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Abstract
We prove that there is a positive proportion of L-functions associated to cubic characters over F𝑞 [𝑇] that do not
vanish at the critical point 𝑠 = 1/2. This is achieved by computing the first mollified moment using techniques
previously developed by the authors in their work on the first moment of cubic L-functions, and by obtaining a sharp
upper bound for the second mollified moment, building on work of Lester and Radziwiłł, which in turn develops
further ideas from the work of Soundararajan, Harper and Radziwiłł. We work in the non-Kummer setting when
𝑞 ≡ 2 (mod 3), but our results could be translated into the Kummer setting when 𝑞 ≡ 1 (mod 3) as well as into
the number-field case (assuming the generalised Riemann hypothesis). Our positive proportion of nonvanishing is
explicit, but extremely small, due to the fact that the implied constant in the upper bound for the mollified second
moment is very large.
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1. Introduction

An extension of a famous conjecture of Chowla predicts that 𝐿( 1
2 , 𝜒) ≠ 0 for Dirichlet L-functions

attached to primitive characters 𝜒. Chowla’s original conjecture [6, Chapter 8] is restricted to 𝜒 a
quadratic character, which is the most studied case. For quadratic Dirichlet L-functions, Özlük and
Snyder [30] showed, under the generalised Riemann hypothesis (GRH), that at least 15/16 of the L-
functions 𝐿( 1

2 , 𝜒) attached to quadratic characters 𝜒 do not vanish, by computing the one-level density
for the low-lying zeroes in the family. The conjectures of Katz and Sarnak [25] on the zeroes of L-
functions imply that 𝐿( 1

2 , 𝜒) ≠ 0 for almost all quadratic Dirichlet L-functions. Without assuming
the GRH, Soundararajan [35] proved that at least 87.5% of the quadratic Dirichlet L-functions do not
vanish at 𝑠 = 1/2, by computing the first two mollified moments. It is well known that using the first
two (nonmollified) moments does not lead to a positive proportion of nonvanishing, as they grow too
fast (see [12] and the work of Jutila [24].) Soundararajan [35] also computed asymptotics for the first
three moments, and Shen [34] obtained an asymptotic formula with the leading order term for the
fourth moment (conditionally on the GRH), building on work of Soundararajan and Young [37]. A
different approach was used by Diaconu, Goldfeld and Hoffstein [16] to compute the third moment.
Over function fields, asymptotics for the first four moments were obtained by Florea [18, 19, 20]. We
refer the reader to those papers for more details. Moreover, in the function-field case, Bui and Florea [3]
obtained a proportion of nonvanishing of at least 94% for quadratic Dirichlet L-functions, by computing
the one-level density (those results are unconditional, as the GRH is true over function fields).

In this paper, we consider the case of cubic Dirichlet L-functions. There are few articles in the
literature about cubic Dirichlet L-functions, compared to the abundance of papers on quadratic Dirichlet
L-functions, as this family is more difficult, in part because of the presence of cubic Gauss sums. The
first moment of 𝐿( 1

2 , 𝜒), where 𝜒 is a primitive cubic character, was computed by Baier and Young over
Q [1] (the non-Kummer case), by Luo for a thin subfamily over Q(

√
−3) [28] (the Kummer case) and

by David, Florea and Lalin [13] over function fields, in both the Kummer and the non-Kummer case,
and for the full families.

In these three papers, the authors obtained lower bounds for the number of nonvanishing cubic twists,
but not positive proportions, by using upper bounds on higher moments. Ellenberg, Li and Shusterman
[17] use algebraic-geometry techniques to extend the results of [13] to ℓ-twists over function fields
and improve upon the lower bound for the number of nonvanishing cubic twists (but the proportion is
still nonpositive). Obtaining an asymptotic for the second moment for cubic Dirichlet L-functions is
still an open question, over functions fields or number fields. Moreover, for the case of cubic Dirichlet
L-functions, computing the one-level density can only be done for limited support of the Fourier
transform of the test function, and that is not enough to lead to a positive proportion of nonvanishing
for the full family, even under the GRH [5, 29]. Recently David and Güloğlu [14] obtained a positive
proportion of nonvanishing for Luo’s thin family [28] by computing the one-level density.

We prove in this paper that there is a positive proportion of nonvanishing for cubic Dirichlet
L-functions at 𝑠 = 1/2 over function fields, in the non-Kummer case.

Theorem 1.1. Let 𝑞 ≡ 2 (mod 3). Let C(𝑔) be the set of primitive cubic Dirichlet characters of genus g
over F𝑞 [𝑇]. Then, as 𝑔 → ∞,

#
{
𝜒 ∈ C(𝑔) : 𝐿

(
1
2 , 𝜒

)
≠ 0

}
�𝑘 #C(𝑔).
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This theorem is obtained by using the breakthrough work on sharp upper bounds for moments of
|𝜁 (1/2 + 𝑖𝑡) | by Soundararajan [36] and Harper [21], under the GRH. Their techniques, together with
ideas appearing in the work of Radziwiłł and Soundararajan [32] on distributions of central L-values of
quadratic twists of elliptic curves, were further developed by Lester and Radziwiłł in [27], where they
obtained sharp upper bounds for mollified moments of quadratic twists of modular forms. Our work
owes a lot to these papers and circles of ideas.

To obtain Theorem 1.1, we need to compute the first mollified moment, generalising our previous
work [13] (Theorem 1.3) and obtain a sharp upper bound for the second mollified moment (Theorem
1.6). In fact, we obtain upper bounds for all mollified moments, not only the second moment and integral
moments. Using Theorems 1.3 and 1.6, the positive proportion of Theorem 1.1 follows from a simple
application of the Cauchy–Schwarz inequality.

As noted by Harper in the case of the Riemann zeta function, the sharp upper bound for the kth
moment is obtained at the cost of an enormous constant of the order 𝑒𝑒𝑐𝑘 , for some absolute constant
𝑐 > 0. Hence our positive proportion of nonvanishing is extremely small, but explicit nonetheless.

We first state the standard conjecture for moments of the family of cubic Dirichlet L-functions. We
refer the reader to Section 2 for more information about the family of cubic Dirichlet L-functions over
function fields in the non-Kummer case (i.e., 𝑞 ≡ 2 (mod 3)).

Conjecture 1.2. Let 𝑞 ≡ 2 (mod 3). Let C(𝑔) be the set of primitive cubic Dirichlet characters of genus
g over F𝑞 [𝑇]. Then as 𝑔 → ∞,

1
#C(𝑔)

∑
𝜒∈C(𝑔)

���𝐿 (
1
2 , 𝜒

)���2𝑘 ∼ 𝑎𝑘𝔤𝑘(
𝑘2)!𝑃𝑘 (𝑔),

where 𝑃𝑘 (𝑔) is a monic polynomial of degree 𝑘2, 𝑎𝑘 is an arithmetic factor depending on the family and

𝔤𝑘 = (𝑘2)!
𝑘−1∏
𝑗=0

𝑗!
( 𝑗 + 𝑘)! .

A testament to the fact that moments of L-functions are hard to compute is the fact that simply
conjecturing an asymptotic is very difficult. The constants 𝔤𝑘 were obtained by Keating and Snaith
based on considerations from random matrix theory [26]. Number-theoretic heuristic arguments were
used in the work of Conrey, Farmer, Keating, Rubinstein and Snaith [12] to generalise Conjecture 1.2
to include lower-order terms, and more recently by Conrey and Keating [7, 8, 9, 10, 11]. The order of
magnitude 𝑔𝑘2 is easy to conjecture, as it comes from the size of the contribution of the diagonal terms.
In the case of cubic characters, this will come from the fact that cubic characters are trivial on cubes.
For the first moment, only diagonal terms contribute to the asymptotic of the previously cited work [1,
13, 28]. For the second (and higher) moments, there will be a contribution from the off-diagonal terms.
The contribution of off-diagonal terms can be estimated in the case of quadratic characters, but it is
open for the family of cubic characters, where only the first moment without absolute value – the sum of
𝐿( 1

2 , 𝜒) – is known. The work of Soundararajan and Harper provides an upper bound of the exact order
of magnitude for all moments of 𝜁 (𝑠). This follows from a key result of Soundararajan, who proved
that one can upper bound log|𝐿( 1

2 , 𝜒) | by a short sum over primes. In our setting, we use Lemma 3.1,
which is the analogue of Soundararajan’s key inequality. These arguments lead to a constant for the
upper bound which is much larger than 𝔤𝑘 . In particular, shortening the Dirichlet polynomial produces
a large contribution from the (𝑔 + 2)/𝑁 term. The techniques used to get the upper bound generate a
constant of size 𝑒𝑒

𝑐𝑘 , as noted by Harper [21].
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1.1. Statement of the results

We state our two results about the mollified moments. Set 𝜅 > 0. The mollifier we use, 𝑀 (𝜒; 1
𝜅 ), is

defined in Section 3.2 and depends on the parameter 𝜅. We will later choose 𝜅 = 1 in the application to
Theorem 1.3.

Theorem 1.3. Let 𝑞 ≡ 2 (mod 3). Let C(𝑔) be the set of primitive cubic Dirichlet characters of genus g
over F𝑞 [𝑇]. Then as 𝑔 → ∞, ∑

𝜒∈C(𝑔)
𝐿

(
1
2 , 𝜒

)
𝑀 (𝜒; 1) = 𝐴𝑞𝑔+2 +𝑂

(
𝑞 𝛿𝑔

)
,

for some 0 < 𝛿 < 1 (see formula (8.30) for more details on 𝛿) and where the constant A is given in
formula (8.25).

Corollary 1.4. With the same notation as before, we have∑
𝜒∈C(𝑔)

𝐿
(

1
2 , 𝜒

)
𝑀 (𝜒; 1) ≥ 0.6143𝑞𝑔+2.

Remark 1.5. It is easy to estimate that #C(𝑔) ∼ 𝑐3𝑞
𝑔+2 for some explicit constant 𝑐3 [13]. Dividing

by the size of the family, we then prove that the first mollified moment of 𝐿( 1
2 , 𝜒) is asymptotic

to a constant, which is the conjectural asymptotic. This is also the asymptotic for the nonmollified
moment (with a different constant), as proven in [13]. This asymptotic is not included in Conjecture
1.2, which is concerned with the moments of the absolute value of the L-functions. The moments of
𝐿( 1

2 , 𝜒)
𝑘1𝐿( 1

2 , 𝜒)𝑘2 , for general positive 𝑘1, 𝑘2, are conjectured to grow as a polynomial of degree 𝑘1𝑘2
in g (see [15]). Note that the conjectures in [15] hold for cubic twists of elliptic curves, but both families
have the same symmetry, so the main terms will have a similar shape. Theorem 1.3 corresponds to the
case 𝑘1 = 1, 𝑘2 = 0, and Conjecture 1.2 to the case 𝑘1 = 𝑘2 = 𝑘 .

The following upper bound for the moment is the analogue of [27, Proposition 4.1]:

Theorem 1.6. Set 𝑘, 𝜅 > 0 such that 𝑘𝜅 is an even integer and 𝑘𝜅 ≤ 𝐶 for some absolute constant C.
Let 𝑞 ≡ 2 (mod 3). Let C(𝑔) be the set of primitive cubic Dirichlet characters of genus g over F𝑞 [𝑇].
Then as 𝑔 → ∞, ∑

𝜒∈C(𝑔)

���𝐿 (
1
2 , 𝜒

)���𝑘 ���𝑀 (
𝜒; 1

𝜅

)���𝑘𝜅 �𝑘 𝑞𝑔 .

Remark 1.7. Because of the presence of the mollifier, dividing by #C(𝑔), all moments are bounded by
a constant, and they do not grow. Using the first and second moment then leads to a positive proportion
of nonvanishing.

1.2. Proof of Theorem 1.1

The proof of Theorem 1.1 follows from a simple application of Cauchy–Schwarz and Theorems 1.3 and
1.6 for 𝜅 = 1. Indeed,

∑
𝜒∈C(𝑔)

𝐿( 1
2 ,𝜒)≠0

1 ≥

���∑𝜒∈C(𝑔) 𝐿
(

1
2 , 𝜒

)
𝑀 (𝜒; 1)

���2∑
𝜒∈C(𝑔)

���𝐿 (
1
2 , 𝜒

)
𝑀 (𝜒; 1)

���2 � 𝑞𝑔 .

�
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Remark 1.8. Combining Corollary 1.4 and formula (7.11), we get the explicit proportion

#
{
𝜒 ∈ C(𝑔) | 𝐿

(
1
2 , 𝜒

)
≠ 0

}
≥ 0.3773𝑒−𝑒

182
𝑞𝑔+2, (1.1)

and using formula (2.6),

#
{
𝜒 ∈ C(𝑔) | 𝐿

(
1
2 , 𝜒

)
≠ 0

}
#C(𝑔) ≥

(
1 − 𝑒−𝑒

84
)2 𝑒−𝑒

182

𝜁𝑞 (2)3𝜁𝑞 (3)2 ≥ 0.4718𝑒−𝑒
182
.

1.3. Overview of the paper

This paper contains two main results, which are proven with different techniques.
We first prove the upper bound for the mollified moments, adapting the setting and notation of [27]

to the case of cubic characters (and to the function-field case). The combinatorics to give an upper
bound to the contribution of the diagonal terms are significantly more complicated, in part because
the special values of the cubic L-functions are not real numbers, and they have to be considered in
absolute value, and in part because we are identifying cubes and not squares. This also applies to the
proof of the almost-sharp upper bound for the L-functions we consider, which is needed as a starting
point to prove the sharp upper bound. Because we are dealing with cubic characters, we also have to
bound the contribution of the squares of the primes, unlike the case of quadratic characters, where the
squares of the primes contribute to the main term. In the language of random matrix theory, the family
of cubic characters is a unitary family, and the family of quadratic characters is a symplectic family (for
Dirichlet twists) or an orthogonal family (for twists of a modular form). In [21], the author also bounds
the contribution of the squares of the primes to get sharp upper bounds on the moments of |𝜁 ( 1

2 + 𝑖𝑡) |,
which is a unitary family. In our case, because of the presence of the mollifier, mixing the square of
the primes with the primes is very cumbersome, and we treat them separately with an additional use
of the Cauchy–Schwarz inequality. The contribution from the squares of the primes morally behaves
like 𝐿(1, 𝜒). Bounding this contribution is similar to getting an upper bound for the average of 𝐿(1, 𝜒),
which is much simpler than the original problem of bounding the average of 𝐿( 1

2 , 𝜒).
We then proceed to evaluating the first mollified moment. Because the mollifier is a finite Dirichlet

polynomial, this amounts to the computation of a ‘twisted first moment’ (see Proposition 8.1). Evaluating
this twisted first moment is similar to evaluating the first moment for the non-Kummer family in [13],
relying on the approximate functional equation and powerful results on the distribution of cubic Gauss
sums.

The structure of the paper is as follows. Section 2 contains the standard properties of cubic characters
over function fields that are used throughout the paper. Section 3 contains the proof of Theorem 1.6
modulo three important results proven in three subsequent sections: a technical lemma proven in Section
3.5, an upper bound for the contribution of the square of the primes in Section 5 and the proof of a
proposition giving an almost-sharp upper bound for the unmollified moments of 𝐿( 1

2 , 𝜒) in Section 6. In
Section 7 we give some estimates on the (extremely small) positive proportion of Theorem 1.1. Finally,
Section 8 contains the asymptotic for the first mollified moment, following the lines of [13] where the
first moment is computed.

2. Background

Let q be an odd prime power. We denote by M𝑞 the set of monic polynomials of F𝑞 [𝑇], by M𝑞,≤𝑑
the subset of degree less than or equal to d and by M𝑞,𝑑 the subset of degree exactly d. Similarly,
H𝑞 , H𝑞,≤𝑑 and H𝑞,𝑑 denote the analogous sets of monic square-free polynomials. In general, all
sums over polynomials in F𝑞 [𝑇] are always taken over monic polynomials. The norm of a polynomial
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𝑓 (𝑇) ∈ F𝑞 [𝑇] is given by

| 𝑓 |𝑞 = 𝑞deg( 𝑓 ) .

In particular, if 𝑓 (𝑇) ∈ F𝑞𝑛 [𝑇], we have | 𝑓 |𝑞𝑛 = 𝑞𝑛 deg( 𝑓 ) for any positive n. We will write | 𝑓 | instead
of | 𝑓 |𝑞 when there is no ambiguity.

The following notation will be used often. We will write 𝐴 ≤𝜀 𝐵 to mean 𝐴 ≤ (1+𝜀)𝐵 for any 𝜀 > 0
as 𝑔 → ∞.

The primes of F𝑞 [𝑇] are the monic irreducible polynomials. Let 𝜋(𝑛) be the number of primes of
F𝑞 [𝑇] of degree n. By considering all the roots of these polynomials, we see that 𝑛𝜋(𝑛) counts the
number of elements in F𝑞𝑛 of degree exactly n over the base field F𝑞 , which is less than or equal to the
total number of elements in F𝑞𝑛 . Therefore,

𝜋(𝑛) ≤ 𝑞𝑛

𝑛
. (2.1)

More precisely, the Prime Polynomial Theorem [33, Theorem 2.2] states that the number 𝜋(𝑛) of primes
of F𝑞 [𝑇] of degree n satisfies

𝜋(𝑛) = 𝑞𝑛

𝑛
+𝑂

(
𝑞𝑛/2

𝑛

)
. (2.2)

The von Mangoldt function is defined as

Λ( 𝑓 ) =
{

deg(𝑃) if 𝑓 = 𝑐𝑃𝑘 , 𝑐 ∈ F∗𝑞 , 𝑃 is prime,
0 otherwise.

Recall that for 𝑓 ∈ F𝑞 [𝑇] the Möbius function 𝜇( 𝑓 ) is 0 if f is not square-free and (−1)𝑡 if f is a
constant times a product of t different primes. The Euler 𝜙𝑞 function is defined as #

(
F𝑞 [𝑇]/

(
𝑓 F𝑞 [𝑇]

) )∗.
It satisfies

𝜙𝑞 ( 𝑓 ) = | 𝑓 |𝑞
∏
𝑃 | 𝑓

(
1 − |𝑃 |−1

𝑞

)
,

and ∑
𝑑∈M𝑞

𝑑 | 𝑓

𝜇(𝑑)
|𝑑 |𝑞

=
𝜙𝑞 ( 𝑓 )
| 𝑓 |𝑞

.

When 𝑓 (𝑇) ∈ F𝑞𝑛 [𝑇], we may consider 𝜙𝑞𝑛 defined similarly.
In this paper we consider the non-Kummer case of cubic Dirichlet character over F𝑞 [𝑇], where

𝑞 ≡ 2 (mod 3). For more details, we refer the reader to [2, 13] for the function-field case and [1] for the
number-field case. In the function-field case, when 𝑞 ≡ 2 (mod 3) these characters are best described
as a subset of the cubic characters over F𝑞2 [𝑇]. Notice that 𝑞2 ≡ 1 (mod 3). Therefore, we will first
discuss the case 𝑞 ≡ 1 (mod 3), which we will later apply to 𝑞2. We proceed to construct cubic Dirichlet
characters over F𝑞 [𝑇] as follows. We fix an isomorphism Ω between the third roots of unity 𝜇3 ⊂ C∗
and the cubic roots of 1 in F∗𝑞 . Let P be a prime polynomial in F𝑞 [𝑇], and let 𝑓 ∈ F𝑞 [𝑇] be such that
𝑃 � 𝑓 . Then there is a unique 𝛼 ∈ 𝜇3 such that

𝑓
𝑞deg(𝑃) −1

3 ≡ Ω(𝛼) (mod 𝑃).
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Note that this equation is solvable because 𝑞 ≡ 1 (mod 3). Then we set

𝜒𝑃 ( 𝑓 ) := 𝛼.

We remark that there are two such characters, 𝜒𝑃 and 𝜒𝑃 = 𝜒2
𝑃 , depending on the choice of Ω.

This construction is extended by multiplicativity to any monic polynomial 𝐹 ∈ F𝑞 [𝑇]. In other
words, if 𝐹 = 𝑃𝑒1

1 · · · 𝑃𝑒𝑠
𝑠 , where the 𝑃𝑖 are distinct primes, then

𝜒𝐹 = 𝜒𝑒1
𝑃1

· · · 𝜒𝑒𝑠𝑃𝑠 .

We have that 𝜒𝐹 is a cubic character modulo 𝑃1 · · · 𝑃𝑠 . It is primitive if and only if 𝑒𝑖 = 1 or 𝑒𝑖 = 2 for
all i.

If 𝑞 ≡ 1 (mod 6), then we have perfect cubic reciprocity. Namely, let 𝑎, 𝑏 ∈ F𝑞 [𝑇] be relatively prime
monic polynomials, and let 𝜒𝑎 and 𝜒𝑏 be the cubic residue symbols already defined. If 𝑞 ≡ 1 (mod 6),
then

𝜒𝑎 (𝑏) = 𝜒𝑏 (𝑎). (2.3)

Throughout the paper, we will fix 𝑞 ≡ 2 (mod 3) (and then 𝑞2 ≡ 1 (mod 3), as we already mentioned).
When 𝑞 ≡ 2 (mod 3), the foregoing construction of 𝜒𝑃 will also give a cubic character as long as P
has even degree, and the character can be extended by multiplicativity. In the non-Kummer case, a
better way to describe cubic characters is to see them as restriction characters defined over F𝑞2 [𝑇]. This
description was formulated by Bary-Soroker and Meisner [2], who generalised the work of Baier and
Young [1] from number fields to function fields. We summarise their work here. Let 𝜋 be a prime in
F𝑞2 [𝑇] lying over a prime 𝑃 ∈ F𝑞 [𝑇] of even degree. Then P splits and we can write 𝑃 = 𝜋�̃�, where �̃�
denotes the Galois conjugate of 𝜋. Remark that 𝑃 ∈ F𝑞 [𝑇] splits if and only if deg(𝑃) is even. Then the
restrictions of 𝜒𝜋 and 𝜒�̃� to F𝑞 [𝑇] are 𝜒𝑃 and 𝜒𝑃 (possibly exchanging the order of characters). Using
multiplicativity, it follows that the cubic characters over F𝑞 [𝑇] are given by the characters 𝜒𝐹 where
𝐹 ∈ F𝑞2 [𝑇] is square-free and not divisible by any prime 𝑃(𝑇) ∈ F𝑞 [𝑇].

Given a primitive cubic Dirichlet character 𝜒 of conductor 𝐹 = 𝑃1 · · · 𝑃𝑠 , the L-function is defined by

𝐿(𝑠, 𝜒) :=
∑

𝑓 ∈M𝑞

𝜒( 𝑓 )
| 𝑓 |𝑠𝑞

=
∑

𝑑<deg(𝐹 )
𝑞−𝑑𝑠

∑
𝑓 ∈M𝑞,𝑑

𝜒( 𝑓 ),

where the second equality follows from the orthogonality relations for 𝜒. This L-function can be written
as a polynomial by making the change of variables 𝑢 = 𝑞−𝑠 , namely,

L(𝑢, 𝜒) =
∑

𝑑<deg(𝐹 )
𝑢𝑑

∑
𝑓 ∈M𝑞,𝑑

𝜒( 𝑓 ).

Let C be a curve of genus g over F𝑞 (𝑇) whose function field is a cyclic cubic extension of F𝑞 (𝑇). From
the Weil conjectures, the zeta function of the curve is given by

Z𝐶 (𝑢) =
P𝐶 (𝑢)

(1 − 𝑢) (1 − 𝑞𝑢) .

In the case under consideration (that is, 𝑞 ≡ 2 (mod 3)), we have

P𝐶 (𝑢) =
L(𝑢, 𝜒)L (𝑢, 𝜒)

(1 − 𝑢)2 , (2.4)

where 𝜒 and 𝜒 are the two cubic Dirichlet characters corresponding to the function field of C. Because
of the additional factors of (1 − 𝑢) in the denominator of equation (2.4), there are extra sums in
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the approximate functional equation for L(𝑢, 𝜒) in this case (see Proposition 2.1). Furthermore, the
Riemann–Hurwitz formula implies that the conductor F of 𝜒 and 𝜒 satisfies deg(𝐹) = 𝑔 + 2.

As in the introduction, let C(𝑔) denote the set of primitive cubic Dirichlet characters of genus g over
F𝑞 [𝑇]. From the foregoing discussion, we have

C(𝑔) =
{
𝜒𝐹 ∈ H𝑞2 ,𝑔/2+1 : 𝑃 | 𝐹 ⇒ 𝑃 ∉ F𝑞 [𝑇]

}
, (2.5)

and in particular g is even. In that case, from [13, Lemma 2.10] we have

#C(𝑔) = 𝑐3𝑞
𝑔+2 +𝑂

(
𝑞
𝑔
2 (1+𝜀)

)
,

where

𝑐3 =
∏

𝑅∈F𝑞 [𝑇 ]
deg(𝑅) odd

(
1 − 1

|𝑅 |2

) ∏
𝑅∈F𝑞 [𝑇 ]

deg(𝑅) even

(
1 − 3

|𝑅 |2
+ 2
|𝑅 |3

)
.

We remark that

𝑐3 ≤
∏

𝑅∈F𝑞 [𝑇 ]

(
1 − 1

|𝑅 |2

)
= 𝜁𝑞 (2)−1. (2.6)

The following statement [13, Proposition 2.5] provides the approximate functional equation of the
L-function:

Proposition 2.1 (Approximate functional equation, [13, Proposition 2.5]). Let 𝑞 ≡ 2 (mod 3) and let 𝜒
be a primitive cubic character of modulus F. Let 𝑋 ≤ 𝑔. Then

L
(

1√
𝑞 , 𝜒

)
=

∑
𝑓 ∈M𝑞,≤𝑋

𝜒( 𝑓 )
𝑞deg( 𝑓 )/2 + 𝜔(𝜒)

∑
𝑓 ∈M𝑞,≤𝑔−𝑋−1

𝜒( 𝑓 )
𝑞deg( 𝑓 )/2

+ 1
1 − √

𝑞

∑
𝑓 ∈M𝑞,𝑋+1

𝜒( 𝑓 )
𝑞deg( 𝑓 )/2 + 𝜔(𝜒)

1 − √
𝑞

∑
𝑓 ∈M𝑞,𝑔−𝑋

𝜒( 𝑓 )
𝑞deg( 𝑓 )/2 ,

where

𝜔(𝜒) = −𝑞−(deg(𝐹 )−2)/2
∑

𝑓 ∈Mdeg(𝐹 )−1

𝜒( 𝑓 ) (2.7)

is the root number and 𝑔 = deg(𝐹) − 2.

