A = A(−1, 1), as defined in (A.7), consisting of all signed translations of
normalized geometric progressions. Clearly, c/‖c‖α ∈ A(−1, 1) if and only if cj = εa

j
0 ,

j ≥ 0, for some a0 ∈ (−1, 1) and ε ∈ {−1, 1}. It also easily follows from (A.8) that � = δa0 .
This completes the proof.

Proof of Proposition 2.3. Let

�N := N E

[
exp

{
−N−1/(1+b)∑

s∈Z

|ϑ(s, a)|αh(N−1/α(1+b)ϑ(s, a))
}

− 1

]
,

where ϑ(s, a) is defined in (A.2). Then,

E exp

{
iN−1/α(1+b)

N∑
i=1

m∑
t=1

θtXit

}
=

(
1 + �N

N

)N
.

Similarly as in the proof of Theorem 2.1, it suffices to show that

lim
N→∞�N = −K

∣∣∣∣
m∑
t=1

θm

∣∣∣∣
α(1+b)

, K := α−(b+1)ψ(1)
∫ ∞

0
(1 − e−z)z−(b+2) dz. (A.9)

To prove (A.9), split

∑
s∈Z

|ϑ(s, a)|αh(N−1/α(1+b)ϑ(s, a)) =
∑
s≤0

· · · +
m∑
s=1

· · · =: �1 +�2.

Note that �2 is uniformly bounded in a ∈ [0, 1) and N ≥ 1 and N−1/(1+b) = o(N−1) for
b < 0. Therefore, it suffices to prove (A.9) for�N replaced by�N1 := N E[e−N−1/(1+b)�1 −1].
We have

�N1 = N

∫ 1

1−ε

(
exp

{
−N−1/(1+b) 1

α(1 − a)

∣∣∣∣
m∑
t=1

θt

∣∣∣∣
α}

− 1

)
(1 − a)bψ(a) da + o(1)

= N

∫ ε

0

(
exp

{
− 1

αxN1/(1+b)

∣∣∣∣
m∑
t=1

θt

∣∣∣∣
α}

− 1

)
ψ(1 − x)xb dx + o(1)

= −KN(θ)
∣∣∣∣
m∑
t=1

θt

∣∣∣∣
α(1+b)

+ o(1),

where

KN(θ) := α−(b+1)ψ(1)
∫ ∞

0
1(z > δN(θ))(1 − e−z)z−(b+2) dz

and δN(θ) := (αε)−1N−1/(1+b)| ∑m
t=1 θt |α → 0 (N → ∞). Since limN→∞KN(θ) = K by

the dominated convergence theorem, this proves (A.9) and the proposition.
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Proof of Proposition 2.4. It suffices to prove the proposition for simple functions h ∈
Lα(Z × (−1, 1)) of the form h(t, a) = ∑n

i=1 hit 1(|t | ≤ n, a ∈ Ai), where Ai ⊂ (−1, 1),
i = 1, . . . , n, are disjoint Borel sets. For such h,

M(h) =
∑
|t |≤n

n∑
i=1

hitMt (Ai)

is a finite sum of α-stable RVs. By linearity of both sides of (2.11) in h and independence of
Mt(Ai) and Ms(Aj ), s �= t , it suffices to check (2.11) for h(t, a) = 1(t = s, a ∈ A), or

E[Ms(A) | Ms(−1, 1)] = �(A)Ms(−1, 1) (A.10)

for any Borel set A ⊂ (−1, 1). By standard arguments, (A.10) is equivalent to

E[Ms(A)e
iθMs(−1,1)] = �(A)E[Ms(−1, 1)eiθMs(−1,1)], θ ∈ R. (A.11)

Let κA(θ) := E[eiθMs(−1,1)], κ(θ) := κ(−1,1)(θ), and Ac := (−1, 1) \ A. Then (A.11) can be
rewritten as

κ ′
A(θ)κAc(θ) = �(A)κ ′(θ).

The above equality is immediate from κA(θ)κAc(θ) = κ(θ) and κA(θ) = (κ(θ))�(A) (the last
relation follows from the form of the characteristic functional in (2.5) and the fact that ω(θ) in
(2.2) depends only on the sign of θ ).

Proof of Theorem 3.1. (i) We will prove the one-dimensional convergence in (3.4) at τ = 1
only, since the general case in (3.4) follows analogously. In view of (2.7) and (3.2), it suffices
to prove that, for any θ ∈ R,

n−Hα ∑
s∈Z

E

∣∣∣∣
n∑
t=1

at−s 1(s ≤ t)

∣∣∣∣
α

ω

(
θ

n∑
t=1

at−s 1(s ≤ t)

)

→ c

∫
R

∫
R+

|f (x, 1 − s)− f (x,−s)|αω(θ(f (x, 1 − s)− f (x,−s)))xb−α ds dx.