Now let 𝜒 be a primitive cubic character of conductor F defined over F𝑞 [𝑇]. Then for Re(𝑠) ≥ 1/2
and for all 𝜀 > 0, we have the following upper bound:

|𝐿(𝑠, 𝜒) | � 𝑞𝜀 deg(𝐹 ) . (2.8)

For Re(𝑠) ≥ 1 and for all 𝜀 > 0, we also have the lower bound

|𝐿(𝑠, 𝜒) | � 𝑞−𝜀 deg(𝐹 ) . (2.9)

(See [13, Lemmas 2.6 and 2.7].)
We recall Perron’s formula over F𝑞 [𝑇], which will be used several times in Section 8:
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Lemma 2.2 (Perron’s formula). If the generating series A(𝑢) =
∑

𝑓 ∈M𝑞
𝑎( 𝑓 )𝑢deg( 𝑓 ) is absolutely

convergent in |𝑢 | ≤ 𝑟 < 1, then ∑
𝑓 ∈M𝑞,𝑛

𝑎( 𝑓 ) = 1
2𝜋𝑖

∮
|𝑢 |=𝑟

A(𝑢)
𝑢𝑛

𝑑𝑢

𝑢

and ∑
𝑓 ∈M𝑞,≤𝑛

𝑎( 𝑓 ) = 1
2𝜋𝑖

∮
|𝑢 |=𝑟

A(𝑢)
𝑢𝑛 (1 − 𝑢)

𝑑𝑢

𝑢
,

where, in the usual notation, we take
∮

to signify the integral over the circle around the origin oriented
counterclockwise.

Finally, we recall the Weil bound for sums over primes. Let 𝜒 be a character modulo B, where B is
not a cube. Then ����� ∑

𝑃∈P𝑛
𝜒(𝑃)

����� � 𝑞𝑛/2 deg(𝐵)
𝑛

, (2.10)

where the sum is over monic, irreducible polynomials of degree n.

2.1. Cubic Gauss sums

Let 𝑞 ≡ 1 (mod 3). We now define cubic Gauss sums, and we state the result for the distribution of cubic
Gauss sums that we are using in Section 8. Since we will work with 𝑞 ≡ 2 (mod 3), the general theory
presented here will be applied to 𝑞2.

Let 𝜒 be a (not necessarily primitive) cubic character of modulus F. The generalised cubic Gauss
sum is defined by

𝐺𝑞 (𝑉, 𝐹) =
∑

𝑢 (mod𝐹 )
𝜒𝐹 (𝑢)𝑒𝑞

(
𝑢𝑉

𝐹

)
, (2.11)

where

𝑒𝑞 (𝑎) = 𝑒
2𝜋𝑖 trF𝑞/F𝑝 (𝑎1)

𝑝

is the exponential defined by Hayes [22], for any 𝑎 ∈ F𝑞 ((1/𝑇)).
When (𝐴, 𝐹) = 1, it is easy to see that

𝐺𝑞 (𝐴𝑉, 𝑓 ) = 𝜒 𝑓 (𝐴)𝐺𝑞 (𝑉, 𝑓 ). (2.12)

Furthermore, the shifted Gauss sum is almost multiplicative as a function of F. Namely, if 𝑞 ≡ 1 (mod 6),
and if (𝐹1, 𝐹2) = 1, then

𝐺𝑞 (𝑉, 𝐹1𝐹2) = 𝜒𝐹1 (𝐹2)2𝐺𝑞 (𝑉, 𝐹1)𝐺𝑞 (𝑉, 𝐹2).

The generating series of the Gauss sums are given by

Ψ𝑞 ( 𝑓 , 𝑢) =
∑

𝐹 ∈M𝑞

𝐺𝑞 ( 𝑓 , 𝐹)𝑢deg(𝐹 )
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and

Ψ̃𝑞 ( 𝑓 , 𝑢) =
∑

𝐹 ∈M𝑞

(𝐹, 𝑓 )=1

𝐺𝑞 ( 𝑓 , 𝐹)𝑢deg(𝐹 ) . (2.13)

The functionΨ𝑞 ( 𝑓 , 𝑢) was studied by Hoffstein [23] and Patterson [31]. In [13] we worked with Ψ̃𝑞 ( 𝑓 , 𝑢)
and proved the following results:

Proposition 2.3 ([13, Proposition 3.1 and Lemmas 3.9 and 3.11]). Let 𝑓 = 𝑓1 𝑓
2
2 𝑓 3

3 , where 𝑓1 and 𝑓2 are
square-free and coprime, and let 𝑓 ∗3 be the product of the primes dividing 𝑓3 but not dividing 𝑓1 𝑓2. Then

∑
𝐹 ∈M𝑞,𝑑

(𝐹, 𝑓 )=1

𝐺𝑞 ( 𝑓 , 𝐹) = 𝛿 𝑓2=1
𝑞

4𝑑
3 − 4

3 [𝑑+deg( 𝑓1) ]3

𝜁𝑞 (2) | 𝑓1 |2/3
𝑞

𝐺𝑞 (1, 𝑓1)𝜌(1, [𝑑 + deg( 𝑓1)]3)
∏

𝑃 | 𝑓1 𝑓 ∗
3

(
1 + 1

|𝑃 |𝑞

)−1

+𝑂
���𝛿 𝑓2=1

𝑞
𝑑
3 +𝜀𝑑

| 𝑓1 |
1
6
𝑞

��� + 1
2𝜋𝑖

∮
|𝑢 |=𝑞−𝜎

Ψ̃𝑞 ( 𝑓 , 𝑢)
𝑢𝑑

𝑑𝑢

𝑢
,

with 2/3 < 𝜎 < 4/3 and where Ψ̃𝑞 ( 𝑓 , 𝑢) is given by equation (2.13), [𝑥]3 denotes an integer 𝑎 ∈ {0, 1, 2}
such that 𝑥 ≡ 𝑎 (mod 3),

𝜌(1, 𝑎) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, 𝑎 = 0,
𝜏(𝜒3)𝑞, 𝑎 = 1,
0, 𝑎 = 2,

and

𝜏(𝜒3) =
∑
𝑎∈F∗𝑞

𝜒3(𝑎)𝑒2𝜋𝑖 trF𝑞/F𝑝 (𝑎)/𝑝 , 𝜒3(𝑎) = Ω−1
(
𝑎
𝑞−1

3

)
.

Moreover, we have

1
2𝜋𝑖

∮
|𝑢 |=𝑞−𝜎

Ψ̃𝑞 ( 𝑓 , 𝑢)
𝑢𝑑

𝑑𝑢

𝑢
� 𝑞𝜎𝑑 | 𝑓 |

1
2 ( 3

2−𝜎)
𝑞 and Ψ̃𝑞 ( 𝑓 , 𝑢) � | 𝑓 |

1
2 ( 3

2−𝜎)+𝜀
𝑞 .

When 𝑞 ≡ 2 (mod 3), the root number in equation (2.7) can be expressed in terms of cubic Gauss
sums over F𝑞2 [𝑇], as proven in [13, Section 4.4]. Let 𝜒 be a primitive character of conductor 𝐹 ∈ F𝑞 [𝑇].
Then F is square-free and divisible only by primes 𝑃(𝑇) of even degree and

𝜔(𝜒) = 𝑞−
𝑔
2 −1𝐺𝑞2 (1, 𝐹), (2.14)

where

𝐺𝑞2 (1, 𝐹) = 𝑞deg(𝐹 ) (2.15)

for 𝐹 ∈ F𝑞 [𝑇] square-free (see [13, Lemma 4.4]).
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3. Setting and proof of Theorem 1.6

3.1. Setting

Following the work of Soundararajan on upper bounds for the Riemann zeta function [36], we first show
that we can bound log

���𝐿 (
1
2 , 𝜒

)��� by a short Dirichlet polynomial. The following statement is analogous
to [4, Proposition 4.3]:

Lemma 3.1. Let 𝑞 ≡ 2 (mod 3) and let 𝜒 be a cubic Dirichlet character of genus g over F𝑞 [𝑇]. Then
for 𝑁 ≤ 𝑔 + 2 we have

log
���𝐿 (

1
2 , 𝜒

)��� ≤ � ���
∑

deg( 𝑓 ) ≤𝑁

Λ( 𝑓 )𝜒( 𝑓 ) (𝑁 − deg( 𝑓 ))

𝑁 | 𝑓 |
1
2+

1
𝑁 log𝑞 deg( 𝑓 )

��� + 𝑔 + 2
𝑁

=
∑

deg( 𝑓 ) ≤𝑁

Λ( 𝑓 )
(
𝜒( 𝑓 ) + 𝜒( 𝑓 )

)
(𝑁 − deg( 𝑓 ))

2𝑁 | 𝑓 |
1
2+

1
𝑁 log𝑞 deg( 𝑓 )

+ 𝑔 + 2
𝑁

.

Proof. The proof follows that of [4, Proposition 4.3], by setting 𝑧 = 0, 𝑁 = ℎ and using the fact that
𝑚 = 𝑔 + 2. �

Since Λ( 𝑓 ) = 0 unless f is a prime power and Λ
(
𝑃 𝑗

)
= deg(𝑃), we have

log
���𝐿 (

1
2 , 𝜒

)��� ≤ 1
2

∑
deg(𝑃) ≤𝑁

(𝜒(𝑃) + 𝜒(𝑃)) (𝑁 − deg(𝑃))

𝑁 |𝑃 |
1
2+

1
𝑁 log𝑞

+ 𝑔 + 2
𝑁

+ 1
4

∑
deg(𝑃) ≤𝑁 /2

(𝜒(𝑃) + 𝜒(𝑃)) (𝑁 − 2 deg(𝑃))

𝑁 |𝑃 |1+
2

𝑁 log𝑞

+
∑
𝑙≥3

1
2𝑙

∑
deg(𝑃) ≤𝑁 /𝑙

(
𝜒(𝑃)𝑙 + 𝜒(𝑃)𝑙

)
(𝑁 − 𝑙 deg(𝑃))

𝑁 |𝑃 |
𝑙
2+

𝑙
𝑁 log𝑞

.

It is easy to see that the powers of primes with 𝑙 ≥ 3 contribute 𝑂 (1) to this expression. More precisely,
using the Prime Polynomial Theorem (2.1), we have∑

𝑙≥3

∑
deg(𝑃) ≤𝑁 /𝑙

(
𝜒(𝑃)𝑙 + 𝜒(𝑃)𝑙

)
(𝑁 − 𝑙 deg(𝑃))

2𝑙𝑁 |𝑃 |
𝑙
2+

𝑙
𝑁 log𝑞

≤
𝑁∑
𝑙=3

∑
𝑗≤𝑁 /𝑙

𝑞 𝑗 (𝑁 − 𝑙 𝑗)

𝑙 𝑗𝑁𝑞
𝑙 𝑗

(
1
2+

1
𝑁 log𝑞

)
≤ 1

𝑁

𝑁∑
ℎ=3

𝑁 − ℎ

ℎ𝑞
ℎ
(

1
2+

1
𝑁 log𝑞

) ∑
𝑗 |ℎ

𝑗≤ℎ/3

𝑞 𝑗 ≤ 1
𝑁

𝑁∑
ℎ=3

𝑁 − ℎ

ℎ𝑞
ℎ
(

1
2+

1
𝑁 log𝑞

) 𝑞ℎ/3𝜏(ℎ) ≤ 2
𝑁∑
ℎ=3

1

𝑞
ℎ
(

1
6+

1
𝑁 log𝑞

)√
ℎ

≤ 2
∞∑
ℎ=3

1
5 ℎ

6
√
ℎ
=: 𝜂 = 1.676972 . . . .

Then, for any 𝑘 > 0,

���𝐿 (
1
2 , 𝜒

)���𝑘 ≤ exp
⎧⎪⎪⎨⎪⎪⎩𝑘� ���

∑
deg(𝑃) ≤𝑁

𝜒(𝑃) (𝑁 − deg(𝑃))

𝑁 |𝑃 |
1
2+

1
𝑁 log𝑞

��� + 𝑘 (𝑔 + 2)
𝑁

+ 𝑘𝜂

+ 𝑘� ���
∑

deg(𝑃) ≤𝑁 /2

𝜒(𝑃) (𝑁 − 2 deg(𝑃))

2𝑁 |𝑃 |1+
2

𝑁 log𝑞

���
⎫⎪⎪⎬⎪⎪⎭ . (3.1)
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Similarly as in [27], we separate the sum over primes in 𝐽 + 1 sums over the intervals

𝐼0 = (0, (𝑔 + 2)𝜃0], 𝐼1 = ((𝑔 + 2)𝜃0, (𝑔 + 2)𝜃1], . . . , 𝐼𝐽 = ((𝑔 + 2)𝜃𝐽−1, (𝑔 + 2)𝜃𝐽 ], (3.2)

where for 0 ≤ 𝑗 ≤ 𝐽, we define

𝜃 𝑗 =
𝑒 𝑗

(log 𝑔)1000 , ℓ 𝑗 = 2
[
𝜃−𝑏𝑗

]
,

for some 0 < 𝑏 < 1. In view of equation (2.5), it is natural to use 𝑔 + 2 instead of g in the definition of
the intervals 𝐼 𝑗 .

We will choose J such that 𝜃𝐽 is a small positive constant. We discuss in Section 7 ex-
plicit upper bounds and how to choose 𝜃𝐽 . We remark that for a given choice of 𝜃𝐽 , we have
𝐽 =

[
log(log 𝑔)1000 + log 𝜃𝐽

]
. The power of 1000, together with the parameters chosen in Section

7, guarantees that J is positive for any 𝑔 ≥ 3.
For each interval 𝐼 𝑗 , we define

𝑃𝐼 𝑗 (𝜒; 𝑢) =
∑
𝑃∈𝐼 𝑗

𝑎(𝑃; 𝑢)𝜒(𝑃)√
|𝑃 |

,

where

𝑎(𝑃; 𝑢) = 1

|𝑃 |
1

(𝑔+2) 𝜃𝑢 log𝑞

(
1 − deg 𝑃

(𝑔 + 2)𝜃𝑢

)
,

for 0 ≤ 𝑢 ≤ 𝐽, and we extend this to a completely multiplicative function in the first variable. By 𝑃 ∈ 𝐼 𝑗 ,
we always mean that deg 𝑃 ∈ 𝐼 𝑗 .

In order to use Lemma 3.1 we need bounds for exp
(
�𝑃𝐼 𝑗 (𝜒; 𝑢)

)
on each interval 𝐼 𝑗 . Set 𝑡 ∈ R and

let ℓ be a positive even integer. Let

𝐸ℓ (𝑡) =
∑
𝑠≤ℓ

𝑡𝑠

𝑠!
. (3.3)

Note that 𝐸ℓ (𝑡) ≥ 1 if 𝑡 ≥ 0 and that 𝐸ℓ (𝑡) > 0, since ℓ is even. We also have that for 𝑡 ≤ ℓ/𝑒2,

𝑒𝑡 ≤
(
1 + 𝑒−ℓ/2

)
𝐸ℓ (𝑡). (3.4)

Let 𝜈( 𝑓 ) be the multiplicative function defined by 𝜈(𝑃𝑎) = 1
𝑎! , and let 𝜈 𝑗 ( 𝑓 ) = (𝜈 ∗ · · · ∗ 𝜈) ( 𝑓 ) be

the j-fold convolution of 𝜈. We then have 𝜈 𝑗 (𝑃𝑎) = 𝑗𝑎

𝑎! .
The following lemma gives a formula for the powers

(
�𝑃𝐼 𝑗 (𝜒; 𝑢)

)𝑠
, and will be used frequently in

the paper:

Lemma 3.2. Let 𝑎( 𝑓 ) be a completely multiplicative function from F𝑞 [𝑇] to C, and let I be some
interval. Define 𝑃𝐼 :=

∑
𝑃∈𝐼 𝑎(𝑃). Then for any integer s, we have

𝑃𝑠
𝐼 = 𝑠!

∑
𝑃 | 𝑓 ⇒𝑃∈𝐼
Ω( 𝑓 )=𝑠

𝑎( 𝑓 )𝜈( 𝑓 ),

(�𝑃𝐼 )𝑠 =
𝑠!
2𝑠

∑
𝑃 | 𝑓 ℎ⇒𝑃∈𝐼
Ω( 𝑓 ℎ)=𝑠

𝑎( 𝑓 )𝑎(ℎ)𝜈( 𝑓 )𝜈(ℎ).
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Proof. We have

𝑃𝑠
𝐼 =

∑
𝑃 | 𝑓 ⇒𝑃∈𝐼
Ω( 𝑓 )=𝑠

𝑎( 𝑓 )
∑

𝑃1 · · ·𝑃𝑠= 𝑓
1.

Note that if 𝑓 = 𝑄𝛼1
1 · · ·𝑄𝛼𝑟

𝑟 , then 𝑠 = 𝛼1 + · · · + 𝛼𝑟 , and

∑
𝑃1 · · ·𝑃𝑠= 𝑓

1 =

(
𝑠

𝛼1

) (
𝑠 − 𝛼1
𝛼2

)
· · ·

(
𝑠 − 𝛼1 − · · · − 𝛼𝑟−1

𝛼𝑟

)
=

𝑠!
𝛼1! · · · 𝛼𝑟 !

= 𝑠!𝜈( 𝑓 ),

so

𝑃𝑠
𝐼 = 𝑠!

∑
𝑃 | 𝑓 ⇒𝑃∈𝐼
Ω( 𝑓 )=𝑠

𝑎( 𝑓 )𝜈( 𝑓 ).

We also have

(�𝑃𝐼 )𝑠 =
1
2𝑠

𝑠∑
𝑟=0

(
𝑠

𝑟

) ∑
𝑃 | 𝑓 ℎ⇒𝑃∈𝐼 𝑗

Ω( 𝑓 )=𝑟
Ω(ℎ)=𝑠−𝑟

𝑎( 𝑓 )𝑎(ℎ)
∑

𝑓 =𝑃1 · · ·𝑃𝑟

1
∑

ℎ=𝑃1 · · ·𝑃𝑠−𝑟

1

=
1
2𝑠

𝑠∑
𝑟=0

(
𝑠

𝑟

) ∑
𝑃 | 𝑓 ℎ⇒𝑃∈𝐼 𝑗

Ω( 𝑓 )=𝑟
Ω(ℎ)=𝑠−𝑟

𝑎( 𝑓 )𝑎(ℎ)𝑟!𝜈( 𝑓 ) (𝑠 − 𝑟)!𝜈(ℎ)

=
𝑠!
2𝑠

∑
𝑃 | 𝑓 ℎ⇒𝑃∈𝐼 𝑗
Ω( 𝑓 ℎ)=𝑠

𝑎( 𝑓 )𝑎(ℎ)𝜈( 𝑓 )𝜈(ℎ). �

For 𝑗 ≤ 𝐽, and for any real number 𝑘 ≠ 0, let

𝐷 𝑗 ,𝑘 (𝜒) =
𝑗∏

𝑟=0

(
1 + 𝑒−ℓ𝑟 /2

)
𝐸ℓ𝑟

(
𝑘�𝑃𝐼𝑟 (𝜒; 𝑗)

)
. (3.5)

We remark that the weights are 𝑎(·; 𝑗) for all intervals 𝐼0, . . . , 𝐼 𝑗 in the formula for 𝐷 𝑗 ,𝑘 (𝜒). Note that
we have

𝐸ℓ𝑟

(
𝑘�𝑃𝐼𝑟 (𝜒; 𝑗)

)
=

∑
𝑠≤ℓ𝑟

(
𝑘�𝑃𝐼𝑟 (𝜒; 𝑗)

)𝑠
𝑠!

=
∑

𝑃 | 𝑓 ℎ⇒𝑃∈𝐼𝑟
Ω( 𝑓 ℎ) ≤ℓ𝑟

(𝑘/2)Ω( 𝑓 ℎ)𝑎( 𝑓 ; 𝑗)𝑎(ℎ; 𝑗)𝜒( 𝑓 )𝜒(ℎ)𝜈( 𝑓 )𝜈(ℎ)√
| 𝑓 ℎ|

, (3.6)

where we have used Lemma 3.2.
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We also define the following term, which corresponds to the sum over the square of primes in formula
(3.1):

𝑆 𝑗 ,𝑘 (𝜒) = exp ���𝑘� ���
∑

deg(𝑃) ≤(𝑔+2) 𝜃 𝑗/2

𝜒(𝑃)𝑏(𝑃; 𝑗)
|𝑃 |

������ , (3.7)

where

𝑏(𝑃; 𝑗) = 1

2|𝑃 |
2

(𝑔+2) 𝜃 𝑗 log𝑞

(
1 − 2 deg 𝑃

(𝑔 + 2)𝜃 𝑗

)
. (3.8)

Proposition 3.3. Let k be positive. For each 𝜒 a primitive cubic character of genus g, we have either

max
0≤𝑢≤𝐽

���𝑃𝐼0 (𝜒; 𝑢)
�� > ℓ0

𝑘𝑒2

or ���𝐿 (
1
2 , 𝜒

)���𝑘 ≤ exp(𝑘 (1/𝜃𝐽 + 𝜂))𝐷𝐽 ,𝑘 (𝜒)𝑆𝐽 ,𝑘 (𝜒)

+
∑

0≤ 𝑗≤𝐽−1
𝑗<𝑢≤𝐽

exp
(
𝑘

(
1/𝜃 𝑗 + 𝜂

) )
𝐷 𝑗 ,𝑘 (𝜒)𝑆 𝑗 ,𝑘 (𝜒)

(
𝑒2𝑘�𝑃𝐼 𝑗+1 (𝜒; 𝑢)

ℓ 𝑗+1

)𝑠 𝑗+1

,

for any 𝑠 𝑗 even integers and 𝜂 = 1.676972 . . . .

Proof. For 𝑟 = 0, 1, . . . , 𝐽, let

T𝑟 =

{
𝜒 primitive cubic, genus(𝜒) = 𝑔 : max

𝑟 ≤𝑢≤𝐽

���𝑃𝐼𝑟 (𝜒; 𝑢)
�� ≤ ℓ𝑟

𝑘𝑒2

}
. (3.9)

For each 𝜒 we have one of the following:

1. 𝜒 ∉ T0.
2. 𝜒 ∈ T𝑟 for each 𝑟 ≤ 𝐽.
3. There exists a 𝑗 < 𝐽 such that 𝜒 ∈ T𝑟 for 𝑟 ≤ 𝑗 and 𝜒 ∉ T 𝑗+1.

If the first condition is satisfied, then we are done. If not, assume that condition (2) is satisfied. Then in
formula (3.1) we take 𝑁 = (𝑔 + 2)𝜃𝐽 , and we get

���𝐿 (
1
2 , 𝜒

)���𝑘 ≤ exp(𝑘 (1/𝜃𝐽 + 𝜂))
𝐽∏
𝑗=0

exp
(
𝑘�𝑃𝐼 𝑗 (𝜒; 𝐽)

)
𝑆𝐽 ,𝑘 (𝜒)

≤ exp(𝑘 (1/𝜃𝐽 + 𝜂))𝐷𝐽 ,𝑘 (𝜒)𝑆𝐽 ,𝑘 (𝜒).

Now assume that condition (3) holds. Then there exist 𝑗 = 𝑗 (𝜒) and 𝑢 = 𝑢(𝜒) > 𝑗 = 𝑗 (𝜒) such that���𝑃𝐼 𝑗+1 (𝜒; 𝑢)
�� > ℓ 𝑗+1/

(
𝑘𝑒2) . We then have

1 ≤
(
𝑘𝑒2�𝑃𝐼 𝑗+1 (𝜒; 𝑢)

ℓ 𝑗+1

)𝑠 𝑗+1

,
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for any even integer 𝑠 𝑗+1, and taking 𝑁 = (𝑔 + 2)𝜃 𝑗 in formula (3.1) we get���𝐿 (
1
2 , 𝜒

)���𝑘 ≤ exp
(
𝑘

(
1/𝜃 𝑗 + 𝜂

) )
𝐷 𝑗 ,𝑘 (𝜒)𝑆 𝑗 ,𝑘 (𝜒)

(
𝑒2𝑘�𝑃𝐼 𝑗+1 (𝜒; 𝑢)

ℓ 𝑗+1

)𝑠 𝑗+1

.

Then, if (3) holds, we have���𝐿 (
1
2 , 𝜒

)���𝑘 ≤
∑

0≤ 𝑗≤𝐽−1
𝑗<𝑢≤𝐽

exp
(
𝑘

(
1/𝜃 𝑗 + 𝜂

) )
𝐷 𝑗 ,𝑘 (𝜒)𝑆 𝑗 ,𝑘 (𝜒)

(
𝑒2𝑘�𝑃𝐼 𝑗+1 (𝜒; 𝑢)

ℓ 𝑗+1

)𝑠 𝑗+1

, (3.10)

where in the bound of the right-hand side, j and u are independent of 𝜒. �

Remark 3.4. In this proof, we could have written max0≤ 𝑗≤𝐽−1
𝑗<𝑢≤𝐽

instead of
∑

0≤ 𝑗≤𝐽−1
𝑗<𝑢≤𝐽

in the bound (3.10).

However, this maximum depends on 𝜒, and in future applications of Proposition 3.3 we will need the
right-hand side to be independent of 𝜒 so that we can exchange the bound with a sum over all the
possible 𝜒.

3.2. The mollifier

Let 𝜅 be a positive real number, and define

𝑀 𝑗

(
𝜒; 1

𝜅

)
:= 𝐸ℓ 𝑗

(
− 1
𝜅 𝑃𝐼 𝑗 (𝜒; 𝐽)

)
=

∑
𝑃 | 𝑓 ⇒𝑃∈𝐼 𝑗
Ω( 𝑓 ) ≤ℓ 𝑗

𝑎( 𝑓 ; 𝐽)𝜒( 𝑓 )𝜆( 𝑓 )𝜈( 𝑓 )
𝜅Ω( 𝑓 )

√
| 𝑓 |

,

where 𝜆( 𝑓 ) is the Liouville function. We also define

𝑀
(
𝜒; 1

𝜅

)
=

𝐽∏
𝑗=0

𝑀 𝑗

(
𝜒; 1

𝜅

)
.

We have, for any positive integer n,

𝑀 𝑗

(
𝜒; 1

𝜅

)𝑛
=

∑
𝑃 | 𝑓 ⇒𝑃∈𝐼 𝑗
Ω( 𝑓 ) ≤𝑛ℓ 𝑗

𝑎( 𝑓 ; 𝐽)𝜒( 𝑓 )𝜆( 𝑓 )
𝜅Ω( 𝑓 )

√
| 𝑓 |

𝜈𝑛
(
𝑓 ; ℓ 𝑗

)
,

where

𝜈𝑛
(
𝑓 ; ℓ 𝑗

)
=

∑
𝑓 = 𝑓1 · · · · · 𝑓𝑛

Ω( 𝑓1) ≤ℓ 𝑗 ,...,Ω( 𝑓𝑛) ≤ℓ 𝑗

𝜈( 𝑓1) · · · 𝜈( 𝑓𝑛).

Then, taking 𝜅 such that 𝑘𝜅 is an even integer,���𝑀 𝑗

(
𝜒; 1

𝜅

)���𝑘𝜅
=

∑
𝑃 | 𝑓𝑗ℎ 𝑗⇒𝑃∈𝐼 𝑗

Ω( 𝑓𝑗)≤ 𝑘𝜅
2 ℓ 𝑗 ,Ω(ℎ 𝑗)≤ 𝑘𝜅

2 ℓ 𝑗

𝑎
(
𝑓 𝑗 ; 𝐽

)
𝑎

(
ℎ 𝑗 ; 𝐽

)
𝜒

(
𝑓 𝑗

)
𝜒

(
ℎ 𝑗

)
𝜆

(
𝑓 𝑗

)
𝜆

(
ℎ 𝑗

)
𝜅Ω( 𝑓𝑗ℎ 𝑗)

√�� 𝑓 𝑗ℎ 𝑗 �� 𝜈𝑘𝜅/2
(
𝑓 𝑗 ; ℓ 𝑗

)
𝜈𝑘𝜅/2

(
ℎ 𝑗 ; ℓ 𝑗

)
.

(3.11)
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We remark that the mollifier should be a Dirichlet polynomial approximating |𝐿( 1
2 , 𝜒) |

−1. Indeed, taking
𝜅 = 1 and k an even integer in the foregoing definition, we see that |𝑀 𝑗 (𝜒; 1) |𝑘 is a Dirichlet polynomial
on the interval 𝐼 𝑗 in view of formula (3.1), approximating the exponential with the finite sum 𝐸ℓ 𝑗 on
each interval (we do not claim that the finite sum is an upper bound, but it is close enough to work on
average) – that is, it is very close to equation (3.6), with the added Liouville function taking care of
the cancellation. Taking 𝜅 ≠ 1 allows us to mollify all moments, not just in the case when k is an even
integer, by taking the mollifier to be |𝑀 𝑗 (𝜒; 1

𝜅 ) |
𝑘𝜅 on each interval 𝐼 𝑗 as already defined. We remark

that for any 𝜅, the term with 𝑓 𝑗ℎ 𝑗 = 𝑃 in the Dirichlet series (3.11) is

− 𝑘

2
𝑎(𝑃, 𝐽) (𝜒(𝑃) + 𝜒(𝑃))

|𝑃 |1/2 ,

which is independent of 𝜅, and of the correct size to approximate
���𝐿 (

1
2 , 𝜒

)���−𝑘 .
Now we will introduce the main technical lemma that will be required to prove Theorem 1.6. We

postpone its proof until Section 4.

Lemma 3.5. Let 𝑗 = 0, . . . , 𝐽 − 1, 0 ≤ 𝑢 ≤ 𝐽 for (i) and 𝑗 < 𝑢 ≤ 𝐽 for (iii). Let 𝑠 𝑗 be an integer with
𝑎𝑘𝜅ℓ 𝑗 ≤ 𝑠 𝑗 ≤ 1

𝑑𝜃 𝑗
, where a and d are such that 𝑎 > 2, 𝑑 > 8, and 4𝑎𝑑𝜃1−𝑏

𝐽 ≤ 1, with 0 < 𝑏 < 1.
Then we have

(i)
∑

𝜒∈C(𝑔)

���𝑀 (
𝜒; 1

𝜅

)���2𝑘𝜅 (
�𝑃𝐼0 (𝜒; 𝑢)

)2𝑠0 ≤𝜀 2𝑞𝑔+2𝑒𝑘
2𝐽𝐻 (0)

( ∑
𝑃∈𝐼0

1
|𝑃 |

)𝑠0
(

5
3

) (2−4/𝑎)𝑠0/3
(2𝑠0)!

4𝑠0

⌊
(2−4/𝑎)𝑠0

3

⌋
!

,

(ii)
∑

𝜒∈C(𝑔)
𝐷𝐽 ,𝑘 (𝜒)2

���𝑀 (
𝜒; 1

𝜅

)���2𝑘𝜅 ≤𝜀 𝑞𝑔+2D𝑘𝐶 (𝑘),

(iii)
∑

𝜒∈C(𝑔)
𝐷 𝑗 ,𝑘 (𝜒)2

(
�𝑃𝐼 𝑗+1 (𝜒; 𝑢)

)2𝑠 𝑗+1
���𝑀 (

𝜒; 1
𝜅

)���2𝑘𝜅 ≤𝜀 2𝑞𝑔+2D𝑘𝐶 (𝑘) exp
(
𝑘2 + 2𝑘

)
× 𝑒𝑘

2 (𝐽− 𝑗−1) ���
∑

𝑃∈𝐼 𝑗+1

1
|𝑃 |

���
𝑠 𝑗+1

(
5
3

) (2−4/𝑎)𝑠 𝑗+1/3 (
2𝑠 𝑗+1

)
!

4𝑠 𝑗+1
⌊
(2−4/𝑎)𝑠 𝑗+1

3

⌋
!

,

where D𝑘 is given in equation (4.15), 𝐻 (0) is bounded by formula (4.21) and 𝐶 (𝑘) is a constant
satisfying 𝐶 (2) = 𝑒𝑒

15 .

3.3. Averages over the family

Lemma 3.6. Let 𝐼0, 𝐼1, . . . , 𝐼𝐽 be intervals such that 𝐼0 = (0, (𝑔 + 2)𝜃0], 𝐼1 = ((𝑔 + 2)𝜃0, (𝑔 +
2)𝜃1], . . . , 𝐼𝐽 = ((𝑔 + 2)𝜃𝐽−1, (𝑔 + 2)𝜃𝐽 ]. Let 𝐵,𝐶, 𝑏 and c be any functions supported on F𝑞 [𝑇].
Suppose 𝑠 𝑗 and ℓ 𝑗 are nonnegative integers for 𝑗 = 0, . . . , 𝐽 such that

2
𝐽∑
𝑗=0

𝜃 𝑗 𝑠 𝑗 + 3
𝐽∑
𝑗=0

𝜃 𝑗ℓ 𝑗 ≤ 1/2. (3.12)
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Then we have

∑
𝑅∈M𝑞2 ,𝑔/2+1

𝐽∏
𝑗=0

∑
𝑃 |𝐹𝑗𝐻 𝑗⇒𝑃∈𝐼 𝑗
𝑃 | 𝑓𝑗ℎ 𝑗⇒𝑃∈𝐼 𝑗
Ω(𝐹𝑗𝐻 𝑗)≤𝑠 𝑗
Ω( 𝑓𝑗)≤ℓ 𝑗
Ω(ℎ 𝑗)≤ℓ 𝑗

𝐵
(
𝐹𝑗

)
𝐶

(
𝐻 𝑗

)
𝑏

(
𝑓 𝑗

)
𝑐

(
ℎ 𝑗

)
𝜒𝑅

(
𝐹𝑗𝐻

2
𝑗 𝑓 𝑗ℎ

2
𝑗

)

= 𝑞𝑔+2
𝐽∏
𝑗=0

∑
𝑃 |𝐹𝑗𝐻 𝑗⇒𝑃∈𝐼 𝑗
𝑃 | 𝑓𝑗ℎ 𝑗⇒𝑃∈𝐼 𝑗
Ω(𝐹𝑗𝐻 𝑗)≤𝑠 𝑗
Ω( 𝑓𝑗)≤ℓ 𝑗
Ω(ℎ 𝑗)≤ℓ 𝑗

𝐹𝑗𝐻
2
𝑗 𝑓𝑗ℎ

2
𝑗=

𝐵
(
𝐹𝑗

)
𝐶

(
𝐻 𝑗

)
𝑏

(
𝑓 𝑗

)
𝑐

(
ℎ 𝑗

) 𝜙𝑞2

(
𝐹𝑗𝐻

2
𝑗 𝑓 𝑗ℎ

2
𝑗

)���𝐹𝑗𝐻
2
𝑗 𝑓 𝑗ℎ

2
𝑗

���
𝑞2

.

Remark 3.7. We will also use this lemma in slightly different cases. We will allow the following
variations:

◦ The condition Ω
(
𝐹𝑗𝐻 𝑗

)
≤ 𝑠 𝑗 is replaced by Ω

(
𝐹𝑗𝐻 𝑗

)
= 𝑠 𝑗 .

◦ The condition 𝑃 | 𝐹𝑗𝐻 𝑗 ⇒ 𝑃 ∈ 𝐼 𝑗 is replaced by 𝑃 | 𝐹𝑗𝐻 𝑗 ⇒ deg(𝑃) = 𝑚 𝑗 , where 𝑚 𝑗 is a fixed
element in 𝐼 𝑗 .

These variations will happen for some values of j and may happen both at the same time. In all cases,
the results are analogous.

Proof. Expanding the left-hand side of the equation obtained and exchanging the order of summation,
we need to evaluate sums of the form

∑
𝑅∈M𝑞2 ,𝑔/2+1

𝜒𝑅
���

𝐽∏
𝑗=0

𝐹𝑗𝐻
2
𝑗 𝑓 𝑗ℎ

2
𝑗
��� =

∑
𝑅∈M𝑞2 ,𝑔/2+1

𝜒∏𝐽
𝑗=0 𝐹𝑗𝐻

2
𝑗 𝑓𝑗ℎ

2
𝑗
(𝑅),

since 𝑞2 ≡ 1 (mod 6), and we have cubic reciprocity over F𝑞2 [𝑇]. If
∏𝐽

𝑗=0 𝐹𝑗𝐻
2
𝑗 𝑓 𝑗ℎ

2
𝑗 ≠ , then

𝐽∑
𝑗=0

deg
(
𝐹𝑗𝐻

2
𝑗 𝑓 𝑗ℎ

2
𝑗

)
≤ (𝑔 + 2) ���2

𝐽∑
𝑗=0

𝜃 𝑗 𝑠 𝑗 + 3
𝐽∑
𝑗=0

𝜃 𝑗ℓ 𝑗
��� ≤ (𝑔 + 2)/2 = deg(𝑅),

and the character sum vanishes. We are then left with the contribution of those terms with∏𝐽
𝑗=0 𝐹𝑗𝐻

2
𝑗 𝑓 𝑗ℎ

2
𝑗 = . Since 𝐹𝑗𝐻

2
𝑗 𝑓 𝑗ℎ

2
𝑗 is only divisible by primes in 𝐼 𝑗 and the intervals 𝐼 𝑗 are dis-

joint, it follows that we must have 𝐹𝑗𝐻
2
𝑗 𝑓 𝑗ℎ

2
𝑗 = for each 𝑗 ≤ 𝐽. For any 𝑐 ∈ F𝑞2 [𝑇], 𝑐 = and

deg 𝑐 ≤ 𝑔/2 + 1, we have

∑
𝑅∈M𝑞2 ,𝑔/2+1

𝜒𝑅 (𝑐) =
∑

𝑑∈M𝑞2
𝑑 |𝑐

𝜇(𝑑)
∑

𝑅∈M𝑞2 ,𝑔/2+1
𝑑 |𝑅

1 = 𝑞𝑔+2
∑

𝑑∈M𝑞2
𝑑 |𝑐

𝜇(𝑑)𝑞−2 deg 𝑑 = 𝑞𝑔+2 𝜙𝑞2 (𝑐)
|𝑐 |𝑞2

,

and using 𝑐 =
∏𝐽

𝑗=0 𝐹𝑗𝐻
2
𝑗 𝑓 𝑗ℎ

2
𝑗 , the conclusion follows. �
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3.4. Proof of Theorem 1.6

Proof. We write∑
𝜒∈C(𝑔)

���𝐿 (
1
2 , 𝜒

)���𝑘 ���𝑀 (
𝜒; 1

𝜅

)���𝑘𝜅 =
∑

𝜒∈C(𝑔)∩T0

���𝐿 (
1
2 , 𝜒

)���𝑘 ���𝑀 (
𝜒; 1

𝜅

)���𝑘𝜅 + ∑
𝜒∈C(𝑔)\T0

���𝐿 (
1
2 , 𝜒

)���𝑘 ���𝑀 (
𝜒; 1

𝜅

)���𝑘𝜅 ,
(3.13)

where T𝑟 is defined in equation (3.9). We first focus on the second term. Since 𝜒 ∉ T0, there exists
𝑢 = 𝑢(𝜒) such that 0 ≤ 𝑢 ≤ 𝐽 and ���𝑃𝐼0 (𝜒; 𝑢)

�� > ℓ0

𝑘𝑒2 .

Choosing 𝑠0 even and multiplying by ( 𝑘𝑒
2�𝑃𝐼0 (𝜒;𝑢)

ℓ0
)𝑠0 > 1, completing the sum for all 𝜒 ∈ C(𝑔) (since

all the involved terms are positive) and applying Cauchy–Schwarz, we obtain

𝐽∑
𝑢=0

∑
𝜒∈C(𝑔)\T0
𝑢 (𝜒)=𝑢

���𝐿 (
1
2 , 𝜒

)���𝑘 ���𝑀 (
𝜒; 1

𝜅

)���𝑘𝜅 ≤
𝐽∑

𝑢=0

∑
𝜒∈C(𝑔)

���𝐿 (
1
2 , 𝜒

)���𝑘 ���𝑀 (
𝜒; 1

𝜅

)���𝑘𝜅 (
𝑘𝑒2�𝑃𝐼0 (𝜒; 𝑢)

ℓ0

)𝑠0

≤ 𝐽1/2 ���
∑

𝜒∈C(𝑔)

���𝐿 (
1
2 , 𝜒

)���2𝑘���
1/2 ���

𝐽∑
𝑢=0

∑
𝜒∈C(𝑔)

(
𝑘𝑒2

ℓ0

)2𝑠0 ���𝑀 (
𝜒; 1

𝜅

)���2𝑘𝜅 (
�𝑃𝐼0 (𝜒; 𝑢)

)2𝑠0���
1/2

, (3.14)

where we choose 𝑠0 to be an even integer such that

𝑎𝑘𝜅ℓ0 ≤ 𝑠0 ≤ 1
𝑑𝜃0

,

with a and d as in Lemma 3.5.
For the first sum in formula (3.14), we have an upper bound of size 𝑞𝑔/2𝑔𝑂 (1) using Lemma 6.1. We

aim to obtain some saving from the second sum. Using Lemma 3.5(i) and Stirling’s formula, we get, for
𝑐 = 2 − 4/𝑎,

���
𝐽∑

𝑢=0

∑
𝜒∈C(𝑔)

(
𝑘𝑒2

ℓ0

)2𝑠0 ���𝑀 (
𝜒; 1

𝜅

)���2𝑘𝜅 (
�𝑃𝐼0 (𝜒; 𝑢)

)2𝑠0���
1/2

� 𝑞𝑔/2𝑔𝑂 (1)

(
𝑘𝑒1+𝑐/6𝜃𝑏0 𝑠

1−𝑐/6
0 5𝑐/6

2𝑐𝑐/6

)𝑠0

(log 𝑔)𝑠0/2

� 𝑞𝑔/2

𝑞 (log 𝑔) 𝛿
� 𝑞𝑔/2

𝑔𝐴

for 𝛿 > 1 and all 𝐴 ≥ 1, where the last line is obtained by setting 𝑠0 = 2[𝑎𝑘𝜅ℓ0/2] + 2. We also used
the bound (4) for 𝐻 (0) from Lemma 3.5(i) in the second line. Replacing the two estimates in formula
(3.14), we get ∑

𝜒∈C(𝑔)\T0

���𝐿 (
1
2 , 𝜒

)���𝑘 ���𝑀 (
𝜒; 1

𝜅

)���𝑘𝜅 = 𝑜(𝑞𝑔),

and the sum over the characters 𝜒 ∉ T0 does not contribute to the sharp upper bound.
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For the first sum of equation (3.13) over the characters 𝜒 ∈ T0, we use Proposition 3.3. As before,
we first bound the sum by the completed sum over all 𝜒 ∈ C(𝑔), since all the extra terms are positive.
We have∑

𝜒∈C(𝑔)∩T0

���𝐿 (
1
2 , 𝜒

)���𝑘 ���𝑀 (
𝜒; 1

𝜅

)���𝑘𝜅 ≤ exp(𝑘 (1/𝜃𝐽 + 𝜂))
∑

𝜒∈C(𝑔)
𝐷𝐽 ,𝑘 (𝜒)𝑆𝐽 ,𝑘 (𝜒)

���𝑀 (
𝜒; 1

𝜅

)���𝑘𝜅
+

∑
0≤ 𝑗≤𝐽−1
𝑗<𝑢≤𝐽

exp
(
𝑘

(
1/𝜃 𝑗 + 𝜂

) ) ∑
𝜒∈C(𝑔)

𝐷 𝑗 ,𝑘 (𝜒)𝑆 𝑗 ,𝑘 (𝜒)
(
𝑘𝑒2�𝑃𝐼 𝑗+1 (𝜒; 𝑢)

ℓ 𝑗+1

)𝑠 𝑗+1 ���𝑀 (
𝜒; 1

𝜅

)���𝑘𝜅 , (3.15)

where 𝑠 𝑗+1 is even.
Using Cauchy–Schwarz, we write

∑
𝜒∈C(𝑔)

𝐷𝐽 ,𝑘 (𝜒)𝑆𝐽 ,𝑘 (𝜒)
���𝑀 (

𝜒; 1
𝜅

)���𝑘𝜅 ≤ ���
∑

𝜒∈C(𝑔)
𝐷𝐽 ,𝑘 (𝜒)2

���𝑀 (
𝜒; 1

𝜅

)���2𝑘𝜅���
1/2 ���

∑
𝜒∈C(𝑔)

𝑆𝐽 ,𝑘 (𝜒)2���
1/2

,

(3.16)

and similarly,

∑
𝜒∈C(𝑔)

𝐷 𝑗 ,𝑘 (𝜒)𝑆 𝑗 ,𝑘 (𝜒)
(
𝑘𝑒2�𝑃𝐼 𝑗+1 (𝜒; 𝑢)

ℓ 𝑗+1

)𝑠 𝑗+1 ���𝑀 (
𝜒; 1

𝜅

)���𝑘𝜅
≤ ���

∑
𝜒∈C(𝑔)

𝐷 𝑗 ,𝑘 (𝜒)2

(
𝑘𝑒2�𝑃𝐼 𝑗+1 (𝜒; 𝑢)

ℓ 𝑗+1

)2𝑠 𝑗+1 ���𝑀 (
𝜒; 1

𝜅

)���2𝑘𝜅���
1/2 ���

∑
𝜒∈C(𝑔)

𝑆 𝑗 ,𝑘 (𝜒)2���
1/2

. (3.17)

To bound formula (3.16), we use Lemmas 3.5(ii) and 5.1, which give∑
𝜒∈C(𝑔)

𝐷𝐽 ,𝑘 (𝜒)𝑆𝐽 ,𝑘 (𝜒)
���𝑀 (

𝜒; 1
𝜅

)���𝑘𝜅 ≤ 𝑞𝑔+2D1/2
𝑘 𝐶 (𝑘)1/2S1/2

𝑘 . (3.18)

Similarly, to bound formula (3.17) we use Lemmas 3.5(iii) and 5.1. When we bound the first term
in formula (3.17) with Lemma 3.5(iii), we use Stirling’s formula and note that the sum over primes is
bounded by log

(
𝜃 𝑗+1/𝜃 𝑗

)
= 1. Now we pick 𝑠 𝑗+1 = 2

[
1/

(
2𝑑𝜃 𝑗+1

) ]
, and then when 𝑔 → ∞, we have

∑
𝜒∈C(𝑔)

𝐷 𝑗 ,𝑘 (𝜒)2

(
𝑘𝑒2�𝑃𝐼 𝑗+1 (𝜒; 𝑢)

ℓ 𝑗+1

)2𝑠 𝑗+1 ���𝑀 (
𝜒; 1

𝜅

)���2𝑘𝜅
≤𝜀

2
√

6
√
𝑐
𝑞𝑔+2D𝑘𝐶 (𝑘) exp

(
𝑘2 + 2𝑘

)
𝑒𝑘

2 (𝐽− 𝑗−1) ���
𝑘2𝑒2+𝑐/3𝜃2𝑏

𝑗+1𝑠
2−𝑐/3
𝑗+1 5𝑐/3

4𝑐𝑐/3
���
𝑠 𝑗+1

=
2
√

6
√
𝑐
𝑞𝑔+2D𝑘𝐶 (𝑘) exp

(
𝑘2 + 2𝑘

)
exp

(
𝑘2 (𝐽 − 𝑗 − 1) +

𝛼 log 𝜃 𝑗+1

𝑑𝜃 𝑗+1
+ log 𝐹

𝑑𝜃 𝑗+1

)
, (3.19)

where

𝛼 = 2𝑏 − 2 + 𝑐

3
, 𝐹 =

𝑘2𝑒2+𝑐/35𝑐/3

4𝑑2−𝑐/3𝑐𝑐/3 ,
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with 𝑐 = 2 − 4/𝑎 and a and d as in Lemma 3.5. We now replace in formula (3.17), and using Lemma
5.1, the sum over 𝑗 , 𝑢, 𝜒 in formula (3.15) is bounded by

exp(𝑘𝜂)
(

2
√

6
√
𝑐
D𝑘𝐶 (𝑘) exp

(
𝑘2 + 2𝑘

)
S𝑘

)1/2

𝐶𝐽 𝑞
𝑔+2,

where

𝐶𝐽 :=
∑

0≤ 𝑗≤𝐽−1
𝑗<𝑢≤𝐽

exp
(
𝑘

𝜃 𝑗
+ 𝑘2 (𝐽 − 𝑗 − 1)

2
+
𝛼 log 𝜃 𝑗+1

2𝑑𝜃 𝑗+1
+ log 𝐹

2𝑑𝜃 𝑗+1

)

=
∑

0≤ 𝑗≤𝐽−1
(𝐽 − 𝑗) exp

(
𝑘

𝜃 𝑗
+ 𝑘2 (𝐽 − 𝑗 − 1)

2
+
𝛼 log 𝜃 𝑗+1

2𝑑𝜃 𝑗+1
+ log 𝐹

2𝑑𝜃 𝑗+1

)
=

∑
0≤𝑢≤𝐽−1

(𝑢 + 1) exp
(
𝑘𝑒𝑢+1

𝜃𝐽
+ 𝑘2𝑢

2
− 𝛼𝑢𝑒𝑢

2𝑑𝜃𝐽
+ 𝛼𝑒𝑢 log 𝜃𝐽

2𝑑𝜃𝐽
+ 𝑒𝑢 log 𝐹

2𝑑𝜃𝐽

)
= 𝑂 (1). (3.20)

Now using also formula (3.18) and the fact that the characters in T0 do not contribute to the upper bound,
we finally have

∑
𝜒∈C(𝑔)

���𝐿 (
1
2 , 𝜒

)���𝑘 ���𝑀 (
𝜒; 1

𝜅

)���𝑘𝜅 ≤𝜀 D1/2
𝑘 𝐶 (𝑘)1/2S1/2

𝑘 exp
(
𝑘2

2
+ (1 + 𝜂)𝑘

)
(3.21)

×
(
exp(𝑘/𝜃𝐽 ) +

4

√
24
𝑐

𝐶𝐽

)
𝑞𝑔+2. (3.22)

This completes the proof of Theorem 1.6. In Section 7 we find an explicit numerical value for the
constant in the upper bound (3.21) when 𝑘 = 2, which depends on the bound for 𝐶𝐽 . �

4. Proof of Lemma 3.5

Proof. Following [2, 13], the sum over 𝜒 ∈ C(𝑔) can be rewritten as the sum over the cubic residue
symbols 𝜒𝑅, for monic square-free polynomials 𝑅 ∈ F𝑞2 [𝑇] of degree 𝑔/2 + 1, with the property that if
𝑃 | 𝑅, then 𝑃 ∉ F𝑞 [𝑇]. Since all the summands in the foregoing expressions are positive, we first bound
the sums over 𝜒 ∈ C(𝑔) by the sum over all 𝑅 ∈ M𝑞2 ,𝑔/2+1.