(A.12)

Note that the expressions inside ω on both sides of (A.12) are positive or negative depending
on the sign of θ and ω(θ) = ω(sgn(θ)). Therefore, it suffices to show (A.12) for θ = 1 alone.
To this end, let us denote the left- and right-hand sides of (A.12) (with θ = 1) by Jn and J ,
respectively. Split J = J1 + J2, where

J1 := ψ(1)ω(1)
∫ 0

−∞
ds

∫ ∞

0
|f (x, 1 − s)− f (x,−s)|αxb−α dx

= ψ(1)ω(1)α−1
∫ ∞

0
(1 − e−y)αyb−α−1 dy,

J2 := ψ(1)ω(1)
∫ 1

0
ds

∫ ∞

0
|f (x, 1 − s)|αxb−α dx

= ψ(1)ω(1)
∫ 1

0
du

∫ ∞

0
(1 − e−x(1−u))αxb−α dx,
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according to the definition of f in (1.5). Next, write Jn = Jn1 + Jn2, where

Jn1 := n−Hαω(1)
0∑

s=−∞

∫ 1

0

∣∣∣∣
n∑
t=1

at−s
∣∣∣∣
α

(1 − a)bψ(a) da

= n−Hαω(1)
∫ 1

0

1

1 − aα

∣∣∣∣a(1 − an)

1 − a

∣∣∣∣
α

(1 − a)bψ(a) da

= ω(1)
∫ ∞

0

(1 − y/n)α

n(1 − (1 − y/n)α)

(
1 −

(
1 − y

n

)n)α
yb−αψ

(
1 − y

n

)
× 1(0 < y < εn) dy + o(1)

→ ψ(1)ω(1)

α

∫ ∞

0
(1 − e−y)αyb−α−1 dy

= J1

by the dominated convergence theorem as n → ∞. In a similar way,

Jn2 := n−Hαω(1)
n∑
s=1

∫ 1

0

∣∣∣∣
n∑
t=1

at−s 1(s ≤ t)

∣∣∣∣
α

(1 − a)bψ(a) da

= n−Hαω(1)
∫ 1

0

n∑
s=1

∣∣∣∣1 − an−s+1

1 − a

∣∣∣∣
α

(1 − a)bψ(a) da

= ω(1)
∫ ∞

0

1

n

n∑
s=1

(
1 −

(
1 − y

n

)n−s+1)α
yb−αψ

(
1 − y

n

)
1(0 < y < εn) dy + o(1)

→ ψ(1)ω(1)
∫ ∞

0

∫ 1

0

(
1 − e−y(1−u)

)α
yb−α dy du

= J2.

This proves part (i).
(ii) Denote by {Ln(τ), τ } the process on the left-hand side of (3.5). It suffices to prove that,

for any m ≥ 1 and any 0 =: τ0 < τ1 < · · · < τm, θ1 ∈ R, . . . , θm ∈ R,

m∑
k=1

θk(Ln(τk)− Ln(τk−1))
d−→

m∑
k=1

θk(L(τk)− L(τk−1)).

Rewrite Ln(τk)− Ln(τk−1) = �L′
n(τk)+�L′′

n(τk), where

�L′
n(τk) := n−1/α

∑
[nτk−1]<s≤[nτk]

∑
s≤t≤[nτk]

∫ 1

0
at−sMs(da),

�L′′
n(τk) := n−1/α

∑
s≤[nτk−1]

∑
[nτk−1]<t≤[nτk]

∫ 1

0
at−sMs(da).

Since�L′
n(τk), k = 1, . . . , m, are independent, it suffices to prove that, for any k = 1, . . . , m,

�L′
n(τk)

d−→ L(τk)− L(τk−1), �L′′
n(τk) = op(1).
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Moreover, it suffices to prove the last relations for k = 1 and τk = 1 only; in other words, to
prove that, for any θ ∈ R,

n−1
n∑
s=1

E

( n∑
t=s

at−s
)α
ω

(
θ

n∑
t=s

at−s
)

→ Kω(θ),

n−1
∑
s≤0

E

( n∑
t=1

at−s
)α
ω

(
θ

n∑
t=1

at−s
)

→ 0.

Similarly as in the proof of Proposition 3.4, it suffices to prove the above relations forω(θ) ≡ 1,
viz.

Jn1 := n−1
∑
s≤0

E

( n∑
t=1

at−s
)α

→ 0, Jn2 := n−1
n∑
s=1

E

( n∑
t=s

at−s
)α

→ K. (A.13)

Consider

Jn1 = n−1
∫ 1

0

(1 − x)α

1 − (1 − x)α
(1 − (1 − x)n)αxb−αψ(1 − x) dx.

If b > α then, clearly, Jn1 ≤ Cn−1
∫ 1

0 x
b−α−1ψ(1 − x) dx = O(n−1) since the last integral

converges. Let 0 < b < α. Then, for any ε > 0, similarly as above

Jn1 = 1

nb−α+1

∫ εn

0

(1 − y/n)α

n(1 − (1 − y/n)α)

(
1 −

(
1 − y

n

)n)α
yb−αψ

(
1 − y

n

)
dy +O

(
1

n

)
,

where the last integral tends to ψ(1)α−1
∫ ∞

0 (1 − e−y)αyb−α−1 dy < ∞, implying that Jn2 =
O(1/nb−α+1) = o(1). For b = α, a similar argument yields Jn2 = O(n−1 log n) = o(1). This
proves the first convergence in (A.13).

Next, by the dominated convergence theorem,

Jn2 = n−1
n−1∑
k=0

∫ 1

0
xb−α(1 − (1 − x)k)αψ(1 − x) dx →

∫ 1

0
xb−αψ(1 − x) dx = K,

proving the second relation in (A.13) and the theorem.

Proof of Theorem 3.2. (i) In view of Theorem 3.1(i), it suffices to show thatn−2H∑n
t=1X̄

2
t =

op(1), with H as in (3.3). The last relation follows from H > 1/α and Loève (1963, p. 387).
See also Heyde and Yang (1997, proof of Theorem 1). This proves part (i).

(ii) According to Theorem 3.1(ii), it suffices to show that D−1
n is bounded in probabil-

ity, where Dn := n−2/α ∑n
t=1 X̄

2
t . Decompose Dn = ∑3

i=1Dni , where Dni are defined in
(A.14), below. Then D−1

n = Op(1) follows from the following three facts: (d1) Dn1 =
op(1), (d2) Dn2 ≥ 0 a.s., and (d3) Dn3

d−→ Z, where Z > 0 a.s. To this end, let X̄t =∑
s≤t Ut,s , Ut,s := ∫ 1

0 a
t−sMs(da) 1(s ≤ t), and

Dn1 := n−2/α
n∑
t=1

∑
s1 �=s2

Ut,s1Ut,s2 , (A.14)

Dn2 := n−2/α
n∑
t=1

∑
s �=t

U2
t,s , Dn3 := n−2/α

n∑
t=1

U2
t,t .

Fact (d2) is obvious. Fact (d3) holds since Ut,t , t = 1, . . . , n, are i.i.d. α-stable RVs, so that
U2
t,t ∈ D(α/2) and Dn3

d−→ Z, where Z is a strictly positive α/2-stable RV.

https://doi.org/10.1239/aap/1275055240 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1275055240


Aggregation of the infinite-variance AR(1) process 525

Let us prove (d1). Write Dn1 = ∑
s≤n �n,s , where �n,s := 2n−2/α ∑n

t=1
∑
v<sUt,sUt,v .

Let Fs be the σ -algebra generated by RVs Mv(A), v ≤ s, A ⊂ (−1, 1). Then {�n,s,Fs ,
s ∈ Z} is a martingale difference sequence. Hence, for any 1 < r < α, we have E |Dn1|r ≤
2
∑
s≤n E |�n,s |r . By a similar backward martingale property,

E |�n,s |r ≤ 2
∑
v<s

n−2r/α E

∣∣∣∣
n∑
t=1

Ut,sUt,v

∣∣∣∣
r

.

Hence, using the independence of Ut,s and Ut,v, v < s, and Hölder’s inequality, for any
1 < r < α, we obtain

E |Dn1|r ≤ 4n−2r/α
∑
v<s≤n

E

( n∑
t=1

Ut,sUt,v

)r

≤ 4n−2r/αnr−1
∑
v<s≤n

n∑
t=1

E |Ut,s |r E |Ut,v|r

≤ 4n−2r/αnrQr,

whereQr := (
∑
s≥0 E |Us,0|r )2. Since r−2r/α < 0, for (d1), it suffices to show thatQr < ∞.