We prove the last upper bound; the first two are just simpler cases of that one. We note that 𝐷 𝑗 ,𝑘 (𝜒)2

contributes primes from the intervals 𝐼0, . . . , 𝐼 𝑗 , �𝑃𝐼 𝑗+1 (𝜒; 𝑢) contributes primes from 𝐼 𝑗+1 and the
mollifier contributes primes from all the intervals 𝐼0, . . . , 𝐼𝐽 . To prove (iii), we have to bound

∑
𝑅∈M𝑞2 ,𝑔/2+1

𝑗∏
𝑟=0

(
1 + 𝑒−ℓ𝑟 /2

)2
E𝑅 (𝑟) × E𝑅 ( 𝑗 + 1) ×

𝐽∏
𝑟= 𝑗+2

E𝑅 (𝑟), (4.1)
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where the E𝑅 (𝑟) are defined as follows. For 𝑟 = 0, . . . , 𝑗 ,

E𝑅 (𝑟) =
∑

𝑃 | 𝑓𝑟ℎ𝑟𝐹𝑟1𝐹𝑟2𝐻𝑟1𝐻𝑟2⇒𝑃∈𝐼𝑟
Ω(𝐹𝑟1𝐻𝑟1) ≤ℓ𝑟
Ω(𝐹𝑟2𝐻𝑟2) ≤ℓ𝑟
Ω( 𝑓𝑟 ) ≤(𝑘 ·𝜅)ℓ𝑟
Ω(ℎ𝑟 ) ≤(𝑘 ·𝜅)ℓ𝑟

(𝑘/2)Ω(𝐹𝑟1𝐹𝑟2𝐻𝑟1𝐻𝑟2)𝑎(𝐹𝑟1𝐹𝑟2𝐻𝑟1𝐻𝑟2; 𝑗)𝜈(𝐹𝑟1)𝜈(𝐹𝑟2)𝜈(𝐻𝑟1)𝜈(𝐻𝑟2)
𝜅Ω( 𝑓𝑟 ℎ𝑟 )

√
| 𝑓𝑟 ℎ𝑟𝐹𝑟1𝐹𝑟2𝐻𝑟1𝐻𝑟2 |

× 𝑎( 𝑓𝑟 ℎ𝑟 ; 𝐽)𝜆( 𝑓𝑟 ℎ𝑟 )𝜈𝑘𝜅 ( 𝑓𝑟 ; ℓ𝑟 )𝜈𝑘𝜅 (ℎ𝑟 ; ℓ𝑟 )𝜒𝑅
(
𝑓𝑟 ℎ

2
𝑟𝐹𝑟1𝐹𝑟2𝐻

2
𝑟1𝐻

2
𝑟2

)
.

For 𝑟 = 𝑗 + 1,

E𝑅 (𝑟) =
(2𝑠𝑟 )!

4𝑠𝑟

×
∑

𝑃 | 𝑓𝑟ℎ𝑟𝐹𝑟𝐻𝑟⇒𝑃∈𝐼𝑟
Ω(𝐹𝑟𝐻𝑟 )=2𝑠𝑟
Ω( 𝑓𝑟 ) ≤(𝑘 ·𝜅)ℓ𝑟
Ω(ℎ𝑟 ) ≤(𝑘 ·𝜅)ℓ𝑟

𝑎(𝐹𝑟𝐻𝑟 ; 𝑢)𝜈(𝐹𝑟 )𝜈(𝐻𝑟 )𝑎( 𝑓𝑟 ℎ𝑟 ; 𝐽)𝜆( 𝑓𝑟 ℎ𝑟 )𝜈𝑘𝜅 ( 𝑓𝑟 ; ℓ𝑟 )𝜈𝑘𝜅 (ℎ𝑟 ; ℓ𝑟 )𝜒𝑅
(
𝑓𝑟 ℎ

2
𝑟𝐹𝑟𝐻

2
𝑟

)
𝜅Ω( 𝑓𝑟 ℎ𝑟 )

√
| 𝑓𝑟𝐹𝑟 ℎ𝑟𝐻𝑟 |

.

For 𝑟 = 𝑗 + 2, . . . , 𝐽,

E𝑅 (𝑟) =
∑

𝑃 | 𝑓𝑟ℎ𝑟⇒𝑃∈𝐼𝑟
Ω( 𝑓𝑟 ) ≤(𝑘 ·𝜅)ℓ𝑟
Ω(ℎ𝑟 ) ≤(𝑘 ·𝜅)ℓ𝑟

𝑎( 𝑓𝑟 ℎ𝑟 ; 𝐽)𝜆( 𝑓𝑟 ℎ𝑟 )𝜈𝑘𝜅 ( 𝑓𝑟 ; ℓ𝑟 )𝜈𝑘𝜅 (ℎ𝑟 ; ℓ𝑟 )𝜒𝑅
(
𝑓𝑟 ℎ

2
𝑟

)
𝜅Ω( 𝑓𝑟 ℎ𝑟 )

√
| 𝑓𝑟 ℎ𝑟 |

.

For 𝜃𝐽 small enough (depending on 𝑑, 𝑘, 𝜅), note that we can apply Lemma 3.6 to evaluate formula
(4.1), because from our choice of parameters, we have, for any 𝑗 ≤ 𝐽 − 1,

4
∑
𝑟 ≤ 𝑗

𝜃𝑟ℓ𝑟 + 4𝜃 𝑗+1𝑠 𝑗+1 + 3
𝐽∑
𝑟=0

𝜃𝑟 𝑘𝜅ℓ𝑟 ≤ 1/2. (4.2)

We then obtain that formula (4.1) is bounded by

𝑞𝑔+2 ���
𝑗∏

𝑟=0

(
1 + 𝑒−ℓ𝑟 /2

)2
𝐸 (𝑟) × 𝐸 ( 𝑗 + 1) ×

𝐽∏
𝑟= 𝑗+2

𝐸 (𝑟)��� , (4.3)

where the 𝐸 (𝑟) are the factors obtained after doing the average over R from Lemma 3.6. We proceed to
address the three cases, depending on the value of r.

For 𝑟 = 0, . . . , 𝑗 , we have

𝐸 (𝑟) =
∑

𝑃 | 𝑓𝑟ℎ𝑟𝐹𝑟1𝐹𝑟2𝐻𝑟1𝐻𝑟2⇒𝑃∈𝐼𝑟
Ω(𝐹𝑟1𝐻𝑟1) ≤ℓ𝑟
Ω(𝐹𝑟2𝐻𝑟2) ≤ℓ𝑟
Ω( 𝑓𝑟 ) ≤(𝑘 ·𝜅)ℓ𝑟
Ω(ℎ𝑟 ) ≤(𝑘 ·𝜅)ℓ𝑟

𝑓𝑟 ℎ
2
𝑟𝐹𝑟1𝐹𝑟2𝐻

2
𝑟1𝐻

2
𝑟2=

(𝑘/2)Ω(𝐹𝑟1𝐹𝑟2𝐻𝑟1𝐻𝑟2)𝑎(𝐹𝑟1𝐹𝑟2𝐻𝑟1𝐻𝑟2; 𝑗)𝜈(𝐹𝑟1)𝜈(𝐹𝑟2)𝜈(𝐻𝑟1)𝜈(𝐻𝑟2)
𝜅Ω( 𝑓𝑟 ℎ𝑟 )

√
| 𝑓𝑟 ℎ𝑟𝐹𝑟1𝐹𝑟2𝐻𝑟1𝐻𝑟2 |

× 𝑎( 𝑓𝑟 ℎ𝑟 ; 𝐽)𝜆( 𝑓𝑟 ℎ𝑟 )𝜈𝑘𝜅 ( 𝑓𝑟 ; ℓ𝑟 )𝜈𝑘𝜅 (ℎ𝑟 ; ℓ𝑟 )
𝜙𝑞2

(
𝑓𝑟 ℎ

2
𝑟𝐹𝑟1𝐹𝑟2𝐻

2
𝑟1𝐻

2
𝑟2

)�� 𝑓𝑟 ℎ2
𝑟𝐹𝑟1𝐹𝑟2𝐻

2
𝑟1𝐻

2
𝑟2

��
𝑞2

.

https://doi.org/10.1017/fms.2021.62 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2021.62


22 Chantal David et al.

Notice that if max{Ω( 𝑓𝑟 ),Ω(ℎ𝑟 ),Ω(𝐹𝑟1𝐻𝑟1),Ω(𝐹𝑟2𝐻𝑟2)} ≥ ℓ𝑟 , we have 2Ω( 𝑓𝑟 ℎ𝑟𝐹𝑟1𝐻𝑟1𝐹𝑟2𝐻𝑟2) ≥ 2ℓ𝑟 .
We write 𝐹𝑟 = 𝐹𝑟1𝐹𝑟2, 𝐻𝑟 = 𝐻𝑟1𝐻𝑟2, and we recall that 𝜈2(𝐹𝑟 ) = (𝜈 ∗ 𝜈) (𝐹𝑟 ). We have

𝐸 (𝑟) ≤
∑

𝑃 | 𝑓𝑟ℎ𝑟𝐹𝑟𝐻𝑟⇒𝑃∈𝐼𝑟
𝑓𝑟 ℎ

2
𝑟𝐹𝑟𝐻

2
𝑟 =

(𝑘/2)Ω(𝐹𝑟𝐻𝑟 )𝑎(𝐹𝑟𝐻𝑟 ; 𝑗)𝜈2(𝐹𝑟 )𝜈2(𝐻𝑟 )𝑎( 𝑓𝑟 ℎ𝑟 ; 𝐽)𝜆( 𝑓𝑟 ℎ𝑟 )𝜈𝑘𝜅 ( 𝑓𝑟 )𝜈𝑘𝜅 (ℎ𝑟 )𝜙𝑞2
(
𝑓𝑟 ℎ

2
𝑟𝐹𝑟𝐻

2
𝑟

)
𝜅Ω( 𝑓𝑟 ℎ𝑟 )

√
| 𝑓𝑟𝐹𝑟 ℎ𝑟𝐻𝑟 |

�� 𝑓𝑟 ℎ2
𝑟𝐹𝑟𝐻

2
𝑟

��
𝑞2

+ 1
2ℓ𝑟

∑
𝑃 | 𝑓𝑟 ℎ𝑟𝐹𝑟𝐻𝑟⇒𝑃∈𝐼𝑟

𝑓𝑟 ℎ
2
𝑟𝐹𝑟𝐻

2
𝑟 =

2Ω( 𝑓𝑟ℎ𝑟𝐹𝑟𝐻𝑟 ) (𝑘/2)Ω(𝐹𝑟𝐻𝑟 )𝜈2(𝐹𝑟 )𝜈2(𝐻𝑟 )𝜈𝑘𝜅 ( 𝑓𝑟 )𝜈𝑘𝜅 (ℎ𝑟 )
𝜅Ω( 𝑓𝑟 ℎ𝑟 )

√
| 𝑓𝑟 ℎ𝑟𝐹𝑟𝐻𝑟 |

, (4.4)

where we have used the bounds 𝜙𝑞2
(
𝑓𝑟 ℎ

2
𝑟𝐹𝑟𝐻

2
𝑟

)
/
�� 𝑓𝑟 ℎ2

𝑟𝐹𝑟𝐻
2
𝑟

��
𝑞2 , 𝜆( 𝑓𝑟 ℎ𝑟 ), 𝜈(𝐹𝑟 ), 𝜈(𝐻𝑟 ) ≤ 1,

𝑎(𝐹𝑟𝐻𝑟 ; 𝑗), 𝑎( 𝑓𝑟 ℎ𝑟 ; 𝐽) ≤ 1 in the second term. Now using the facts that 𝜈𝑘𝜅 ( 𝑓𝑟 ) ≤ (𝑘𝜅)Ω( 𝑓𝑟 ) and
𝜈2 (𝐹𝑟 ) ≤ 2Ω(𝐹𝑟 ) , we get that the second term in formula (4.4) is

≤ 1
2ℓ𝑟

∑
𝑃 | 𝑓𝑟ℎ𝑟𝐹𝑟𝐻𝑟⇒𝑃∈𝐼𝑟

𝑓𝑟 ℎ
2
𝑟𝐹𝑟𝐻

2
𝑟 =

(2𝑘)Ω( 𝑓𝑟ℎ𝑟𝐹𝑟𝐻𝑟 )√
| 𝑓𝑟 ℎ𝑟𝐹𝑟𝐻𝑟 |

. (4.5)

Now write ( 𝑓𝑟 , ℎ𝑟 ) = 𝑋 and (𝐹𝑟 , 𝐻𝑟 ) = 𝑌 and let 𝑓𝑟 = 𝑓𝑟 ,0𝑋 , ℎ𝑟 = ℎ𝑟 ,0𝑋 , 𝐹𝑟 = 𝐹𝑟 ,0𝑌 and
𝐻𝑟 = 𝐻𝑟 ,0𝑌 . Then 𝑓𝑟 ,0ℎ

2
𝑟 ,0𝐹𝑟 ,0𝐻

2
𝑟 ,0 = . Write

(
𝑓𝑟 ,0, 𝐻𝑟 ,0

)
= 𝑆 and

(
ℎ𝑟 ,0, 𝐹𝑟 ,0

)
= 𝑇 , and write

𝑓𝑟 ,0 = 𝑓𝑟 ,1𝑆, ℎ𝑟 ,0 = ℎ𝑟 ,1𝑇 , 𝐹𝑟 ,0 = 𝐹𝑟 ,1𝑇 and 𝐻𝑟 ,0 = 𝐻𝑟 ,1𝑆. Then 𝑓𝑟 ,1ℎ
2
𝑟 ,1𝐹𝑟 ,1𝐻

2
𝑟 ,1 = with(

𝑓𝑟 ,1𝐹𝑟 ,1, ℎ𝑟 ,1𝐻𝑟 ,1
)
= 1, and it follows that 𝑓𝑟 ,1𝐹𝑟 ,1 = , ℎ𝑟 ,1𝐻𝑟 ,1 = . Let

(
𝑓𝑟 ,1, 𝐹𝑟 ,1

)
= 𝑀 ,

𝑓𝑟 ,1 = 𝑓𝑟 ,2𝑀 , 𝐹𝑟 ,1 = 𝐹𝑟 ,2𝑀 . Then 𝑀2 𝑓𝑟 ,2𝐹𝑟 ,2 = . Write 𝑀 = 𝐶𝐷2 × with (𝐶, 𝐷) = 1 and 𝐶, 𝐷
square-free. Then 𝐶2𝐷 𝑓𝑟 ,2𝐹𝑟 ,2 = and it follows that 𝑓𝑟 ,2 = 𝐶1𝐷

2
1 × , 𝐹𝑟 ,2 = 𝐶2𝐷

2
2 × , where

𝐶1𝐶2 = 𝐶 and 𝐷1𝐷2 = 𝐷. Then we replace

𝑓𝑟 → 𝑋𝑆𝐶𝐷2𝐶1𝐷
2
1 𝑓

3
𝑟 , 𝐹𝑟 → 𝑌𝑇𝐶𝐷2𝐶2𝐷

2
2𝐹

3
𝑟 ,

and similarly

ℎ𝑟 → 𝑋𝑇𝐴𝐵2𝐴1𝐵
2
1ℎ

3
𝑟 , 𝐻𝑟 → 𝑌𝑆𝐴𝐵2𝐴2𝐵

2
2𝐻

3
𝑟 ,

with 𝐴1𝐴2 = 𝐴 and 𝐵1𝐵2 = 𝐵. We ignore the coprimality conditions when bounding the second term
of formula (4.4), and for the first term we keep the condition (𝑆, 𝑇) = 1, which we need to get the
cancellation between the mollifier and the short Dirichlet polynomial of the L-function.

Replacing in formula (4.5), we get that the second term in formula (4.4) is bounded by

≤ 1
2ℓ𝑟

∑
𝑃 |𝑋𝑌𝑆𝑇 𝐴𝐵𝐶𝐷 𝑓𝑟 ℎ𝑟𝐹𝑟𝐻𝑟⇒𝑃∈𝐼𝑟

(2𝑘)Ω(𝑋2𝑌 2𝑆2𝑇 2𝐴3𝐵6𝐶3𝐷6 𝑓 3
𝑟 ℎ3

𝑟𝐹
3
𝑟 𝐻

3
𝑟 )��𝑋𝑌𝑆𝑇𝐵3𝐷3

�� |𝐴𝐶 𝑓𝑟 ℎ𝑟𝐹𝑟𝐻𝑟 |3/2

=
1

2ℓ𝑟
∏
𝑃∈𝐼𝑟

(
1 − (2𝑘)2

|𝑃 |

)−4 (
1 − (2𝑘)3

|𝑃 |3/2

)−6 (
1 − (2𝑘)6

|𝑃 |3

)−2

.

Let 𝐹 (𝑟) denote this expression. Using the inequality form of the Prime Polynomial Theorem (2.1),
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note that for 𝑟 ≠ 0, we have

𝐹 (𝑟) ≤𝜀
1

2ℓ𝑟
exp ���4(2𝑘)2 + 6(2𝑘)3

∑
(𝑔+2) 𝜃𝑟−1<𝑛≤(𝑔+2) 𝜃𝑟

1
𝑛𝑞𝑛/2 + 2(2𝑘)6

∑
(𝑔+2) 𝜃𝑟−1<𝑛≤(𝑔+2) 𝜃𝑟

1
𝑛𝑞2𝑛

��� ,
and hence

𝐹 (𝑟) ≤𝜀
1

2ℓ𝑟
exp

(
16𝑘2

)
. (4.6)

For 𝑟 = 0, we have

𝐹 (𝑟) ≤𝜀
1

2ℓ0
((𝑔 + 2)𝜃0)𝑂 (1) ,

and we remark that

lim
𝑔→∞

𝐹 (0) = 0.

For the first term in formula (4.4), using the change of variable from before, we get

∑
𝑃 |𝐴𝐵𝐶𝐷 𝑓𝑟ℎ𝑟𝐹𝑟𝐻𝑟⇒𝑃∈𝐼𝑟

𝐶1𝐶2=𝐶,𝐷1𝐷2=𝐷
𝐴1𝐴2=𝐴,𝐵1𝐵2=𝐵

(𝑘/2)Ω(𝐶𝐷2𝐶2𝐷
2
2 𝐴𝐵

2𝐴2𝐵
2
2𝐹

3
𝑟 𝐻

3
𝑟 )𝜆(𝐶𝐶1𝐴𝐴1 𝑓𝑟 ℎ𝑟 )

𝜅Ω(𝐶𝐷2𝐶1𝐷
2
1 𝐴𝐵

2𝐴1𝐵
2
1 𝑓

3
𝑟 ℎ3

𝑟 )
√��𝐶3𝐷6𝐴3𝐵6 𝑓 3

𝑟 ℎ
3
𝑟𝐹

3
𝑟 𝐻

3
𝑟

��
× 𝑎

(
𝑓 3
𝑟 ℎ

3
𝑟 ; 𝐽

)
𝑎

(
𝐴𝐵2𝐴1𝐵

2
1𝐶𝐷2𝐶1𝐷

2
1; 𝐽

)
𝑎

(
𝐹3
𝑟 𝐻

3
𝑟 ; 𝑗

)
𝑎

(
𝐴𝐵2𝐴2𝐵

2
2𝐶𝐷2𝐶2𝐷

2
2; 𝑗

)
×

∑
𝑃 |𝑆𝑇 𝑋𝑌⇒𝑃∈𝐼𝑟

(𝑆,𝑇 )=1

(𝑘/2)Ω(𝑌 2𝑆𝑇 )𝑎(𝑆; 𝐽)𝑎(𝑆; 𝑗)𝑎(𝑇 ; 𝐽)𝑎(𝑇 ; 𝑗)𝑎(𝑋; 𝐽)2𝑎(𝑌 ; 𝑗)2𝜆(𝑆𝑇)
𝜅Ω(𝑋2𝑆𝑇 ) |𝑌𝑋𝑆𝑇 |

× 𝜈2

(
𝑌𝑇𝐶𝐷2𝐶2𝐷

2
2𝐹

3
𝑟

)
𝜈2

(
𝑌𝑆𝐴𝐵2𝐴2𝐵

2
2𝐻

3
𝑟

)
× 𝜈𝑘𝜅

(
𝑋𝑆𝐶𝐷2𝐶1𝐷

2
1 𝑓

3
𝑟

)
𝜈𝑘𝜅

(
𝑋𝑇𝐴𝐵2𝐴1𝐵

2
1ℎ

3
𝑟

)
×

𝜙𝑞2
(
𝑋3𝑆3𝑇3𝑌3𝐶3𝐷6𝐴6𝐵12 𝑓 3

𝑟 ℎ
6
𝑟𝐹

3
𝑟 𝐻

6
𝑟

)��𝑋3𝑆3𝑇3𝑌3𝐶3𝐷6𝐴6𝐵12 𝑓 3
𝑟 ℎ

6
𝑟𝐹

3
𝑟 𝐻

6
𝑟

��
𝑞2

.

For every fixed value of 𝐴, 𝐵, 𝐶, 𝐷, 𝑓𝑟 , ℎ𝑟 , 𝐹𝑟 , 𝐻𝑟 , 𝐴1, 𝐴2, 𝐵1, 𝐵2, 𝐶1, 𝐶2, 𝐷1, 𝐷2, let

F(𝐴, 𝐵, 𝐶, 𝐷, 𝑓𝑟 , ℎ𝑟 , 𝐹𝑟 , 𝐻𝑟 , 𝐴1, 𝐴2, 𝐵1, 𝐵2, 𝐶1, 𝐶2, 𝐷1, 𝐷2)

:=
∏
𝑃∈𝐼𝑟

𝑃𝑎 ‖𝐴,𝑃𝑏 ‖𝐵,...,𝑃𝑑1 ‖𝐷1 ,𝑃
𝑑2 ‖𝐷2 ,𝑃

𝑓 ‖ 𝑓𝑟 ,𝑃ℎ ‖ℎ𝑟 ,𝑃𝐹 ‖𝐹𝑟 ,𝑃𝐻 ‖𝐻𝑟

𝜎(𝑃; 𝑎, 𝑏, 𝑐, 𝑑, 𝑓 , ℎ, 𝐹, 𝐻, 𝑎1, 𝑎2, 𝑏1, 𝑏2, 𝑐1, 𝑐2, 𝑑1, 𝑑2),
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where

𝜎(𝑃; 𝑎, 𝑏, 𝑐, 𝑑, 𝑓 , ℎ, 𝐹, 𝐻, 𝑎1, 𝑎2, 𝑏1, 𝑏2, 𝑐1, 𝑐2, 𝑑1, 𝑑2)

:=
∑

𝑠,𝑡 ,𝑥,𝑦≥0,𝑠𝑡=0

(
(𝑘/2)𝑠+𝑡+2𝑦 (1/𝜅)𝑠+𝑡+2𝑥𝑎(𝑃; 𝑗)𝑠+𝑡+2𝑦𝑎(𝑃; 𝐽)𝑠+𝑡+2𝑥 (−1)𝑠+𝑡

× 𝜈2

(
𝑃𝑡+𝑦+𝑐+2𝑑+𝑐2+2𝑑2+3𝐹

)
𝜈2

(
𝑃𝑠+𝑦+𝑎+2𝑏+𝑎2+2𝑏2+3𝐻

)
× 𝜈𝑘𝜅

(
𝑃𝑠+𝑥+𝑐+2𝑑+𝑐1+2𝑑1+3 𝑓

)
𝜈𝑘𝜅

(
𝑃𝑡+𝑥+𝑎+2𝑏+𝑎1+2𝑏1+3ℎ

)
×

𝜙𝑞2
(
𝑃3𝑠+3𝑡+3𝑥+3𝑦+3𝑐+6𝑑+6𝑎+12𝑏+3 𝑓 +6ℎ+3𝐹+6𝐻 )��𝑃3𝑠+3𝑡+3𝑥+3𝑦+3𝑐+6𝑑+6𝑎+12𝑏+3 𝑓 +6ℎ+3𝐹+6𝐻

��
𝑞2

1
|𝑃 |𝑠+𝑡+𝑥+𝑦

)
.

We can rewrite the first term in formula (4.4) as

𝐴(𝑟) :=
∏
𝑃∈𝐼𝑟

∑
𝑃 |𝐴𝐵𝐶𝐷 𝑓𝑟ℎ𝑟𝐹𝑟𝐻𝑟⇒𝑃∈𝐼𝑟

𝐶1𝐶2=𝐶,𝐷1𝐷2=𝐷
𝐴1𝐴2=𝐴,𝐵1𝐵2=𝐵

(𝑘/2)Ω(𝐶𝐷2𝐶2𝐷
2
2 𝐴𝐵

2𝐴2𝐵
2
2𝐹

3
𝑟 𝐻

3
𝑟 )𝜆(𝐶𝐶1𝐴𝐴1 𝑓𝑟 ℎ𝑟 )

𝜅Ω(𝐶𝐷2𝐶1𝐷
2
1 𝐴𝐵

2𝐴1𝐵
2
1 𝑓

3
𝑟 ℎ3

𝑟 )
√��𝐶3𝐷6𝐴3𝐵6 𝑓 3

𝑟 ℎ
3
𝑟𝐹

3
𝑟 𝐻

3
𝑟

��
× 𝑎

(
𝑓 3
𝑟 ℎ

3
𝑟 ; 𝐽

)
𝑎

(
𝐴𝐵2𝐶𝐷2𝐶1𝐷

2
1𝐴1𝐵

2
1; 𝐽

)
𝑎

(
𝐹3
𝑟 𝐻

3
𝑟 ; 𝑗

)
𝑎

(
𝐴𝐵2𝐶𝐷2𝐴2𝐵

2
2𝐶2𝐷

2
2; 𝑗

)
× F(𝐴, 𝐵, 𝐶, 𝐷, 𝑓𝑟 , ℎ𝑟 , 𝐹𝑟 , 𝐻𝑟 , 𝐴1, 𝐴2, 𝐵1, 𝐵2, 𝐶1, 𝐶2, 𝐷1, 𝐷2), (4.7)

and we will show that

𝑗∏
𝑟=0

𝐴(𝑟) ≤ 𝐶 (𝑘) (4.8)

for some constant 𝐶 (𝑘).
Since we need an explicit constant, in the case 𝑘 = 2 we will prove that that we can take 𝐶 (2) = 𝑒𝑒

15 .
We can write 𝐴(𝑟) as an Euler product, and we look at the coefficients of 1/|𝑃 |, 1/|𝑃 |3/2, 1/|𝑃 |2 and
1/|𝑃 |5/2. Recall that 𝜈ℓ (𝑃𝑎) = ℓ𝑎

𝑎! . For the coefficient of 1/|𝑃 |, we need to consider 𝐴 = 𝐵 = 𝐶 = 𝐷 =
𝑓𝑟 = ℎ𝑟 = 𝐹𝑟 = 𝐻𝑟 = 1 and 𝑠, 𝑡, 𝑥 or 𝑦 = 1. This gives

𝛼 𝑗 ,1 (𝑃) := 𝑘2 (𝑎(𝑃; 𝐽) − 𝑎(𝑃, 𝑗))2 𝜙𝑞2
(
𝑃3)��𝑃3
��
𝑞2

for the coefficient of 1/|𝑃 |. Since 0 < 𝑎(𝑃; 𝑗) < 𝑎(𝑃; 𝐽) < 1, we remark that 0 < 𝛼 𝑗 ,1 (𝑃) < 𝑘2.
For the coefficient of 1/|𝑃 |3/2 we consider 𝑓𝑟 = 𝑃, ℎ𝑟 = 𝑃, 𝐹𝑟 = 𝑃, 𝐻𝑟 = 𝑃 and 𝐴 = 𝑃, 𝐴1 = 1

and 𝐴 = 𝑃, 𝐴1 = 𝑃, 𝐶 = 𝑃,𝐶1 = 1 and 𝐶 = 𝑃,𝐶1 = 𝑃, while 𝑠 = 𝑡 = 𝑥 = 𝑦 = 0. When 𝑓𝑟 = 𝑃 (and
everything else is 1) we get a factor of

− 1
𝜅3 𝑎(𝑃; 𝐽)3𝜈𝑘𝜅

(
𝑃3

) 𝜙𝑞2
(
𝑃3)

|𝑃 |3/2 |𝑃 |3
𝑞2

= −
𝑘3𝑎(𝑃; 𝐽)3𝜙𝑞2

(
𝑃3)

6|𝑃 |3/2
��𝑃3

��
𝑞2

.
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We get the same term when ℎ𝑟 = 𝑃. If 𝐹𝑟 = 𝑃, we get

𝑘3𝑎(𝑃; 𝑗)3𝜙𝑞2
(
𝑃3)

6|𝑃 |3/2
��𝑃3

��
𝑞2

,

and when 𝐻𝑟 = 𝑃 we get the same factor. If 𝐴 = 𝑃, 𝐴1 = 1, we get the term

− 𝑘2𝑎(𝑃; 𝐽)𝑎(𝑃; 𝑗)2

𝜅

𝑘𝜅𝜙𝑞2
(
𝑃6)

2|𝑃 |3/2
��𝑃6

��
𝑞2

= −
𝑘3𝑎(𝑃; 𝐽)𝑎(𝑃; 𝑗)2𝜙𝑞2

(
𝑃6)

2|𝑃 |3/2
��𝑃6

��
𝑞2

.