From Samorodnitsky and Taqqu (1994, Property 1.2.17) we have E |Us,0|r ≤ C(E |as |α)r/α ,
where E |as |α ≤ C

∫ 1
0 x

b(1 − x)sα dx ≤ Cs−1−b and, therefore, Qr < ∞ for α/(1 + b) <

r < α. This completes the proof.

Proof of Theorem 3.3. From (2.7) and the definition of the codifference for t ≥ 1, we obtain

cod(X̄0, X̄t ) = Re(ω(1))�1(t)− i Im(ω(1))�2(t), (A.15)

where �i(t) := ERi, i = 1, 2, and

R1 := 1 − |1 − at |α + |at |α
1 − |a|α ,

R2 :=
∑
s≤0

|at−s − a−s |α sgn(at−s − a−s)+
t∑
s=1

|at−s |α sgn(at−s).

Next, decompose �i(t) = ∑4
j=1�ij (t), where

�i1(t) := ERi 1(1 − ε < a < 1), �i3(t) := ERi 1(0 < a < 1 − ε),

�i2(t) := ERi 1(−1 < a < −1 + ε), �i4(t) := ERi 1(−1 + ε < a < 0),

and ε > 0 is a small number. It is easy to check that, for any ε > 0,

�ij (t) = O(e−c̃t ) = o(t−b1∨b2), i = 1, 2, j = 3, 4, there exists c̃ > 0, (A.16)

decay exponentially and, hence, are negligible in (3.8). Consider the terms�ij (t), i, j = 1, 2.
We have

�11(t) =
∫ 1

1−ε
1 − |1 − at |α + |at |α

1 − |a|α (1 − a)b1ψ(a) da

=
∫ ε

0

1 − (1 − (1 − x)t )α + (1 − x)tα

1 − (1 − x)α
xb1ψ(1 − x) dx

= C11(t)t
−b1 , (A.17)
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where

C11(t) := ψ(1)α−1
∫ ∞

0
f (t, y)(1 − (1 − e−y)α + e−yα)yb1−1 dy,

f (t, y) := 1 − (1 − (1 − y/t)t )α + (1 − y/t)tα

1 − (1 − e−y)α + e−yα
α(y/t)

1 − (1 − y/t)α

ψ(1 − y/t)

ψ(1)

× 1(0 < y < εt).

Observe that f (t, y) → 1(t → ∞) for any y ∈ (0,∞), and, moreover, |f | is bounded in
y ∈ (0,∞) uniformly in t → ∞. Hence, by the dominated convergence theorem,

C11(t) = ψ(1)α−1
∫ ∞

0
(1 − (1 − e−y)α + e−yα)yb1−1 dy + o(1). (A.18)

In a similar way,

�12(t) =
∫ ε

0

1 − (1 − (−1)t (1 − x)t )α + (1 − x)tα

1 − (1 − x)α
xb2ψ(x − 1) dx = C12(t)t

−b2 , (A.19)

where

C12(t) = ψ(−1)α−1
∫ ∞

0
[e−yα + 1 − (1 − (−1)te−y)α]yb2−1 dy + o(1). (A.20)

Next, using sgn(at−s) = sgn(at ) sgn(a−s) and

sgn(at−s − a−s) = −1, sgn(at−s) = +1, for a > 0,

sgn(at−s − a−s) = −((−1)−s), sgn(at−s) = (−1)t ((−1)−s), for a < 0,

we can rewrite

R2 = 1 − (1 − at )α − atα

1 − aα
1(a > 0)+ 1 − (1 − at )α − (−1)t |at |α

1 + |a|α 1(a < 0).

Whence, similarly as above,

�21(t) =
∫ ε

0

1 − (1 − (1 − x)t )α − (1 − x)tα

1 − (1 − x)α
xb1ψ(1 − x) dx = C21(t)t

−b1 , (A.21)

where

C21(t) = ψ(1)α−1
∫ ∞

0
(1 − (1 − e−y)α − e−yα)yb1−1 dy + o(1). (A.22)

Finally,

�22(t) =
∫ ε

0

1 − (1 − (−1)t (1 − x)t )α − (−1)t (1 − x)tα

1 + (1 − x)α
xb2ψ(x − 1) dx

= C22(t)t
−b2−1

= o(t−b2), (A.23)

where C22(t) = ψ(−1)2−1
∫ ∞

0 (1 − (1 − (−1)te−y)α − e−yα)yb2 dy + o(1).
The asymptotics in (3.8) follow from (A.15) and (A.16)–(A.23).
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