Similarly, when 𝐴 = 𝑃, 𝐴1 = 𝑃, we get

𝑘3𝑎(𝑃; 𝐽)2𝑎(𝑃; 𝑗)𝜙𝑞2
(
𝑃6)

2|𝑃 |3/2
��𝑃6

��
𝑞2

.

Putting all of this together, we get

𝛼 𝑗 ,3/2 (𝑃) := −𝑘3(𝑎(𝑃; 𝐽) − 𝑎(𝑃; 𝑗))3 𝜙𝑞2
(
𝑃3)

3
��𝑃3

��
𝑞2

for the coefficient of 1/|𝑃 |3/2. We remark that − 𝑘3

3 < 𝛼 𝑗 ,3/2 (𝑃) < 0, since 𝑎(𝑃; 𝑗) < 𝑎(𝑃; 𝐽).
For the coefficient of 1/|𝑃 |2, we must take 𝐴 = 𝐵 = 𝐶 = 𝐷 = 𝑓𝑟 = ℎ𝑟 = 𝐹𝑟 = 𝐻𝑟 = 1 and

𝑠 + 𝑡 + 𝑥 + 𝑦 = 2, and we proceed as before to obtain

𝛼 𝑗 ,2 (𝑃) := 𝑘4 (𝑎(𝑃; 𝐽) − 𝑎(𝑃; 𝑗))4 𝜙𝑞2
(
𝑃6)

4
��𝑃6

��
𝑞2

,

and we have that 0 < 𝛼 𝑗 ,2 (𝑃) < 𝑘4

4 .
For the coefficient of 1/|𝑃 |5/2, we obtain the product of the coefficients of 1/|𝑃 | and 1/|𝑃 |3/2,

resulting in

𝛼 𝑗 ,5/2 (𝑃) := −𝑘5 (𝑎(𝑃; 𝐽) − 𝑎(𝑃, 𝑗))5 𝜙𝑞2
(
𝑃3)2

3
��𝑃6

��
𝑞2

,

which satisfies − 𝑘5

3 < 𝛼 𝑗 ,5/2 (𝑃) < 0.
Overall, for the sum over 𝐴, 𝐵, 𝐶, 𝐷, 𝐴1, 𝐶1, 𝐵1, 𝐷1, 𝐹𝑟 , ℎ𝑟 , 𝐹𝑟 , 𝐻𝑟 we get

𝐴(𝑟) =
∏
𝑃∈𝐼𝑟

(
1 +

𝛼 𝑗 ,1 (𝑃)
|𝑃 | +

𝛼 𝑗 ,3/2 (𝑃)
|𝑃 |3/2 +

𝛼 𝑗 ,2 (𝑃)
|𝑃 |2

+
𝛼 𝑗 ,5/2 (𝑃)
|𝑃 |5/2 +𝑂

(
1

|𝑃 |3

))
. (4.9)

Since we want to obtain an explicit constant for the case 𝑘 = 2, we proceed to bound the term
corresponding to 𝑂

(
1

|𝑃 |3

)
. To do this we bound the terms of the form 1/|𝑃 |𝑛/2 for 𝑛 > 5 in the Euler

product corresponding to the sum of formula (4.7). We bound trivially the signs and the terms involving
𝑎(·, 𝑗) and 𝑎(·, 𝐽), and we recall that 𝜈ℓ (𝑃𝑎) = ℓ𝑎

𝑎! . Thus, the terms contributing to 1/|𝑃 |𝑛/2 can be
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bounded by

∑
2𝑠+2𝑡+2𝑥+2𝑦+3𝑎+6𝑏+3𝑐+6𝑑+3 𝑓 +3ℎ+3𝐹+3𝐻=𝑛

(
𝑘

|𝑃 |1/2

)2𝑠+2𝑡+2𝑥+2𝑦+3𝑎+6𝑏+3𝑐+6𝑑+3 𝑓 +3ℎ+3𝐹+3𝐻

× 1
(𝑠 + 𝑥 + 𝑐 + 2𝑑 + 𝑐1 + 2𝑑1 + 3 𝑓 )!(𝑡 + 𝑥 + 𝑎 + 2𝑏 + 𝑎1 + 2𝑏1 + 3ℎ)!

× 1
(𝑡 + 𝑦 + 𝑐 + 2𝑑 + 𝑐2 + 2𝑑2 + 3𝐹)!(𝑠 + 𝑦 + 𝑎 + 2𝑏 + 𝑎2 + 2𝑏2 + 3𝐻)! .

The number of terms in this sum is bounded by the number of ways of choosing values for the indices
𝑎1, 𝑎2, . . . , 𝑑2, 𝑠, 𝑡, 𝑥, 𝑦, 𝑓 , ℎ, 𝐹, 𝐻 subject to the condition that 2𝑠+2𝑡 +2𝑥 +2𝑦 +3𝑎1 +3𝑎2 +6𝑏1 +6𝑏2 +
3𝑐1 + 3𝑐2 + 6𝑑1 + 6𝑑2 + 3 𝑓 + 3ℎ + 3𝐹 + 3𝐻 = 𝑛. Since there are 16 indices, this number is bounded by(𝑛+15

15
)
. In addition, note that the numbers in the four factorials sum up to n. Thus, the fraction involving

the four factorials can be bounded by 4𝑛
𝑛! . Putting all of this together and summing over the powers of

1/|𝑃 |1/2 starting from 1/|𝑃 |3, we get that the contribution of the higher powers of 1/|𝑃 |1/2 is bounded by

∞∑
ℓ=6

(ℓ+15
15

)
ℓ!

(
4𝑘

|𝑃 |1/2

)ℓ
.

Notice that (ℓ+15
15 )
ℓ! is decreasing in 6 ≤ ℓ, with a maximum at ℓ = 6. We thus get

≤ 2261
30

∞∑
ℓ=6

(
4𝑘

|𝑃 |1/2

)ℓ
≤ 1

|𝑃 |3
2261 · 211𝑘6

15
(
1 − 4𝑘

|𝑃 |1/2

)
whenever |𝑃 |1/2 > 4𝑘 .

We now suppose that 𝑘 = 2. Considering the worst case, 𝑞 = 5, we can apply the foregoing, provided
that deg(𝑃) ≥ 3. Writing

∏
𝑟 𝐴(𝑟) as a product over primes with deg(𝑃) ≤ (𝑔 + 2)𝜃 𝑗 , and restricting to

those primes with deg(𝑃) ≥ 3, we get that this contribution is bounded by

∏
3≤deg(𝑃) ≤(𝑔+2) 𝜃 𝑗

����1 +
𝛼 𝑗 ,1 (𝑃)
|𝑃 | +

𝛼 𝑗 ,3/2 (𝑃)
|𝑃 |3/2 +

𝛼 𝑗 ,2 (𝑃)
|𝑃 |2

+
𝛼 𝑗 ,5/2 (𝑃)
|𝑃 |5/2 + 1

|𝑃 |3
2261 · 217

15
(
1 − 8

53/2

) ����
≤

∏
3≤deg(𝑃) ≤(𝑔+2) 𝜃 𝑗

(
1 +

𝛼 𝑗 ,1 (𝑃)
|𝑃 |

) (
1 +

𝛼 𝑗 ,2 (𝑃)��𝑃2
��

) ����1 + 1
|𝑃 |3

2261 · 217

15
(
1 − 8

53/2

) ���� .
Noticing that

𝑎(𝑃; 𝐽) − 𝑎(𝑃; 𝑗) = 1

|𝑃 |
1

(𝑔+2) 𝜃𝐽 log𝑞
− 1

|𝑃 |
1

(𝑔+2) 𝜃 𝑗 log𝑞
+ deg(𝑃)

(𝑔 + 2)𝜃 𝑗 |𝑃 |
1

(𝑔+2) 𝜃 𝑗 log𝑞
− deg(𝑃)

(𝑔 + 2)𝜃𝐽 |𝑃 |
1

(𝑔+2) 𝜃𝐽 log𝑞

≤ 1 −
(
1 − deg(𝑃)

(𝑔 + 2)𝜃 𝑗

)
+ deg(𝑃)
(𝑔 + 2)𝜃 𝑗

≤ 2 deg(𝑃)
(𝑔 + 2)𝜃 𝑗

,
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we obtain

∏
3≤deg 𝑃≤(𝑔+2) 𝜃 𝑗

(
1 +

𝛼 𝑗 ,1 (𝑃)
|𝑃 |

)
≤ exp ���

∑
deg 𝑃≤(𝑔+2) 𝜃 𝑗

𝛼 𝑗 ,1 (𝑃)
|𝑃 |

���
≤ exp ��� 16

(𝑔 + 2)𝜃 𝑗

∑
deg 𝑃≤(𝑔+2) 𝜃 𝑗

deg(𝑃)
|𝑃 |

��� ≤ exp(16). (4.10)

We also have ∏
3≤deg 𝑃≤(𝑔+2) 𝜃 𝑗

(
1 +

𝛼 𝑗 ,2 (𝑃)��𝑃2
��

)
≤

∏
𝑃

(
1 + 4��𝑃2

��
)
≤

(
𝜁𝑞 (2)
𝜁𝑞 (4)

)4
< 3 (4.11)

and

∏
3≤deg 𝑃≤(𝑔+2) 𝜃 𝑗

����1 + 1
|𝑃 |3

2261 · 217

15
(
1 − 8

53/2

) ���� ≤
(
𝜁𝑞 (3)
𝜁𝑞 (6)

)𝑒18.1

≤ 𝑒𝑒
14.9

. (4.12)

When deg(𝑃) ≤ 2 and 𝑘 = 2, we can bound

∞∑
ℓ=6

(ℓ+15
15

)
ℓ!

(
8

|𝑃 |1/2

)ℓ
≤ 215

∞∑
ℓ=6

1
ℓ!

(
16

|𝑃 |1/2

)ℓ
≤ 210

45

(
16

|𝑃 |1/2

)6
exp

(
16

|𝑃 |1/2

)
.

Applying the Prime Polynomial Theorem, this gives∏
deg(𝑃) ≤2

(
1 +

𝛼 𝑗 ,1 (𝑃)
|𝑃 | +

𝛼 𝑗 ,3/2 (𝑃)
|𝑃 |3/2 +

𝛼 𝑗 ,2 (𝑃)
|𝑃 |2

+
𝛼 𝑗 ,5/2 (𝑃)
|𝑃 |5/2 + 1

|𝑃 |3
234

45
exp

(
16

|𝑃 |1/2

))
≤

∏
deg(𝑃) ≤2

(
1 +

𝛼 𝑗 ,1 (𝑃)
|𝑃 | +

𝛼 𝑗 ,2 (𝑃)
|𝑃 |2

+ 1
|𝑃 |3

234

45
exp

(
16

|𝑃 |1/2

))
≤ 𝑒36

(
1 + 4

𝑞
+ 20
𝑞2 + 1

𝑞3
234

45
exp

(
16
𝑞1/2

))𝑞 (
1 + 4

𝑞2 + 20
𝑞4 + 1

𝑞6
234

45
exp

(
16
𝑞

))𝑞2/2

≤ 𝑒36+1084+38 ≤ 𝑒𝑒
8
. (4.13)

Combining formulas (4.10), (4.11), (4.12) and (4.13), it follows that we can take

𝐶 (2) = 𝑒𝑒
15
.

We remark that we expect the value of 𝐶 (2) to be much smaller, which could potentially be proven by
exploiting the cancellation in the Liouville function in formula (4.7). We have decided not to to do that
here, since it does not change the final value of the constant in formula (1.1), as the worst contribution
to this constant comes from the upper bound for 𝐶𝐽 computed in Section 7.

Now we go back to expressing bounds for general k. Combining formula (4.6) and (4.8), and
incorporating everything in formula (4.4), we get that the contributions from the intervals 𝐼0, . . . , 𝐼 𝑗 are
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bounded by

𝑗∏
𝑟=0

(
1 + 𝑒−ℓ𝑟 /2

)2
𝐸 (𝑟) ≤

𝑗∏
𝑟=0

( ∏
𝑃∈𝐼𝑟

(𝐴(𝑟) + 𝐹 (𝑟))
) (

1 + 𝑒−ℓ𝑟 /2
)2

≤𝜀 D𝑘𝐶 (𝑘), (4.14)

where

D𝑘 =
(
1 + 𝑒−ℓ0/2

)2 𝐽∏
𝑟=1

(
1 + 𝑒−ℓ𝑟 /2

)2
(
1 + 𝑒16𝑘2

2ℓ𝑟

)
. (4.15)

We now look at the term 𝑟 = 𝑗 +1 from formula (4.3), which involves the mollifier and
(
�𝑃𝐼𝑟 (𝜒)

)2𝑠𝑟 .
We first write

𝐸 (𝑟) ≤ (2𝑠𝑟 )!
4𝑠𝑟

∑
𝑃 | 𝑓𝑟ℎ𝑟𝐹𝑟𝐻𝑟⇒𝑃∈𝐼𝑟

Ω(𝐹𝑟𝐻𝑟 )=2𝑠𝑟
Ω( 𝑓𝑟 ) ≤(𝑘 ·𝜅)ℓ𝑟
Ω(ℎ𝑟 ) ≤(𝑘 ·𝜅)ℓ𝑟
𝑓𝑟 ℎ

2
𝑟𝐹𝑟𝐻

2
𝑟 =

𝜈(𝐹𝑟 )𝜈(𝐻𝑟 )𝜈𝑘𝜅 ( 𝑓𝑟 )𝜈𝑘𝜅 (ℎ𝑟 )
𝜅Ω( 𝑓𝑟 ℎ𝑟 )

√
| 𝑓𝑟𝐹𝑟 ℎ𝑟𝐻𝑟 |

, (4.16)

where we have bounded 𝜆( 𝑓𝑟 ℎ𝑟 ), 𝑎( 𝑓𝑟 ℎ𝑟 ; 𝐽)𝑎(𝐹𝑟𝐻𝑟 ; 𝑢), 𝜙𝑞2
(
𝑓𝑟 ℎ

2
𝑟𝐹𝑟𝐻

2
𝑟

)
/
�� ( 𝑓𝑟 ℎ2

𝑟𝐹𝑟𝐻
2
𝑟

) ��
𝑞2 ≤ 1,

𝜈𝑘𝜅 ( 𝑓𝑟 ; ℓ𝑟 ) ≤ 𝜈𝑘𝜅 ( 𝑓𝑟 ).
Using the change of variable as before, we can rewrite the sum of formula (4.16) as

∑
𝑋,𝑆,𝑇 ,𝐶,𝐷,𝐴,𝐵, 𝑓𝑟 ,ℎ𝑟
𝐶1𝐶2=𝐶,𝐷1𝐷2=𝐷
𝐴1𝐴2=𝐴,𝐵1𝐵2=𝐵

𝑃 |𝑋𝑆𝑇 𝑓𝑟 ℎ𝑟 𝐴𝐵𝐶𝐷⇒𝑃∈𝐼𝑟
Ω(𝑋𝑆𝐶𝐷2𝐶1𝐷

2
1 𝑓

3
𝑟 )≤𝑘𝜅ℓ𝑟

Ω(𝑋𝑇 𝐴𝐵2𝐴1𝐵
2
1ℎ

3
𝑟 )≤𝑘𝜅ℓ𝑟

𝜈𝑘𝜅
(
𝑋𝑆𝐶𝐷2𝐶1𝐷

2
1 𝑓

3
𝑟

)
𝜈𝑘𝜅

(
𝑋𝑇𝐴𝐵2𝐴1𝐵

2
1ℎ

3
𝑟

)
𝜅Ω(𝑋2𝑆𝐶𝐷2𝐶1𝐷

2
1 𝑓

3
𝑟 𝑇 𝐴𝐵2𝐴1𝐵

2
1ℎ

3
𝑟 )

√��𝑋2𝑆2𝑇2𝐶3𝐴3𝐵6𝐷6 𝑓 3
𝑟 ℎ

3
𝑟

��

×
∑

𝑌 ,𝐹𝑟 ,𝐻𝑟
𝑃 |𝑌𝐹𝑟𝐻𝑟⇒𝑃∈𝐼𝑟

Ω(𝑌 2𝐹3
𝑟 𝐻

3
𝑟 )=2𝑠𝑟−Ω(𝑇𝐶𝐷2𝐶2𝐷

2
2𝑆𝐴𝐵

2𝐴2𝐵
2
2)

𝜈(𝑌 )2𝜈(𝐹𝑟 )𝜈(𝐻𝑟 )
|𝑌 | |𝐹𝑟𝐻𝑟 |3/23Ω(𝐹𝑟 )3Ω(𝐻𝑟 )

, (4.17)

where we have used the fact that 𝜈
(
𝑍3) ≤ 𝜈(𝑍)/3Ω(𝑍 ) and 𝜈(·) ≤ 1.

Now note that Ω
(
𝑇𝐶𝐷2𝐶2𝐷

2
2𝑆𝐴𝐵

2𝐴2𝐵
2
2
)
≤ Ω

(
(𝑆𝑇)

(
𝐶𝐷2)2 (

𝐴𝐵2)2
)
≤ 4𝑘𝜅ℓ𝑟 and by hypothesis

4𝑘𝜅ℓ𝑟 ≤ 4
𝑎 𝑠𝑟 , so Ω

(
𝑌2𝐹3

𝑟 𝐻
3
𝑟

)
≥

(
2 − 4

𝑎

)
𝑠𝑟 := 𝑐𝑠𝑟 .

Let 𝛼 = 2𝑠𝑟 − Ω
(
𝑇𝐶𝐷2𝐶2𝐷

2
2𝑆𝐴𝐵

2𝐴2𝐵
2
2
)
. Using the fact that 𝜈(𝑌 )2 ≤ 𝜈(𝑌 ), since 𝜈(𝑌 ) ≤ 1, the

sum over 𝑌, 𝐹𝑟 , 𝐻𝑟 is bounded by

∑
2𝑖+3 𝑗+3𝑘=𝛼

∑
𝑃 |𝑌⇒𝑃∈𝐼𝑟
Ω(𝑌 )=𝑖

𝜈(𝑌 )
|𝑌 |

∑
𝑃 |𝐹𝑟⇒𝑃∈𝐼𝑟
Ω(𝐹𝑟 )= 𝑗

𝜈(𝐹𝑟 )
3Ω(𝐹𝑟 ) |𝐹𝑟 |3/2

∑
𝑃 |𝐻𝑟⇒𝑃∈𝐼𝑟
Ω(𝐻𝑟 )=𝑘

𝜈(𝐻𝑟 )
3Ω(𝐻𝑟 ) |𝐻𝑟 |3/2 . (4.18)
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Now

∑
𝑃 |𝐹𝑟⇒𝑃∈𝐼𝑟
Ω(𝐹𝑟 )= 𝑗

𝜈(𝐹𝑟 )
3Ω(𝐹𝑟 ) |𝐹𝑟 |3/2 =

1
𝑗!

( ∑
𝑃∈𝐼𝑟

1
3|𝑃 |3/2

) 𝑗
,

a similar expression holds for the sum over 𝐻𝑟 and

∑
𝑃 |𝑌⇒𝑃∈𝐼𝑟
Ω(𝑌 )=𝑖

𝜈(𝑌 )
|𝑌 | =

1
𝑖!

( ∑
𝑃∈𝐼𝑟

1
|𝑃 |

) 𝑖
.

Using the inequalities from before, it follows that

(4.18) ≤
( ∑
𝑃∈𝐼𝑟

1
|𝑃 |

)𝛼/2 ∑
2𝑖+3 𝑗+3𝑘=𝛼

1
𝑖! 𝑗!𝑘!3 𝑗+𝑘 =

( ∑
𝑃∈𝐼𝑟

1
|𝑃 |

)𝛼/2 ∑
𝑖≤𝛼/2

3 | (𝛼−2𝑖)

(
2
3

) 𝛼−2𝑖
3 1

𝑖!
(
𝛼−2𝑖

3

)
!

≤
( ∑
𝑃∈𝐼𝑟

1
|𝑃 |

)𝛼/2 (
2
3

)𝛼/3 �����
∑
𝑖≤𝛼/3

(
2
3

) −2𝑖
3

𝑖!
⌊
𝛼
3 − 𝑖

⌋
!
+

∑
𝛼/3<𝑖≤𝛼/2

3 | (𝛼−2𝑖)

(
2
3

) −2𝑖
3⌊ 2𝑖

3
⌋
!
(
𝛼−2𝑖

3

)
!

�����
≤ 2

( ∑
𝑃∈𝐼𝑟

1
|𝑃 |

)𝛼/2 (
2
3

)𝛼/3
(

5
2

)𝛼/3

�𝛼/3�! ≤ 2

( ∑
𝑃∈𝐼𝑟

1
|𝑃 |

)𝑠𝑟 (
5
3

)𝑐𝑠𝑟 /3

�𝑐𝑠𝑟/3�! . (4.19)

We now consider the exterior sum in formula (4.17). For the sum over 𝐴1 (recall that A is square-free),
we have ∑

𝐴1 |𝐴

𝜈𝑘𝜅 (𝐴1)
𝜅Ω(𝐴1)

=
∏
𝑃 |𝐴

(1 + 𝑘).

Then overall we get ∑
𝑃 |𝐴⇒𝑃∈𝐼𝑟

𝜈𝑘𝜅 (𝐴)
𝜅Ω(𝐴) (𝑘 + 1)𝜔 (𝐴) 1

|𝐴|3/2 =
∏
𝑃∈𝐼𝑟

(
1 + 𝑘 (𝑘 + 1)

|𝑃 |3/2

)
.

Similar expressions hold for the sums over𝐶, 𝐵, 𝐷, and overall for the sum over 𝑋, 𝑆, 𝑇, 𝐴, 𝐵, 𝐶, 𝐷, 𝑓𝑟 , ℎ𝑟
we get that it is

≤
∏
𝑃∈𝐼𝑟

(
1 + 𝑘 (𝑘 + 1)

|𝑃 |3/2

)2
(
1 +

𝑘2 (
𝑘2/2 + 1

)
2|𝑃 |3

)2 (
1 + 𝑘3

6|𝑃 |3/2

)2 (
1 + 𝑘2

|𝑃 |

) (
1 + 𝑘

|𝑃 |

)2
:= 𝐻 (𝑟).

Using the Prime Polynomial Theorem (2.1), we get

𝐻 (𝑟) ≤𝜀 exp
����𝑘2 + 2𝑘 + 2𝑘 (𝑘 + 1)

𝑞 (𝑔+2) 𝜃𝑟−1/2 + 𝑘3

3𝑞 (𝑔+2) 𝜃𝑟−1/2 +
𝑘2

(
𝑘2

2 + 1
)

𝑞2(𝑔+2) 𝜃𝑟−1

����
https://doi.org/10.1017/fms.2021.62 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2021.62


30 Chantal David et al.

for 𝑟 ≠ 0, and then

𝐻 (𝑟) ≤𝜀 exp
(
𝑘2 + 2𝑘

)
, (4.20)

which is what we need to prove (iii). For 𝑟 = 0, we have

𝐻 (0) � (𝑔𝜃0)𝑂 (1) . (4.21)

In (i), the bound will depend on 𝐻 (0). Replacing formulas (4.19) and (4.20) in formulas (4.17) and
finally (4.16), it follows that

𝐸 ( 𝑗 + 1) ≤𝜀 2 exp
(
𝑘2 + 2𝑘

) ���
∑

𝑃∈𝐼 𝑗+1

1
|𝑃 |

���
𝑠 𝑗+1

(
5
3

)𝑐𝑠 𝑗+1/3 (
2𝑠 𝑗+1

)
!

4𝑠 𝑗+1
⌊ 𝑐𝑠 𝑗+1

3
⌋
!

. (4.22)

Finally, we consider the case where 𝑟 ≥ 𝑗 + 2. In this case, only the mollifier contributes primes in
this interval in the factors of formula (4.3). It is easy to see that

𝐽∏
𝑟= 𝑗+2

𝐸 (𝑟) ≤
𝐽∏

𝑟= 𝑗+2

∑
𝑃 | 𝑓𝑟ℎ𝑟⇒𝑃∈𝐼𝑟

𝑓𝑟ℎ
2
𝑟=

𝑘Ω( 𝑓𝑟 ) 𝑘Ω(ℎ𝑟 )√
| 𝑓𝑟 ℎ𝑟 |

,

where we used the same bound as before on the functions appearing in the mollifier, and we also used
the fact that 𝜈𝑘𝜅 (𝑔𝑟 ) ≤ (𝑘𝜅)Ω(𝑔𝑟 ) . Note that 𝑓𝑟 ℎ2

𝑟 = is equivalent to 𝑓𝑟 = 𝑔𝑟𝑆
3
𝑟 and ℎ𝑟 = 𝑔𝑟𝑇

3
𝑟 for

(𝑆𝑟 , 𝑇𝑟 ) = 1. Then the term corresponding to a fixed r in this product is bounded by

≤
∑

𝑃 |𝑔𝑟⇒𝑃∈𝐼𝑟

𝑘2Ω(𝑔𝑟 )

|𝑔𝑟 |
∑

𝑃 |𝑆𝑟⇒𝑃∈𝐼𝑟

𝑘Ω(𝑆3
𝑟 )

|𝑆𝑟 |3/2

∑
𝑃 |𝑇𝑟⇒𝑃∈𝐼𝑟

𝑘Ω(𝑇 3
𝑟 )

|𝑇𝑟 |3/2 =
∏
𝑃∈𝐼𝑟

(
1 − 𝑘2

|𝑃 |

)−1 (
1 − 𝑘3

|𝑃 |3/2

)−2

.

Using the fact that − log(1 − 𝑥) < 𝑥
1−𝑥 , we get

∏
𝑃∈𝐼𝑟

(
1 − 𝑘2

|𝑃 |

)−1

≤ exp

( ∑
𝑃∈𝐼𝑟

𝑘2

|𝑃 | − 𝑘2

)
≤ exp ���𝑘2 ���

(𝑔+2) 𝜃𝑟∑
𝑛=(𝑔+2) 𝜃𝑟−1

1
𝑛
+

(𝑔+2) 𝜃𝑟∑
𝑛=(𝑔+2) 𝜃𝑟−1

𝑘2

𝑛
(
𝑞𝑛 − 𝑘2) ������

≤𝜖 exp
(
𝑘2 + 𝑘4

𝑞 (𝑔+2) 𝜃𝑟−1 − 𝑘2

)
.

Similarly,

∏
𝑃∈𝐼𝑟

(
1 − 𝑘3

|𝑃 |3/2

)−2

≤ exp

(
2

∑
𝑃∈𝐼𝑟

𝑘3

|𝑃 |3/2 − 𝑘3

)
≤ exp ���2𝑘3

(𝑔+2) 𝜃𝑟∑
𝑛=(𝑔+2) 𝜃𝑟−1

(
1

𝑛𝑞𝑛/2 +𝑂

(
1

𝑛𝑞2𝑛

))���
≤𝜖 exp

(
2𝑘3

𝑞 (𝑔+2) 𝜃𝑟−1/2 +𝑂

(
1

𝑞2(𝑔+2) 𝜃𝑟−1

))
.

Then the contribution from 𝑟 ≥ 𝑗 + 2 will be bounded by

≤𝜖 𝑒𝑘
2 (𝐽− 𝑗−1)

𝐽∏
𝑟= 𝑗+2

exp
(

𝑘4

𝑞 (𝑔+2) 𝜃𝑟−1 − 𝑘2 + 2𝑘3

𝑞 (𝑔+2) 𝜃𝑟−1/2 +𝑂

(
1

𝑞2(𝑔+2) 𝜃𝑟−1

))
≤𝜀 𝑒𝑘

2 (𝐽− 𝑗−1) . (4.23)
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Combining the contribution of the intervals 𝐼𝑟 with 𝑟 ≤ 𝑗 from formula (4.14), the contribution of
the interval 𝐼 𝑗+1 from formula (4.22) and the contribution of the intervals 𝐼𝑟 with 𝑗 + 2 ≤ 𝑟 ≤ 𝐽 from
formula (4.23), we get the bound of the last inequality.

We prove the first inequality corresponding to “ 𝑗 = −1” in the same way, except that the bound for
𝐻 (𝑟) in formula (4.20) is not valid for 𝑟 = 0, so we just keep 𝐻 (0) on the right-hand side. The second
inequality corresponds to 𝑗 = 𝐽. �

5. Squares of the primes

In this section we prove an upper bound for the average over the square of the primes appearing in the
kth moment. Our proof is similar to [21], but it is simpler because we separate the primes and the square
of the primes from the start by using Cauchy–Schwarz in order to deal with the mollifier.

We recall that

𝑆 𝑗 ,𝑘 (𝜒) = exp ���𝑘� ���
∑

deg(𝑃) ≤(𝑔+2) 𝜃 𝑗/2

𝜒(𝑃)𝑏(𝑃; 𝑗)
|𝑃 |

������ , (5.1)

where the positive weights 𝑏(𝑃; 𝑗) are defined by equation (3.8). Then 𝑏(𝑃; 𝑗) ≤ 1
2 , which is the only

property that we use in this section.

Lemma 5.1. Let 𝑆 𝑗 ,𝑘 be the sum defined by equation (3.7) and set 𝛽 > 1. For 𝑗 = 0, . . . , 𝐽 we have

∑
𝜒∈C(𝑔)

𝑆 𝑗 ,𝑘 (𝜒)2 ≤ 𝑞𝑔+2

(
exp

(
𝑘 + 2𝑘

𝛽 − 1

)
+ 3𝑒𝑘 (𝛾+1)

4

∞∑
𝑚=1

exp
(
𝑘 log𝑚 + 2𝑘

𝛽𝑚 (𝛽 − 1)

)
𝛽4𝑚

𝑞2𝑚

)
.

In particular, choosing 𝛽 = 2 and using the fact that 𝑞 ≥ 5, we have∑
𝜒∈C(𝑔)

𝑆 𝑗 ,𝑘 (𝜒)2 ≤ 𝑞𝑔+2S𝑘 , (5.2)

where

S𝑘 := 𝑒3𝑘 + 4𝑘!𝑒𝑘 (𝛾+2)

3

(
25
9

) 𝑘
,

and in particular

S2 ≈ 3967.15 . . . .

Proof. Let

𝐹𝑚 (𝜒; 𝑗) =
∑
𝑃∈P𝑚

𝜒(𝑃)𝑏(𝑃; 𝑗)
|𝑃 | ,

where the sum is over the monic irreducible polynomials of degree m. For ease of notation, we will
simply denote this sum by 𝐹𝑚 (𝜒). Let

F(𝑚) =
{
𝜒 ∈ C(𝑔) : |�𝐹𝑚 (𝜒) | >

1
𝛽𝑚

, but |�𝐹𝑛 (𝜒) | ≤
1
𝛽𝑛

, ∀𝑚 + 1 ≤ 𝑛 ≤ (𝑔 + 2)𝜃 𝑗/2
}
.
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Note that 𝐹0 (𝜒) = 1
2 , so the set F(0) is empty. Since the sets F(𝑚) are disjoint, note that we have

∑
𝜒∈C(𝑔)

𝑆 𝑗 ,𝑘 (𝜒)2 ≤
(𝑔+2) 𝜃 𝑗/2∑

𝑚=1

∑
𝜒∈F(𝑚)

𝑆 𝑗 ,𝑘 (𝜒)2 +
∑

𝜒∉F(𝑚) ,∀𝑚
𝑆 𝑗 ,𝑘 (𝜒)2. (5.3)

If 𝜒 does not belong to any of the sets F(𝑚), then

|�𝐹𝑛 (𝜒) | ≤
1
𝛽𝑛

for all 1 ≤ 𝑛 ≤ (𝑔 + 2)𝜃 𝑗/2, so in this case we have

𝑆 𝑗 ,𝑘 (𝜒)2 ≤ exp
(
𝑘 + 2𝑘

𝛽 − 1

)
.

Now assume that 𝜒 ∈ F(𝑚) for some 1 ≤ 𝑚 ≤ (𝑔 + 2)𝜃 𝑗/2. Then we have

(𝑔+2) 𝜃 𝑗/2∑
𝑙=1

�𝐹𝑙 (𝜒) ≤
𝑚∑
𝑙=1

1
2𝑙

+
(𝑔+2) 𝜃 𝑗/2∑
𝑙=𝑚+1

1
𝛽𝑙

≤ 1
2
(log𝑚 + 𝛾 + 1) + 1

𝛽𝑚+1
(
1 − 1

𝛽

) ,
where 𝛾 is the Euler–Mascheroni constant. Therefore, in this case we have

𝑆 𝑗 ,𝑘 (𝜒)2 ≤ exp
����𝑘 (log𝑚 + 𝛾 + 1) + 2𝑘

𝛽𝑚+1
(
1 − 1

𝛽

) ���� .
If 𝜒 ∈ F(𝑚), also note that (𝛽𝑚�𝐹𝑚 (𝜒))4 > 1, so combining with this inequality, we get

∑
𝜒∈F(𝑚)

𝑆 𝑗 ,𝑘 (𝜒)2 ≤ exp
����𝑘 (log𝑚 + 𝛾 + 1) + 2𝑘

𝛽𝑚+1
(
1 − 1

𝛽

) ����
∑

𝜒∈C(𝑔)
(𝛽𝑚�𝐹𝑚 (𝜒))4. (5.4)

Note that by Lemma 3.2,

∑
𝜒∈C(𝑔)

(𝛽𝑚�𝐹𝑚 (𝜒))4 =
4!𝛽4𝑚

24

∑
𝜒∈C(𝑔)

∑
𝑃 | 𝑓 ℎ⇒𝑃∈P𝑚

Ω( 𝑓 ℎ)=4

𝑏( 𝑓 ; 𝑗)𝑏( 𝑓 ; 𝐽)𝜒( 𝑓 )𝜒(ℎ)𝜈( 𝑓 )𝜈(ℎ)
| 𝑓 ℎ| .

Using Lemma 3.6 (note that 8𝑚 ≤ (𝑔 + 2)/2, since 𝜃𝐽 is small enough), we get

∑
𝜒∈C(𝑔)

(𝛽𝑚�𝐹𝑚 (𝜒))4 ≤ 𝑞𝑔+2 4!𝛽4𝑚

24

∑
𝑃 | 𝑓 ℎ⇒𝑃∈P𝑚

Ω( 𝑓 ℎ)=4
𝑓 ℎ2=

𝜈( 𝑓 )𝜈(ℎ)
| 𝑓 ℎ| . (5.5)
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When 𝑓 ℎ2 = , we can write 𝑓 = 𝑏 𝑓 3
1 , ℎ = 𝑏ℎ3

1 with ( 𝑓1, ℎ1) = 1. Since Ω
(
𝑏2 𝑓 3

1 ℎ
3
1
)
= 4, it follows

that 𝑓1 = ℎ1 = 1 and Ω(𝑏) = 2. Then using the fact that 𝜈(𝑏)2 ≤ 𝜈(𝑏), we get

∑
𝑃 | 𝑓 ℎ⇒𝑃∈P𝑚

Ω( 𝑓 ℎ)=4
𝑓 ℎ2=

𝜈( 𝑓 )𝜈(ℎ)
| 𝑓 ℎ| ≤

∑
𝑃 |𝑔⇒𝑃∈P𝑚

Ω(𝑏)=2

𝜈(𝑏)
|𝑏 |2

=
1
2

( ∑
𝑃∈P𝑚

1
|𝑃 |2

)2

≤ 1
2𝑞2𝑚 ,

where for the last inequality we used the Prime Polynomial Theorem (2.1). Combining this and formulas
(5.4) and (5.5), we get

(𝑔+2) 𝜃 𝑗/2∑
𝑚=1

∑
𝜒∈F(𝑚)

𝑆 𝑗 ,𝑘 (𝜒)2 ≤ 𝑞𝑔+2
(𝑔+2) 𝜃 𝑗/2∑

𝑚=1
exp

����𝑘 (log𝑚 + 𝛾 + 1) + 2𝑘

𝛽𝑚+1
(
1 − 1

𝛽

) ����
4!𝛽4𝑚

25𝑞2𝑚 . (5.6)

Note that for any 1 < 𝛽 <
√
𝑞, this expression will be � 𝑞𝑔+2.

Now we take 𝛽 = 2. We use the fact that exp(2𝑘/(𝛽𝑚 (𝛽 − 1))) ≤ 𝑒𝑘 , and the fact that

∞∑
𝑚=1

𝑚𝑘𝑥𝑚 ≤ 𝑥𝑘!
(1 − 𝑥)𝑘+1

for 𝑥 < 1. Since 𝑞 ≥ 5, using this inequality and formula (5.6), inequality (5.2) follows. �

6. Upper bounds for moments of L-functions

Here, we will prove the following upper bound:

Proposition 6.1. For any positive real number k and any 𝜀 > 0, we have∑
𝜒∈C(𝑔)

���𝐿 (
1
2 , 𝜒

)���2𝑘 � 𝑞𝑔+2𝑔𝑘
2+𝜀 .

We first prove the following result:

Lemma 6.2. Let l and y be integers such that 3𝑙𝑦 ≤ 𝑔/2 + 1. For any complex numbers 𝑎(𝑃) with
|𝑎(𝑃) | � 1, we have

∑
𝜒∈C(𝑔)

������ ∑
deg(𝑃) ≤𝑦

𝜒(𝑃)𝑎(𝑃)√
|𝑃 |

������
2𝑙

� 𝑞𝑔
(𝑙!)252𝑙/3

�2𝑙/3�!9𝑙/3
���

∑
deg(𝑃) ≤𝑦

|𝑎(𝑃) |2
|𝑃 |

���
𝑙

. (6.1)

If we also assume that 𝑙 ≤ ���
∑

deg(𝑃) ≤𝑦

|𝑎(𝑃) |2
|𝑃 |

���
3−𝜀

, then we have

∑
𝜒∈C(𝑔)

������ ∑
deg(𝑃) ≤𝑦

𝜒(𝑃)𝑎(𝑃)√
|𝑃 |

������
2𝑙

� 𝑞𝑔𝑙! ���
∑

deg(𝑃) ≤𝑦

|𝑎(𝑃) |2
|𝑃 |

���
𝑙

. (6.2)
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Proof. We extend 𝑎(𝑃) to a completely multiplicative function. We have������ ∑
deg(𝑃) ≤𝑦

𝜒(𝑃)𝑎(𝑃)√
|𝑃 |

������
2𝑙

= (𝑙!)2
∑

𝑃 | 𝑓 ℎ⇒deg(𝑃) ≤𝑦
Ω( 𝑓 )=𝑙
Ω(ℎ)=𝑙

𝑎( 𝑓 )𝑎(ℎ)𝜈( 𝑓 )𝜈(ℎ)𝜒
(
𝑓 ℎ2)√

| 𝑓 ℎ|
. (6.3)

Note that

∑
𝜒∈C(𝑔)

������ ∑
deg(𝑃) ≤𝑦

𝜒(𝑃)𝑎(𝑃)√
|𝑃 |

������
2𝑙

≤
∑

𝐹 ∈M𝑞2 ,𝑔/2+1

������ ∑
deg(𝑃) ≤𝑦

𝜒𝐹 (𝑃)𝑎(𝑃)√
|𝑃 |

������
2𝑙

.

Using this and equation (6.3), note that if 𝑓 ℎ2 is not a cube, then the character sum over 𝐹 ∈ M𝑞2 ,𝑔/2+1
vanishes, since deg ( 𝑓 ℎ2) ≤ 3𝑙𝑦 ≤ 𝑔/2 + 1 by hypothesis. Then

∑
𝜒∈C(𝑔)

������ ∑
deg(𝑃) ≤𝑦

𝜒(𝑃)𝑎(𝑃)√
|𝑃 |

������
2𝑙

≤ 𝑞𝑔+2(𝑙!)2
∑

𝑃 | 𝑓 ℎ⇒deg(𝑃) ≤𝑦
Ω( 𝑓 )=𝑙
Ω(ℎ)=𝑙
𝑓 ℎ2=

𝑎( 𝑓 )𝑎(ℎ)𝜈( 𝑓 )𝜈(ℎ)𝜙𝑞2
(
𝑓 ℎ2)√

| 𝑓 ℎ|
�� 𝑓 ℎ2

��
𝑞2

.

The condition 𝑓 ℎ2 = can be rewritten as 𝑓 = 𝑏 𝑓 3
1 and ℎ = 𝑏ℎ3

1 with ( 𝑓1, ℎ1) = 1. Then we get

∑
𝜒∈C(𝑔)

������ ∑
deg(𝑃) ≤𝑦

𝜒(𝑃)𝑎(𝑃)√
|𝑃 |

������
2𝑙

≤ 𝑞𝑔+2(𝑙!)2
∑

𝑃 |𝑏⇒deg(𝑃) ≤𝑦
Ω(𝑏) ≤𝑙

Ω(𝑏)≡𝑙 (mod 3)

|𝑎(𝑏) |2𝜈(𝑏)
|𝑏 |

�����
∑

𝑃 | 𝑓 ⇒deg(𝑃) ≤𝑦
Ω( 𝑓 )=(𝑙−Ω(𝑏))/3

|𝑎( 𝑓 ) |3𝜈( 𝑓 )
| 𝑓 |3/23Ω( 𝑓 )

�����
2

= 𝑞𝑔+2(𝑙!)2
∑

𝑃 |𝑏⇒deg(𝑃) ≤𝑦
Ω(𝑏) ≤𝑙

Ω(𝑏)≡𝑙 (mod 3)

|𝑎(𝑏) |2𝜈(𝑏)
|𝑏 |

1
(((𝑙 −Ω(𝑏))/3)!)2

���
∑

deg(𝑃) ≤𝑦

|𝑎(𝑃) |3

3|𝑃 |3/2
���

2(𝑙−Ω(𝑏))/3

,

(6.4)

where we used the fact that 𝜈(𝑎𝑏) ≤ 𝜈(𝑎)𝜈(𝑏), 𝜈
(
𝑓 3) ≤ 𝜈( 𝑓 )/3Ω( 𝑓 ) and 𝜈(𝑏)2 ≤ 𝜈(𝑏), and we ignored

the condition that ( 𝑓1, ℎ1) = 1.
We further get that this is

� 𝑞𝑔 (𝑙!)2
𝑙∑
𝑖=0

𝑖≡𝑙 (mod 3)

���
∑

deg(𝑃) ≤𝑦

|𝑎(𝑃) |2
|𝑃 |

���
𝑖

1
𝑖!(((𝑙 − 𝑖)/3)!)232(𝑙−𝑖)/3 (6.5)

� 𝑞𝑔
(𝑙!)2

9𝑙/3
���

∑
deg(𝑃) ≤𝑦

|𝑎(𝑃) |2
|𝑃 |

���
𝑙 �𝑙/3�∑

𝑗=0

9 𝑗

(3 𝑗)!
(
𝑙
3 − 𝑗

)
!2
, (6.6)
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where we get the first line by using the facts that |𝑎(𝑃) | � 1 and
∑∞
𝑛=1

1
𝑛𝑞𝑛/2 < 1 and that the sum over

primes in formula (6.4) is bounded. Using the trinomial expansion formula, we get

�𝑙/3�∑
𝑗=0

9 𝑗

(3 𝑗)!
(
𝑙
3 − 𝑗

)
!2

≤
�𝑙/3�∑
𝑗=0

32 𝑗

(2 𝑗)!
(
𝑙
3 − 𝑗

)
!2

≤
∑

𝑎+𝑏+𝑐= �2𝑙/3�

3𝑎

𝑎!𝑏!𝑐!
≤ 52𝑙/3

�2𝑙/3�! .

Replacing in formulas (6.6) and then (6.4), we get

∑
𝜒∈C(𝑔)

������ ∑
deg(𝑃) ≤𝑦

𝜒(𝑃)𝑎(𝑃)√
|𝑃 |

������
2𝑙

� 𝑞𝑔
(𝑙!)252𝑙/3

�2𝑙/3�!9𝑙/3
���

∑
deg(𝑃) ≤𝑦

|𝑎(𝑃) |2
|𝑃 |

���
𝑙

.

Now let

𝑥 =
∑

deg(𝑃) ≤𝑦

|𝑎(𝑃) |2
|𝑃 | ,

and we assume that 𝑙 ≤ 𝑥3−𝜀 . We claim that for 𝑖 ≤ 𝑙 with 𝑖 ≡ 𝑙 (mod 3), we have

𝑥𝑖32𝑖/3

𝑖!((𝑙 − 𝑖)/3)!2 � 𝑥𝑙

𝑙!
. (6.7)

Using Stirling’s formula, we need to show that for 𝑙 ≤ 𝑥3−𝜀 , we have

2𝑖
3

log 3 + 𝑙 log 𝑙 − 𝑙 − 𝑖 log 𝑖 + 𝑖 − 2(𝑙 − 𝑖)
3

log
(
𝑙 − 𝑖

3

)
+ 2(𝑙 − 𝑖)

3
≤ (𝑙 − 𝑖) log 𝑥 + log𝐶,

for some constant C. Now let

𝑓 (𝑖) = 𝑖 log 𝑥 + 2𝑖
3

log 3 + 𝑙 log 𝑙 − 𝑙 − 𝑖 log 𝑖 + 𝑖 − 2(𝑙 − 𝑖)
3

log
(
𝑙 − 𝑖

3

)
+ 2(𝑙 − 𝑖)

3
.

Then

𝑓 ′(𝑖) = log
(
32/3𝑥

)
− log 𝑖 + 2

3
log

(
𝑙 − 𝑖

3

)
,

and f attains its maximum on [0, 𝑙] at i with 𝑖3 = 𝑥3 (𝑙 − 𝑖)2. Since 𝑙 ≤ 𝑥3−𝜀 , it follows that f attains its
maximum at some 𝑖0 with 𝑖0 > 𝑙/2. Indeed, if we suppose that 𝑖0 ≤ 𝑙/2, then 𝑙 − 𝑖0 ≥ 𝑙/2, and since
𝑥3 > 𝑙 it follows that 𝑖30 > 𝑙3/4 – which is a contradiction, since we assumed that 𝑖30 ≤ 𝑙3/8. Let 𝑖1 = 𝑖0/𝑙.
We have 1/2 < 𝑖1 < 1. Then

𝑓 (𝑖0) = 𝑙𝑖1 log 𝑥 + 𝑙 (1 − 𝑖1)
3

log 𝑙 + 2𝑖0
3

log 3 − 𝑙 − 𝑙𝑖1 log 𝑖1 + 𝑖0 −
2𝑙 (1 − 𝑖1)

3
log

(
1 − 𝑖1

3

)
+ 2𝑙 (1 − 𝑖1)

3
.

Since 1/2 < 𝑖1 < 1, it follows that

𝑓 (𝑖0) ≤ 𝑙 log 𝑥,

which establishes formula (6.7). Combining formulas (6.5) and (6.7), and since 𝑙/32𝑙/3 < 1, the conclu-
sion follows. �
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Proof of Proposition 6.1. The proof is similar to the proof of [36, Corollary A]. Let

𝑁 (𝑉) =
���{𝜒 primitive cubic, genus(𝜒) = 𝑔 : log

���𝐿 (
1
2 , 𝜒

)��� ≥ 𝑉
}��� .

Then ∑
𝜒∈C(𝑔)

���𝐿 (
1
2 , 𝜒

)���2𝑘 = 2𝑘
∫ ∞

−∞
exp(2𝑘𝑉)𝑁 (𝑉)𝑑𝑉. (6.8)

In formula (3.1) with 𝑘 = 1, note that we can bound the contribution from primes square by𝑂 (log log 𝑔).
Indeed, we split the sum over P with deg(𝑃) ≤ 𝑁/2 into primes P with deg(𝑃) ≤ 4 log𝑞 𝑔 and primes
P with 4 log𝑞 𝑔 < deg(𝑃) ≤ 𝑁/2. For the first term, we use the trivial bound, which gives the bound
𝑂 (log log 𝑔). For the second term, we use the Weil bound (2.10), yielding an upper bound of size 𝑜(1).
So we have

log
���𝐿 (

1
2 , 𝜒

)��� ≤ � ���
∑

deg(𝑃) ≤𝑁

𝜒(𝑃) (𝑁 − deg(𝑃))

𝑁 |𝑃 |
1
2+

1
𝑁 log𝑞

��� + 𝑔 + 2
𝑁

+𝑂 (log log 𝑔). (6.9)

Let

𝑔 + 2
𝑁

=
𝑉

𝐴

and 𝑁0 = 𝑁/log 𝑔, where

𝐴 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
log log 𝑔

2 if 𝑉 ≤ log 𝑔,
log 𝑔
2𝑉 log log 𝑔 if log 𝑔 < 𝑉 ≤ 1

12 log 𝑔 log log 𝑔,
6 if 1

12 log 𝑔 log log 𝑔 < 𝑉.

(6.10)

We only need to consider
√

log 𝑔 < 𝑉 . Indeed, note that the contribution from𝑉 ≤
√

log 𝑔 in the integral
on the right-hand side of equation (6.8) is 𝑜

(
𝑞𝑔𝑔𝑘

2
)
, by trivially bounding 𝑁 (𝑉) � 𝑞𝑔. If 𝜒 is such

that log
���𝐿 (

1
2 , 𝜒

)��� ≥ 𝑉 , then

� ���
∑

deg(𝑃) ≤𝑁

𝜒(𝑃) (𝑁 − deg(𝑃))

𝑁 |𝑃 |
1
2+

1
𝑁 log𝑞

��� ≥ 𝑉 − 𝑉

𝐴
+𝑂 (log log 𝑔) ≥ 𝑉

(
1 − 2

𝐴

)
for g large enough, since

√
log 𝑔 < 𝑉 .

Let

𝑆1 (𝜒) =

������ ∑
deg(𝑃) ≤𝑁0

𝜒(𝑃) (𝑁 − deg(𝑃))

𝑁 |𝑃 |
1
2+

1
𝑁 log𝑞

������ , 𝑆2 (𝜒) =

������ ∑
𝑁0<deg(𝑃) ≤𝑁

𝜒(𝑃) (𝑁 − deg(𝑃))

𝑁 |𝑃 |
1
2+

1
𝑁 log𝑞

������ .
Then if log

���𝐿 (
1
2 , 𝜒

)��� ≥ 𝑉 , either

𝑆2 (𝜒) ≥ 𝑉/𝐴 or 𝑆1 (𝜒) ≥ 𝑉 (1 − 3/𝐴) := 𝑉1.
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Let

F1 = { 𝜒 primitive cubic, genus(𝜒) = 𝑔 : 𝑆1 (𝜒) ≥ 𝑉1}
F2 = { 𝜒 primitive cubic, genus(𝜒) = 𝑔 : 𝑆2 (𝜒) ≥ 𝑉/𝐴}.

Using formula (6.1) of Lemma 6.2, we get

|F2 | ≤
∑

𝜒∈C(𝑔)

(
𝑆2 (𝜒)
𝑉/𝐴

)2𝑙
� 𝑞𝑔

(
𝐴

𝑉

)2𝑙 (𝑙!)2(25/9)𝑙/3

�2𝑙/3�!
���

∑
𝑁0<deg(𝑃) ≤𝑁

|𝑎(𝑃) |2
|𝑃 |

���
𝑙

,

for any l such that 3𝑙𝑁 ≤ 𝑔/2 + 1 ⇐⇒ 𝑙 ≤ 𝑉/(6𝐴) and where 𝑎(𝑃) = (𝑁 − deg(𝑃))/
(
𝑁 |𝑃 |1/𝑁 log 𝑞 ) .

Picking 𝑙 = 6�𝑉/(36𝐴)�, this gives

|F2 | � 𝑞𝑔
(
𝐴

𝑉

)2𝑙 (
𝑙

𝑒

)4𝑙/3
(5/2)2𝑙/3 (log log 𝑔)𝑙 � 𝑞𝑔 exp

(
− 𝑉

10𝐴
log𝑉

)
. (6.11)

If 𝜒 ∈ F1 and 𝑉 ≤ (log 𝑔)2−𝜀 , then we pick 𝑙 =
⌊
𝑉2

1 /log 𝑔
⌋
. Note that since 𝑎(𝑃) =

(𝑁 − deg(𝑃))/
(
𝑁 |𝑃 |1/𝑁 log 𝑔) , we have

∑
deg(𝑃) ≤𝑁0 |𝑎(𝑃) |

2/|𝑃 | = log 𝑔 + 𝑜(log 𝑔), and then 𝑙 ≤(∑
deg(𝑃) ≤𝑁0 |𝑎(𝑃) |

2/|𝑃 |
)3−𝜀

. We can then apply formula (6.2) of Lemma 6.2, and we get

|F1 | ≤
∑

𝜒∈C(𝑔)

(
𝑆1 (𝜒)
𝑉1

)2𝑙
� 𝑞𝑔

√
𝑙 exp

(
𝑙 log

(
𝑙 log 𝑔
𝑒𝑉2

1

))
� 𝑞𝑔

𝑉√
log 𝑔

exp

(
−

𝑉2
1

log 𝑔

)
.

If 𝑉 > (log 𝑔)2−𝜀 , then we pick 𝑙 = 18𝑉 and apply formula (6.1) to get

|F1 | � 𝑞𝑔

(
𝑙4/3251/3 log 𝑔
𝑒4/341/3𝑉2

1

) 𝑙
� 𝑞𝑔 exp(−2𝑉 log𝑉).

Using this and the values for A of equation (6.10), we prove the following:
If

√
log 𝑔 ≤ 𝑉 ≤ log 𝑔, then

𝑁 (𝑉) � 𝑞𝑔 exp

(
− 𝑉2

log 𝑔

(
1 − 6

log log 𝑔

)2
)
. (6.12)

If log 𝑔 < 𝑉 ≤ 1
12 log 𝑔 log log 𝑔, then

𝑁 (𝑉) � 𝑞𝑔 exp

(
− 𝑉2

log 𝑔

(
1 − 6𝑉

log 𝑔 log log 𝑔

)2
)
. (6.13)

If 𝑉 > 1
12 log 𝑔 log log 𝑔, then

𝑁 (𝑉) � 𝑞𝑔 exp
(
−𝑉 log𝑉

60

)
. (6.14)

Now we use the bounds (6.12), (6.13) and (6.14) in the form 𝑁 (𝑉) � 𝑞𝑔𝑔𝑜 (1) exp
(
−𝑉2/log 𝑔

)
if 𝑉 ≤ 4𝑘 log 𝑔 and 𝑁 (𝑉) � 𝑞𝑔𝑔𝑜 (1) exp(−4𝑘𝑉) if 𝑉 > 4𝑘 log 𝑔 in equation (6.8) to prove
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Proposition 6.1. Indeed, we have∑
𝜒∈C(𝑔)

���𝐿 (
1
2 , 𝜒

)���2𝑘 �𝑘 𝑞𝑔𝑔𝑜 (1)
∫ 4𝑘 log 𝑔

√
log 𝑔

exp
(
2𝑘𝑉 −𝑉2/log 𝑔

)
𝑑𝑉 + 𝑞𝑔𝑔𝑜 (1)

∫ ∞

4𝑘 log 𝑔
exp(−2𝑘𝑉)𝑑𝑉

�𝑘 𝑞𝑔𝑔𝑜 (1) exp
(
𝑘2 log 𝑔

)
,

and the desired upper bound follows. As mentioned in [36], it is interesting to remark that the proof
suggests that the dominant contribution for the 2𝑘th moment comes from the characters 𝜒 such that���𝐿 (

1
2 , 𝜒

)��� has size 𝑔𝑘 , and the measure of this set is about 𝑞𝑔𝑔−𝑘2 . �

7. Explicit upper bound for mollified moments

Here we will obtain an explicit upper bound for expression (3.21), which means that we want to find an
upper bound for 𝐶𝐽 from equation (3.20) by choosing 𝜃𝐽 , 𝑎, 𝑏 and d subject to the constraints in Lemma
3.5 and subject to formula (4.2).

Let

𝑓 (𝑢) = 𝑅1𝑒
𝑢 − 𝑅2𝑢𝑒

𝑢 + 𝑘2𝑢𝜃𝐽
2

,

with

𝑅1 = 𝑘𝑒 + 𝛼

2𝑑
log 𝜃𝐽 + log 𝐹

2𝑑
, 𝑅2 =

𝛼

2𝑑
, (7.1)

where we recall that

𝛼 = 2𝑏 − 2 + 𝑐

3
, 𝐹 =

𝑘2𝑒2+𝑐/35𝑐/3

4𝑑2−𝑐/3𝑐𝑐/3 , 𝑐 = 2 − 4/𝑎,

and a and d are as in Lemma 3.5. We will pick 𝜃𝐽 subject to the condition (4.2) and such that 𝑅1 > 0.
We have

𝑓 ′(𝑢) = 𝑒𝑢 (𝑅1 − 𝑅2 − 𝑅2𝑢) +
𝑘2𝜃𝐽

2
,

and notice that for 𝑢 ≤ (𝑅1 − 𝑅2)/𝑅2 we have 𝑓 ′(𝑢) > 0, so f is increasing on [0, (𝑅1 − 𝑅2)/𝑅2] – that
is, f is increasing on

[
0, 2𝑑𝑘𝑒

𝛼 + log 𝜃𝐽 + log𝐹
𝛼 − 1

]
. Also note that

𝑓 ′(𝑅1/𝑅2) = −𝑅2𝑒
𝑅1/𝑅2 + 𝑘2𝜃𝐽

2
< 0,

so the maximum of f occurs at some 𝑚 ∈ (𝑅1/𝑅2 − 1, 𝑅1/𝑅2). With this notation, we write

𝐶𝐽 ≤ 2
∫ 𝐽

0
(𝑢 + 1) exp

(
1
𝜃𝐽

(
𝑅1𝑒

𝑢 − 𝑅2𝑢𝑒
𝑢 + 𝑘2𝑢𝜃𝐽

2

))
𝑑𝑢.

For 𝑢 ≥ 4𝑅1/𝑅2 we have 𝑅1𝑒
𝑢 + 𝑘2𝑢𝜃𝐽/2 < 𝑅2𝑢𝑒

𝑢/2, so∫ 𝐽

4𝐴/𝐵
(𝑢 + 1) exp

(
1
𝜃𝐽

(
𝑅1𝑒

𝑢 − 𝑅2𝑢𝑒
𝑢 + 𝑘2𝑢𝜃𝐽

2

))
𝑑𝑢 ≤

∫ ∞

4𝑅1/𝑅2

𝑒−𝑢𝑑𝑢 = 𝑒−4𝑅1/𝑅2 . (7.2)
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Now ∫ 4𝑅1/𝑅2

0
(𝑢 + 1) exp

(
1
𝜃𝐽

(
𝑅1𝑒

𝑢 − 𝑅2𝑢𝑒
𝑢 + 𝑘2𝑢𝜃𝐽

2

))
𝑑𝑢

≤ 4𝑅1
𝑅2

(
4𝑅1
𝑅2

+ 1
)

exp
(

1
𝜃𝐽

(
𝑅1𝑒

𝑚 − 𝑅2𝑚𝑒𝑚 + 𝑘2𝑚𝜃𝐽
2

))
≤ 4𝑅1

𝑅2

(
4𝑅1
𝑅2

+ 1
)

exp
(
𝑘2𝑅1
2𝑅2

)
exp ���𝑅2𝑒

𝑅1
𝑅2

−1

𝜃𝐽

��� , (7.3)

where in the third line we used the fact that 𝑚 ∈ (𝑅1/𝑅2 − 1, 𝑅1/𝑅2). Combining formulas (7.2) and
(7.3), we get

𝐶𝐽 ≤ 2 ���𝑒−4𝑅1/𝑅2 + 4𝑅1
𝑅2

(
4𝑅1
𝑅2

+ 1
)

exp
(
𝑘2𝑅1
2𝑅2

)
exp ���𝑅2𝑒

𝑅1
𝑅2

−1

𝜃𝐽

������ .
Now using this inequality back in formula (3.21), we get

∑
𝜒∈C(𝑔)

���𝐿 (
1
2 , 𝜒

)���𝑘 ���𝑀 (
𝜒; 1

𝜅

)���𝑘𝜅 ≤𝜀 𝑞𝑔+2D1/2
𝑘 𝐶 (𝑘)1/2S1/2

𝑘 exp
(
𝑘2

2
+ (1 + 𝜂)𝑘

)
× ���exp(𝑘/𝜃𝐽 ) + 2 4

√
24
𝑐

⎡⎢⎢⎢⎢⎣𝑒−4𝑅1/𝑅2 + 4𝑅1
𝑅2

(
4𝑅1
𝐵

+ 1
)

exp
(
𝑘2𝑅1
2𝑅2

)
exp ���𝑅2𝑒

𝑅1
𝑅2

−1

𝜃𝐽

���
⎤⎥⎥⎥⎥⎦��� , (7.4)

where we recall that 𝑅1 and 𝑅2 are given in equation (7.1) and S𝑘 is defined in Lemma 5.1.
From the explicit upper bound obtained, we remark that because of the term exp

(
𝑅2𝑒

𝑅1/𝑅2−1/𝜃𝐽
)
,

the upper bound we obtain is of the form 𝑒𝑒
𝑂 (𝑘) .

Now we take 𝜅 = 1, 𝑘 = 2. Condition (4.2) becomes

10
𝐽∑
𝑟=0

𝜃𝑟ℓ𝑟 +
4
𝑑
≤ 1

2
.

Note that any 𝜃𝐽 with

𝜃1−𝑏
𝐽

𝑒1−𝑏

𝑒1−𝑏 − 1
≤ 𝑑 − 8

40𝑑

satisfies this condition. We will pick 𝜃𝐽 such that

𝜃𝐽 =

(
𝑑 − 8
40𝑑

(
1 − 1

𝑒

)) 1
1−𝑏

. (7.5)

Now, in formula (7.4), in order to obtain an optimal constant, we set

1
𝜃𝐽

= 𝑒𝑅1/𝑅2 ,
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and the term log 𝐹/(2𝑑) in the expression for 𝑅1 is small compared to the rest, so in order to optimise
the constant, we set

log
1
𝜃𝐽

=
2𝑑𝑒

2𝑏 − 2 + 𝑐
3
. (7.6)

Now from Lemma 3.5 we need

4𝑎𝑑𝜃1−𝑏
𝐽 ≤ 1,

so combining this with equation (7.5) it follows that

𝑐 ≤ 2 − 2(𝑑 − 8) (𝑒 − 1)
5𝑒

.

Now, to minimise equation (7.6) we need c to be maximal, so we will pick

𝑐 = 2 − 2(𝑑 − 8) (𝑒 − 1)
5𝑒

. (7.7)

From equations (7.5), (7.6) and (7.7), it follows that

𝑏 = 1 − 𝑐𝑥

6(𝑑𝑒 + 𝑥) , (7.8)

where 𝑥 = log(40𝑑𝑒/((𝑑 − 8) (𝑒 − 1))). With choices (7.8) and (7.7) for b and c, we want to minimise
equation (7.6), and this translates into minimising the function of d given by

𝑑𝑒 + 𝑥

1 − (𝑑−8) (𝑒−1)
5𝑒

for 𝑑 > 8.
The minimum of this function is achieved for

𝑑 ≈ 8.15, (7.9)

and in that case,

log
1
𝜃𝐽

=
2𝑑𝑒

2𝑏 − 2 + 𝑐
3
≈ 92.65.

With this choice for d, we get

𝑏 ≈ 0.91, 𝑐 ≈ 1.96. (7.10)

Choosing 𝑏, 𝑐, 𝑑 as in formulas (7.9) and (7.10), we obtain the upper bound∑
𝜒∈C(𝑔)

���𝐿 (
1
2 , 𝜒

)���2 |𝑀 (𝜒; 1) |2 ≤𝜀 𝑒𝑒
182
𝑞𝑔+2. (7.11)
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8. The mollified first moment

Here we will prove Theorem 1.3. We consider the mollified first moment with 𝜅 = 1. We have

𝑀 (𝜒) := 𝑀 (𝜒, 1) =
∑

ℎ0 · · · · ·ℎ𝐽=ℎ
𝑃 |ℎ 𝑗⇒𝑃∈𝐼 𝑗
Ω(ℎ 𝑗)≤ℓ 𝑗

𝑎(ℎ; 𝐽)𝜒(ℎ)𝜆(ℎ)𝜈(ℎ0) · · · · · 𝜈(ℎ𝐽 )√
|ℎ|

, (8.1)

and then∑
𝜒∈C(𝑔)

𝐿
(

1
2 , 𝜒

)
𝑀 (𝜒) =

∑
ℎ0 · · · · ·ℎ𝐽=ℎ
𝑃 |ℎ 𝑗⇒𝑃∈𝐼 𝑗
Ω(ℎ 𝑗)≤ℓ 𝑗

𝑎(ℎ; 𝐽)𝜆(ℎ)𝜈(ℎ0) · · · · · 𝜈(ℎ𝐽 )√
|ℎ|

∑
𝜒∈C(𝑔)

𝜒(ℎ)𝐿
(

1
2 , 𝜒

)
. (8.2)

We will evaluate the twisted first moment in the following proposition:

Proposition 8.1. Let 𝑞 ≡ 2 (mod 3), and let h be a polynomial in F𝑞 [𝑇] with deg(ℎ) < 𝑔
(

1
10 − 𝜀

)
. Let

ℎ = 𝐶𝑆2𝐸3, where C and S are square-free and coprime. Then we have∑
𝜒∈C(𝑔)

𝜒(ℎ)𝐿
(

1
2 , 𝜒

)
=

𝑞𝑔+2𝜁𝑞 (3/2)
𝜁𝑞 (3) |𝐶 |

√
|𝑆 |

AnK

(
1
𝑞2 ,

1
𝑞3/2

) ∏
𝑅∈F𝑞 [𝑇 ]

deg(𝑅) even
𝑅 |ℎ

𝑀𝑅

(
1
𝑞2 ,

1
𝑞3/2

)

+𝑂
(
𝑞

7𝑔
8 + deg(ℎ)

4 +𝜀𝑔
)
,

where AnK

(
1
𝑞2 ,

1
𝑞3/2

)
and 𝑀𝑅

(
1
𝑞2 ,

1
𝑞3/2

)
are given in equations (8.14) and (8.15).

Proof. The proof is similar to the proof of [13, Theorem 1.1]. Using the explicit description of the
characters 𝜒 ∈ C(𝑔) given by equation (2.5), along with Proposition 2.1, we write∑

𝜒∈C(𝑔)
𝜒(ℎ)𝐿

(
1
2 , 𝜒

)
= 𝑆1,principal + 𝑆1,dual,

where

𝑆1,principal =
∑

𝑓 ∈M𝑞,≤𝑋

1
𝑞deg( 𝑓 )/2

∑
𝐹 ∈H𝑞2 ,𝑔/2+1

𝑃 |𝐹⇒𝑃∉F𝑞 [𝑇 ]

𝜒𝐹 ( 𝑓 ℎ)

+ 1
1 − √

𝑞

∑
𝑓 ∈M𝑞,𝑋+1

1
𝑞deg( 𝑓 )/2

∑
𝐹 ∈H𝑞2 ,𝑔/2+1

𝑃 |𝐹⇒𝑃∉F𝑞 [𝑇 ]

𝜒𝐹 ( 𝑓 ℎ) (8.3)

and

𝑆1,dual =
∑

𝑓 ∈M𝑞,≤𝑔−𝑋−1

1
𝑞deg( 𝑓 )/2

∑
𝐹 ∈H𝑞2 ,𝑔/2+1

𝑃 |𝐹⇒𝑃∉F𝑞 [𝑇 ]

𝜔(𝜒𝐹 )𝜒𝐹
(
𝑓 ℎ2

)
(8.4)

+ 1
1 − √

𝑞

∑
𝑓 ∈M𝑞,𝑔−𝑋

1
𝑞deg( 𝑓 )/2

∑
𝐹 ∈H𝑞2 ,𝑔/2+1

𝑃 |𝐹⇒𝑃∉F𝑞 [𝑇 ]

𝜔(𝜒𝐹 )𝜒𝐹
(
𝑓 ℎ2

)
. (8.5)
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We will choose 𝑋 ≡ 2 deg(ℎ) (mod 3). For the principal term, we will compute the contribution from
polynomials f such that 𝑓 ℎ is a cube and bound the contribution from 𝑓 ℎ noncube. We write

𝑆1,principal = 𝑆
1,

+ 𝑆
1,≠

,

where𝑆
1,

corresponds to the sum with 𝑓 ℎ a cube in equation (8.3) and𝑆
1,≠

corresponds to the sum
with 𝑓 ℎ not a cube – namely,

𝑆
1,

=
∑

𝑓 ∈M𝑞,≤𝑋
𝑓 ℎ=

1
𝑞deg( 𝑓 )/2

∑
𝐹 ∈H𝑞2 ,𝑔/2+1
(𝐹, 𝑓 ℎ)=1

𝑃 |𝐹⇒𝑃∉F𝑞 [𝑇 ]

1 (8.6)

and

𝑆
1,≠

=
∑

𝑓 ∈M𝑞,≤𝑋
𝑓 ℎ≠

1
𝑞deg( 𝑓 )/2

∑
𝐹 ∈H

𝑞2 , 𝑔2 +1
𝑃 |𝐹⇒𝑃∉F𝑞 [𝑇 ]

𝜒𝐹 ( 𝑓 ℎ) +
1

1 − √
𝑞

∑
𝑓 ∈M𝑞,𝑋+1

1
𝑞deg( 𝑓 )/2

∑
𝐹 ∈H

𝑞2 , 𝑔2 +1
𝑃 |𝐹⇒𝑃∉F𝑞 [𝑇 ]

𝜒𝐹 ( 𝑓 ℎ).

(8.7)

Since 𝑋 ≡ 2 deg(ℎ) (mod 3), note that the second term in equation (8.3) does not contribute to
equation (8.6).

8.1. The main term

Now we focus on𝑆
1,

. Since ℎ = 𝐶𝑆2𝐸3, where 𝐶, 𝑆 are square-free and (𝐶, 𝑆) = 1 and 𝑓 ℎ = , it
follows that we can write 𝑓 = 𝐶2𝑆𝐾3. Then

𝑆
1,

=
∑

𝐾 ∈M
𝑞,≤

𝑋−deg(𝐶2𝐷)
3

1
|𝐶 |𝑞

√
|𝑆 |𝑞 |𝐾 |3/2

𝑞

∑
𝐹 ∈H𝑞2 ,𝑔/2+1
(𝐹,𝐾ℎ)=1

𝑃 |𝐹⇒𝑃∉F𝑞 [𝑇 ]

1. (8.8)

We first look at the generating series of the sum over F. We use the fact that

∑
𝐷∈F𝑞 [𝑇 ]

𝐷 |𝐹

𝜇(𝐷) =
{

1 if 𝐹 has no prime divisor in F𝑞 [𝑇],
0 otherwise,

(8.9)

where 𝜇 is the Möbius function over F𝑞 [𝑇]. The generating series corresponding to the inner sum in
equation (8.8) is∑

𝐹 ∈H𝑞2
(𝐹,𝐾ℎ)=1

𝑃 |𝐹⇒𝑃∉F𝑞 [𝑇 ]

𝑥deg(𝐹 ) =
∑

𝐹 ∈H𝑞2
(𝐹,𝐾ℎ)=1

𝑥deg(𝐹 )
∑

𝐷∈F𝑞 [𝑇 ]
𝐷 |𝐹

𝜇(𝐷) =
∑

𝐷∈F𝑞 [𝑇 ]
(𝐷,𝐾ℎ)=1

𝜇(𝐷)𝑥deg(𝐷)
∑

𝐹 ∈H𝑞2
(𝐹,𝐷𝐾ℎ)=1

𝑥deg(𝐹 ) .

(8.10)
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We evaluate the sum over F and have

∑
𝐹 ∈H𝑞2

(𝐹,𝐾𝐷ℎ)=1

𝑥deg(𝐹 ) =
∏

𝑃∈F𝑞2 [𝑇 ]
𝑃�𝐷𝐾ℎ

(
1 + 𝑥deg(𝑃)

)
=

Z𝑞2 (𝑥)

Z𝑞2
(
𝑥2) ∏

𝑃∈F𝑞2 [𝑇 ]
𝑃 |𝐷𝐾ℎ

(
1 + 𝑥deg(𝑃)

) ,

and combining this with equation (8.10), it follows that

∑
𝐹 ∈H𝑞2

(𝐹,𝐾ℎ)=1
𝑃 |𝐹⇒𝑃∉F𝑞 [𝑇 ]

𝑥deg(𝐹 ) =
Z𝑞2 (𝑥)

Z𝑞2
(
𝑥2) ∏

𝑃∈F𝑞2 [𝑇 ]
𝑃 |𝐾ℎ

(
1 + 𝑥deg(𝑃)

) ∑
𝐷∈F𝑞 [𝑇 ]
(𝐷,𝐾ℎ)=1

𝜇(𝐷)𝑥deg(𝐷)∏
𝑃∈F𝑞2 [𝑇 ]

𝑃 |𝐷

(
1 + 𝑥deg(𝑃)

) .

Now we write down an Euler product for the sum over D, and we have

∑
𝐷∈F𝑞 [𝑇 ]
(𝐷,𝐾ℎ)=1

𝜇(𝐷)𝑥deg(𝐷)∏
𝑃∈F𝑞2 [𝑇 ]

𝑃 |𝐷

(
1 + 𝑥deg(𝑃)

) =
∏

𝑅∈F𝑞 [𝑇 ]
(𝑅,𝐾ℎ)=1
deg(𝑅) odd

(
1 − 𝑥deg(𝑅)

1 + 𝑥deg(𝑅)

) ∏
𝑅∈F𝑞 [𝑇 ]
(𝑅,𝐾ℎ)=1

deg(𝑅) even

����1 − 𝑥deg(𝑅)(
1 + 𝑥

deg(𝑅)
2

)2

���� , (8.11)

where the product over R is over monic, irreducible polynomials. Let 𝐴𝑅 (𝑥) denote the first Euler factor
and 𝐵𝑅 (𝑥) the second. Using equation (8.11) and putting everything together, it follows that

∑
𝐹 ∈H𝑞2

(𝐹,𝐾ℎ)=1
𝑃 |𝐹⇒𝑃∉F𝑞 [𝑇 ]

𝑥deg(𝐹 ) =

Z𝑞2 (𝑥)
∏

𝑅∈F𝑞 [𝑇 ]
deg(𝑅) odd

𝐴𝑅 (𝑥)
∏

𝑅∈F𝑞 [𝑇 ]
deg(𝑅) even

𝐵𝑅 (𝑥)

Z𝑞2
(
𝑥2) ∏

𝑃∈F𝑞2 [𝑇 ]
𝑃 |𝐾ℎ

(
1 + 𝑥deg(𝑃)

) ∏
𝑅∈F𝑞 [𝑇 ]
𝑅 |𝐾ℎ

deg(𝑅) odd

𝐴𝑅 (𝑥)
∏

𝑅∈F𝑞 [𝑇 ]
𝑅 |𝐾ℎ

deg(𝑅) even

𝐵𝑅 (𝑥)
. (8.12)

We now introduce the sum over K, and we get

∑
𝐾 ∈M𝑞

𝑢deg(𝐾 )∏
𝑃∈F𝑞2 [𝑇 ]
𝑃 |𝐾,𝑃�ℎ

(
1 + 𝑥deg(𝑃)

) ∏
𝑅∈F𝑞 [𝑇 ]
𝑅 |𝐾,𝑅�ℎ

deg(𝑅) odd

𝐴𝑅 (𝑥)
∏

𝑅∈F𝑞 [𝑇 ]
𝑅 |𝐾,𝑅�ℎ

deg(𝑅) even

𝐵𝑅 (𝑥)

=
∏

𝑅∈F𝑞 [𝑇 ]
deg(𝑅) odd

𝑅�ℎ

[
1 + 𝑢deg(𝑅)(

1 + 𝑥deg(𝑅) ) 𝐴𝑅 (𝑥)
(
1 − 𝑢deg(𝑅) ) ] ∏

𝑅∈F𝑞 [𝑇 ]
deg(𝑅) even

𝑅�ℎ

⎡⎢⎢⎢⎢⎢⎣1 + 𝑢deg(𝑅)(
1 + 𝑥

deg(𝑅)
2

)2
𝐵𝑅 (𝑥)

(
1 − 𝑢deg(𝑅) )

⎤⎥⎥⎥⎥⎥⎦
×

∏
𝑅∈F𝑞 [𝑇 ]

𝑅 |ℎ

1
1 − 𝑢deg(𝑅) ,
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where R denotes a monic irreducible polynomial in F𝑞 [𝑇]. Combining this equation and equation (8.12),
we get the generating series

∑
𝐾 ∈M𝑞

𝑢deg(𝐾 )
∑

𝐹 ∈H𝑞2
(𝐹,𝐾ℎ)=1

𝑃 |𝐹⇒𝑃∉F𝑞 [𝑇 ]

𝑥deg(𝐹 ) =
Z𝑞2 (𝑥)
Z𝑞2

(
𝑥2) ∏

𝑅∈F𝑞 [𝑇 ]
deg(𝑅) odd

𝑅�ℎ

1(
1 + 𝑥deg(𝑅) ) (

1 − 𝑢deg(𝑅) )
×

∏
𝑅∈F𝑞 [𝑇 ]

deg(𝑅) even
𝑅�ℎ

1(
1 + 𝑥

deg(𝑅)
2

)2

(
1 + 2𝑥

deg(𝑅)
2 + 𝑢deg(𝑅)

1 − 𝑢deg(𝑅)

) ∏
𝑃∈F𝑞2 [𝑇 ]

𝑃 |ℎ

1
1 + 𝑥deg(𝑃)

∏
𝑅∈F𝑞 [𝑇 ]

𝑅 |ℎ

1
1 − 𝑢deg(𝑅)

= Z𝑞 (𝑢)
Z𝑞2 (𝑥)
Z𝑞2

(
𝑥2)AnK(𝑥, 𝑢)

∏
𝑅∈F𝑞 [𝑇 ]

deg(𝑅) even
𝑅 |ℎ

𝑀𝑅 (𝑥, 𝑢), (8.13)

where

AnK (𝑥, 𝑢) =
∏

𝑅∈F𝑞 [𝑇 ]
deg(𝑅) odd

1
1 + 𝑥deg(𝑅)

∏
𝑅∈F𝑞 [𝑇 ]

deg(𝑅) even

1(
1 + 𝑥

deg(𝑅)
2

)2

(
1 + 2𝑥

deg(𝑅)
2

(
1 − 𝑢deg(𝑅)

))
, (8.14)

𝑀𝑅 (𝑥, 𝑢) =
1

1 + 2𝑥deg(𝑅)/2 (
1 − 𝑢deg(𝑅) ) . (8.15)

We remark that if ℎ = 1, this generating series is the same as in [13, Section 4.3], and we compute
the asymptotic for𝑆

1,
in the exact same way, keeping the dependence on h. Using Perron’s formula

(Lemma 2.2) twice in equation (8.8) and the generating series just obtained, we get that

𝑆
1,

=
1

|𝐶 |𝑞
√
|𝑆 |𝑞

1
(2𝜋𝑖)2

∮ ∮ AnK(𝑥, 𝑢)
(
1 − 𝑞2𝑥2) ∏

𝑅 |ℎ 𝑀𝑅 (𝑥, 𝑢)

(1 − 𝑞𝑢)
(
1 − 𝑞2𝑥

) (
1 − 𝑞3/2𝑢

)
𝑥
𝑔
2 +1 (

𝑞3/2𝑢
) 𝑋−deg(𝐶2𝐷)

3

𝑑𝑥

𝑥

𝑑𝑢

𝑢
,

where we are integrating along circles of radii |𝑢 | < 1/𝑞 3
2 and |𝑥 | < 1/𝑞2. As in [13], we have that

AnK (𝑥, 𝑢) is analytic for |𝑥 | < 1/𝑞, |𝑥𝑢 | < 1/𝑞,
��𝑥𝑢2

�� < 1/𝑞2. We initially pick |𝑢 | = 1/𝑞 3
2+𝜀 and

|𝑥 | = 1/𝑞2+𝜀 . We shift the contour over x to |𝑥 | = 1/𝑞1+𝜀 and we encounter a pole at 𝑥 = 1/𝑞2. Note
that the new double integral will be bounded by 𝑂

(
𝑞
𝑔
2 +𝜀𝑔

)
. Then

𝑆
1,

=
𝑞𝑔+2

𝜁𝑞 (3) |𝐶 |𝑞
√
|𝑆 |𝑞

1
2𝜋𝑖

∮ AnK

(
1
𝑞2 , 𝑢

) ∏
𝑅 |ℎ 𝑀𝑅

(
1
𝑞2 , 𝑢

)
(1 − 𝑞𝑢)

(
1 − 𝑞3/2𝑢

) (
𝑞3/2𝑢

) 𝑋−deg(𝐶2𝐷)
3

𝑑𝑢

𝑢
+𝑂

(
𝑞
𝑔
2 +𝜀𝑔

)
.
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We shift the contour of integration to |𝑢 | = 𝑞−𝜀 and we encounter two simple poles: one at 𝑢 = 1/𝑞 3
2

and one at 𝑢 = 1/𝑞. Evaluating the residues, we get

𝑆
1,

=
𝑞𝑔+2𝜁𝑞 (3/2)

𝜁𝑞 (3) |𝐶 |𝑞
√
|𝑆 |𝑞

AnK

(
1
𝑞2 ,

1
𝑞3/2

) ∏
𝑅∈F𝑞 [𝑇 ]

deg(𝑅) even
𝑅 |ℎ

𝑀𝑅

(
1
𝑞2 ,

1
𝑞3/2

)

+
𝑞𝑔+2− 𝑋

6 𝜁𝑞 (1/2)

𝜁𝑞 (3)
��𝐶2𝑆

��1/3
𝑞

AnK

(
1
𝑞2 ,

1
𝑞

) ∏
𝑅∈F𝑞 [𝑇 ]

deg(𝑅) even
𝑅 |ℎ

𝑀𝑅

(
1
𝑞2 ,

1
𝑞

)
+𝑂

(
𝑞𝑔−

𝑋
2 +𝜀𝑔

)
. (8.16)

8.2. The contribution from noncubes

Let 𝑆11 be the first term in equation (8.7) and 𝑆12 the second. Note that it is enough to bound 𝑆11, since
bounding 𝑆12 will follow in a similar way. We use equation (8.9) again for the sum over F, and we have

𝑆11 =
∑

𝑓 ∈M𝑞,≤𝑋
𝑓 ℎ≠

1
𝑞deg( 𝑓 )/2

∑
𝐷∈M

𝑞,≤ 𝑔2 +1
(𝐷, 𝑓 )=1

𝜇(𝐷)
∑

𝐹 ∈H
𝑞2 , 𝑔2 +1−deg(𝐷)
(𝐹,𝐷)=1

𝜒𝐹 ( 𝑓 ℎ). (8.17)

Remark that we used 𝜒𝐷 ( 𝑓 ℎ) = 1, because 𝐷, 𝑓 , ℎ ∈ F𝑞 [𝑇]. Looking at the generating series of the
sum over F, we have∑

𝐹 ∈H𝑞2
(𝐹,𝐷)=1

𝜒𝐹 ( 𝑓 ℎ)𝑢deg(𝐹 ) =
∏

𝑃∈F𝑞2 [𝑇 ]
𝑃�𝐷 𝑓 ℎ

(
1 + 𝜒𝑃 ( 𝑓 ℎ)𝑢deg(𝑃)

)

=
L𝑞2

(
𝑢, 𝜒 𝑓 ℎ

)
L𝑞2

(
𝑢2, 𝜒 𝑓 ℎ

) ∏
𝑃∈F𝑞2 [𝑇 ]
𝑃� 𝑓 ℎ
𝑃 |𝐷

1 − 𝜒𝑃 ( 𝑓 ℎ)𝑢deg(𝑃)

1 − 𝜒𝑃 ( 𝑓 ℎ)𝑢2 deg(𝑃) .

Using Perron’s formula (Lemma 2.2) and the generating series obtained, we have∑
𝐹 ∈H

𝑞2 , 𝑔2 +1−deg(𝐷)
(𝐹,𝐷)=1

𝜒𝐹 ( 𝑓 ℎ) =
1

2𝜋𝑖

∮ L𝑞2
(
𝑢, 𝜒 𝑓 ℎ

)
L𝑞2

(
𝑢2, 𝜒 𝑓 ℎ

)
𝑢
𝑔
2 +1−deg(𝐷)

∏
𝑃∈F𝑞2 [𝑇 ]
𝑃� 𝑓 ℎ
𝑃 |𝐷

1 − 𝜒𝑃 ( 𝑓 ℎ)𝑢deg(𝑃)

1 − 𝜒𝑃 ( 𝑓 ℎ)𝑢2 deg(𝑃)
𝑑𝑢

𝑢
,

where the integral takes place along a circle of radius |𝑢 | = 1/𝑞 around the origin. Now we use
the Lindelöf bound for the L-function in the numerator and a lower bound for the L-function in the
denominator (formulas (2.8) and (2.9)), and we obtain��L𝑞2

(
𝑢, 𝜒 𝑓 ℎ

) �� � 𝑞2𝜀 deg( 𝑓 ℎ) ,
���L𝑞2

(
𝑢2, 𝜒 𝑓 ℎ

)��� � 𝑞−2𝜀 deg( 𝑓 ℎ) .

Therefore, ∑
𝐹 ∈H

𝑞2 , 𝑔2 +1−deg(𝐷)
(𝐹,𝐷)=1

𝜒𝐹 ( 𝑓 ℎ) � 𝑞
𝑔
2 −deg(𝐷)𝑞4𝜀 deg( 𝑓 ℎ)+2𝜀 deg(𝐷) .
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Trivially bounding the sums over D and f in equation (8.17) gives a total upper bound of

𝑆11 � 𝑞
𝑋+𝑔

2 +𝜀𝑔,

and similarly for 𝑆12.

8.3. The dual term

Now we focus on 𝑆1,dual. From equation (8.5), using equations (2.14) and (2.12), we have

𝑆1,dual = 𝑞−
𝑔
2 −1

∑
𝑓 ∈M𝑞,≤𝑔−𝑋−1

1
𝑞deg( 𝑓 )/2

∑
𝐹 ∈H

𝑞2 , 𝑔2 +1
(𝐹, 𝑓 ℎ)=1

𝑃 |𝐹⇒𝑃∉F𝑞 [𝑇 ]

𝐺𝑞2

(
𝑓 ℎ2, 𝐹

)
(8.18)

+ 𝑞−
𝑔
2 −1

1 − √
𝑞

∑
𝑓 ∈M𝑞,𝑔−𝑋

1
𝑞deg( 𝑓 )/2

∑
𝐹 ∈H

𝑞2 , 𝑔2 +1
(𝐹, 𝑓 ℎ)=1

𝑃 |𝐹⇒𝑃∉F𝑞 [𝑇 ]

𝐺𝑞2

(
𝑓 ℎ2, 𝐹

)
. (8.19)

We write 𝑆1,dual = 𝑆11,dual + 𝑆12,dual for terms (8.18) and (8.19), respectively, on the right-hand side of
this equation.

We have∑
𝐹 ∈H

𝑞2 , 𝑔2 +1
(𝐹, 𝑓 ℎ)=1

𝑃 |𝐹⇒𝑃∉F𝑞 [𝑇 ]

𝐺𝑞2

(
𝑓 ℎ2, 𝐹

)
=

∑
𝑁 ∈F𝑞 [𝑇 ]

deg(𝑁 ) ≤ 𝑔
2 +1

(𝑁 , 𝑓 ℎ)=1

𝜇(𝑁)
∑

𝐹 ∈M
𝑞2 , 𝑔2 +1−deg(𝑁 )

(𝐹, 𝑓 ℎ)=1

𝐺𝑞2

(
𝑓 ℎ2, 𝑁𝐹

)

=
∑

𝑁 ∈F𝑞 [𝑇 ]
deg(𝑁 ) ≤ 𝑔

2 +1
(𝑁 , 𝑓 ℎ)=1

𝜇(𝑁)𝐺𝑞2

(
𝑓 ℎ2, 𝑁

) ∑
𝐹 ∈M

𝑞2 , 𝑔2 +1−deg(𝑁 )
(𝐹,𝑁 𝑓 ℎ)=1

𝐺𝑞2

(
𝑓 ℎ2𝑁, 𝐹

)
.

(8.20)

Now let ( 𝑓 , ℎ) = 𝐵 and write 𝑓 = 𝐵 𝑓 and ℎ = 𝐵ℎ̃, where 𝑓 = 𝑓1 𝑓
2
2 𝑓 3

3 and ℎ̃ = ℎ1ℎ
2
2ℎ

3
3 with ( 𝑓1, 𝑓2) = 1,

(ℎ1, ℎ2) = 1 and 𝑓1, 𝑓2, ℎ1, ℎ2 square-free. Using Proposition 2.3, we get∑
𝐹 ∈M

𝑞2 , 𝑔2 +1−deg(𝑁 )
(𝐹, 𝑓 ℎ𝑁 )=1

𝐺𝑞2

(
𝑓 ℎ2𝑁, 𝐹

)
= 𝛿 𝑓2ℎ1=1

𝑞
4𝑔
3 + 8

3−4 deg(𝑁 )− 4
3 deg( 𝑓1)− 4

3 deg(ℎ2)− 8
3 [ 𝑔2 +1+deg( 𝑓1ℎ2)]3

𝜁𝑞2 (2)

× 𝐺𝑞2 (1, 𝑓1ℎ2𝑁)𝜌(1, [𝑔/2 + 1 + deg( 𝑓1ℎ2)]3)
∏

𝑃∈F𝑞2 [𝑇 ]
𝑃 | 𝑓 ℎ𝑁

(
1 + 1

|𝑃 |𝑞2

)−1

+𝑂

(
𝛿 𝑓2ℎ1=1𝑞

𝑔
3 +𝜀𝑔−deg(𝑁 )− deg( 𝑓1)

3 − deg(ℎ2)
3

)
+ 1

2𝜋𝑖

∮
|𝑢 |=𝑞−2𝜎

Ψ̃𝑞2
(
𝑓 ℎ2𝑁, 𝑢

)
𝑢
𝑔
2 +1−deg(𝐷)

𝑑𝑢

𝑢
,

with 2/3 < 𝜎 < 4/3. Combining formulas (8.18) and (8.20), we write 𝑆11,dual = 𝑀1 + 𝐸1, where 𝑀1
corresponds to the first term in this equation. Using equation (2.15) and following similar steps as in
[13], we get
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𝑀1 =
𝑞5𝑔/6+5/3

𝜁𝑞2 (2)
∑
𝐵 |ℎ

deg(𝐵) ≤𝑔−𝑋−1

1
𝑞deg(𝐵)/2

∑
deg( 𝑓 )≤𝑔−𝑋−1−deg(𝐵)

( 𝑓 ,ℎ̃)=1

𝛿 𝑓2ℎ1=1𝑞
− 8

3 [ 𝑔2 +1+deg( 𝑓1ℎ2)]3

𝑞deg( 𝑓 )/2+deg( 𝑓1ℎ2)/3

×
∑

𝑁 ∈F𝑞 [𝑇 ]
deg(𝑁 ) ≤ 𝑔

2 +1
(𝑁 , 𝑓 ℎ)=1

𝜇(𝑁)𝑞−2 deg(𝑁 ) ��𝐺𝑞2 (1, 𝑁)
��2

× 𝜌(1, [𝑔/2 + 1 + deg( 𝑓1ℎ2)]3)
∏

𝑃∈F𝑞2 [𝑇 ]
𝑃 | 𝑓 ℎ𝑁

(
1 + 1

|𝑃 |𝑞2

)−1

=
𝑞5𝑔/6+5/3

𝜁𝑞2 (2)
∑
𝐵 |ℎ

deg(𝐵) ≤𝑔−𝑋−1

1
𝑞deg(𝐵)/2

∑
deg( 𝑓 )≤𝑔−𝑋−1−deg(𝐵)

( 𝑓 ,ℎ̃)=1

𝛿 𝑓2ℎ1=1𝑞
− 8

3 [ 𝑔2 +1+deg( 𝑓1ℎ2)]3

𝑞deg( 𝑓 )/2+deg( 𝑓1ℎ2)/3

× 𝜌(1, [𝑔/2 + 1 + deg( 𝑓1ℎ2)]3)
∏

𝑃∈F𝑞2 [𝑇 ]
𝑃 | 𝑓 ℎ

(
1 + 1

|𝑃 |𝑞2

)−1

×
∑

𝑁 ∈F𝑞 [𝑇 ]
deg(𝑁 ) ≤ 𝑔

2 +1
(𝑁 , 𝑓 ℎ)=1

𝜇(𝑁)𝑞−2 deg(𝑁 )
∏

𝑃∈F𝑞2 [𝑇 ]
𝑃 |𝑁

(
1 + 1

|𝑃 |𝑞2

)−1
,

where we have used 𝐺𝑞2
(
𝑓 ℎ2, 𝑁

)
= 𝜒𝑁

(
𝑓 ℎ2) 𝐺𝑞2 (1, 𝑁) and the fact that the first sum is zero unless

ℎ1 = 𝑓2 = 1.
Similarly as in [13], we use Perron’s formula and the generating series to rewrite the sum over N.

Again, the only difference is the presence of h in these formulas. We have

∑
𝑁 ∈F𝑞 [𝑇 ]

deg(𝑁 ) ≤ 𝑔
2 +1

(𝑁 , 𝑓 ℎ)=1

𝜇(𝑁)𝑞−2 deg(𝑁 )
∏

𝑃∈F𝑞2 [𝑇 ]
𝑃 |𝑁

(
1 + 1

|𝑃 |𝑞2

)−1

=
1

2𝜋𝑖

∮ JnK (𝑤)
𝑤𝑔/2+1(1 − 𝑤)

×
∏

𝑅∈F𝑞 [𝑇 ]
deg(𝑅) odd

𝑅 | 𝑓 ℎ

𝐴dual,𝑅 (𝑤)−1
∏

𝑅∈F𝑞 [𝑇 ]
deg(𝑅) even

𝑅 | 𝑓 ℎ

𝐵dual,𝑅 (𝑤)−1 𝑑𝑤

𝑤
,

where

JnK(𝑤) =
∏

𝑅∈F𝑞 [𝑇 ]
deg(𝑅) odd

𝐴dual,𝑅 (𝑤)
∏

𝑅∈F𝑞 [𝑇 ]
deg(𝑅) even

𝐵dual,𝑅 (𝑤)

and

𝐴dual,𝑅 (𝑤) = 1 − 𝑤deg(𝑅)

𝑞2 deg(𝑅)
(
1 + 1

𝑞2 deg(𝑅)

) and 𝐵dual,𝑅 (𝑤) = 1 − 𝑤deg(𝑅)

𝑞2 deg(𝑅)
(
1 + 1

𝑞deg(𝑅)

)2 .
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Introducing the sums over B and 𝑓 , we have

𝑀1 =
𝑞5𝑔/6+5/3

𝜁𝑞2 (2)
∑
𝐵 |ℎ

deg(𝐵) ≤𝑔−𝑋−1

1
𝑞deg(𝐵)/2

∑
deg( 𝑓 )≤𝑔−𝑋−1−deg(𝐵)

( 𝑓 ,ℎ̃)=1

𝛿 𝑓2ℎ1=1𝑞
− 8

3 [ 𝑔2 +1+deg( 𝑓1ℎ2)]3

𝑞deg( 𝑓 )/2+deg( 𝑓1ℎ2)/3

× 𝜌(1, [𝑔/2 + 1 + deg( 𝑓1ℎ2)]3)
∏

𝑅∈F𝑞 [𝑇 ]
deg(𝑅) odd

𝑅 | 𝑓 ℎ

(
1 + 1

𝑞2 deg(𝑅)

)−1
×

∏
𝑅∈F𝑞 [𝑇 ]

deg(𝑅) even
𝑅 | 𝑓 ℎ

(
1 + 1

𝑞deg(𝑅)

)−2
(8.21)

× 1
2𝜋𝑖

∮ JnK (𝑤)
𝑤𝑔/2+1(1 − 𝑤)

∏
𝑅∈F𝑞 [𝑇 ]

deg(𝑅) odd
𝑅 | 𝑓 ℎ

𝐴dual,𝑅 (𝑤)−1
∏

𝑅∈F𝑞 [𝑇 ]
deg(𝑅) even

𝑅 | 𝑓 ℎ

𝐵dual,𝑅 (𝑤)−1 𝑑𝑤

𝑤
.

We let

HnK(ℎ; 𝑢, 𝑤) =
∑

( 𝑓 ,ℎ̃)=1

𝛿 𝑓2=1

𝑞deg( 𝑓 )/2+deg( 𝑓1)/3

∏
𝑅∈F𝑞 [𝑇 ]

deg(𝑅) odd
𝑅 | 𝑓
𝑅�ℎ

𝐶𝑅 (𝑤)−1
∏

𝑅∈F𝑞 [𝑇 ]
deg(𝑅) even

𝑅 | 𝑓
𝑅�ℎ

𝐷𝑅 (𝑤)−1𝑢deg( 𝑓 ) ,

where

𝐶𝑅 (𝑤) = 𝐴dual,𝑅 (𝑤)
(
1 + 1

𝑞2 deg(𝑅)

)
= 1 + 1

𝑞2 deg(𝑅) −
𝑤deg(𝑅)

𝑞2 deg(𝑅)

𝐷𝑅 (𝑤) = 𝐵dual,𝑅 (𝑤)
(
1 + 1

𝑞deg(𝑅)

)2
=

(
1 + 1

𝑞deg(𝑅)

)2
− 𝑤deg(𝑅)

𝑞2 deg(𝑅) .

Then we can write down an Euler product for HnK(ℎ; 𝑢, 𝑤), and we have

HnK (ℎ; 𝑢, 𝑤) =
∏

𝑅∈F𝑞 [𝑇 ]
deg(𝑅) odd

𝑅�ℎ

⎡⎢⎢⎢⎢⎣1 + 𝐶𝑅 (𝑤)−1 ��� 1
𝑞deg(𝑅)/3

∞∑
𝑗=0

𝑢 (3 𝑗+1) deg(𝑅)

𝑞 (3 𝑗+1) deg(𝑅)/2 +
∞∑
𝑗=1

𝑢3 𝑗 deg(𝑅)

𝑞3 𝑗 deg(𝑅)/2
���
⎤⎥⎥⎥⎥⎦

×
∏

𝑅∈F𝑞 [𝑇 ]
deg(𝑅) even

𝑅�ℎ

⎡⎢⎢⎢⎢⎣1 + 𝐷𝑅 (𝑤)−1 ��� 1
𝑞deg(𝑅)/3

∞∑
𝑗=0

𝑢 (3 𝑗+1) deg(𝑅)

𝑞 (3 𝑗+1) deg(𝑅)/2 +
∞∑
𝑗=1

𝑢3 𝑗 deg(𝑅)

𝑞3 𝑗 deg(𝑅)/2
���
⎤⎥⎥⎥⎥⎦

×
∏

𝑅∈F𝑞 [𝑇 ]
𝑅 |𝐵
𝑅�ℎ̃

⎡⎢⎢⎢⎢⎣1 + ��� 1
𝑞deg(𝑅)/3

∞∑
𝑗=0

𝑢 (3 𝑗+1) deg(𝑅)

𝑞 (3 𝑗+1) deg(𝑅)/2 +
∞∑
𝑗=1

𝑢3 𝑗 deg(𝑅)

𝑞3 𝑗 deg(𝑅)/2
���
⎤⎥⎥⎥⎥⎦ .
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Following [13], let

HnK(𝑢, 𝑤) =
∏

𝑅∈F𝑞 [𝑇 ]
deg(𝑅) odd

⎡⎢⎢⎢⎢⎣1 + 𝐶𝑅 (𝑤)−1 ��� 1
𝑞deg(𝑅)/3

∞∑
𝑗=0

𝑢 (3 𝑗+1) deg(𝑅)

𝑞 (3 𝑗+1) deg(𝑅)/2 +
∞∑
𝑗=1

𝑢3 𝑗 deg(𝑅)

𝑞3 𝑗 deg(𝑅)/2
���
⎤⎥⎥⎥⎥⎦

×
∏

𝑅∈F𝑞 [𝑇 ]
deg(𝑅) even

⎡⎢⎢⎢⎢⎣1 + 𝐷𝑅 (𝑤)−1 ��� 1
𝑞deg(𝑅)/3

∞∑
𝑗=0

𝑢 (3 𝑗+1) deg(𝑅)

𝑞 (3 𝑗+1) deg(𝑅)/2 +
∞∑
𝑗=1

𝑢3 𝑗 deg(𝑅)

𝑞3 𝑗 deg(𝑅)/2
���
⎤⎥⎥⎥⎥⎦

=
∏

𝑅∈F𝑞 [𝑇 ]
deg(𝑅) odd

⎡⎢⎢⎢⎢⎢⎢⎣1 + 𝐶𝑅 (𝑤)−1
������

𝑢deg(𝑅)

|𝑅 |5/6
𝑞

(
1 − 𝑢3 deg(𝑅)

|𝑅 |3/2
𝑞

) + 𝑢3 deg(𝑅)

|𝑅 |3/2
𝑞 − 𝑢3 deg(𝑅)

������
⎤⎥⎥⎥⎥⎥⎥⎦

×
∏

𝑅∈F𝑞 [𝑇 ]
deg(𝑅) even

⎡⎢⎢⎢⎢⎢⎢⎣1 + 𝐷𝑅 (𝑤)−1
������

𝑢deg(𝑅)

|𝑅 |5/6
𝑞

(
1 − 𝑢3 deg(𝑅)

|𝑅 |3/2
𝑞

) + 𝑢3 deg(𝑅)

|𝑅 |3/2
𝑞 − 𝑢3 deg(𝑅)

������
⎤⎥⎥⎥⎥⎥⎥⎦

= Z
(

𝑢

𝑞5/6

)
BnK (𝑢, 𝑤),

withBnK (𝑢, 𝑤) analytic in a wider region – for example,BnK (𝑢, 𝑤) is absolutely convergent for |𝑢 | < 𝑞
11
6

and |𝑢𝑤 | < 𝑞
11
6 .

After simplifying and making similar computations to the ones in [13], we have

HnK (ℎ; 𝑢, 𝑤) = HnK(𝑢, 𝑤)
∏

𝑅∈F𝑞 [𝑇 ]
deg(𝑅) odd

𝑅 |ℎ

⎡⎢⎢⎢⎢⎢⎢⎣1 + 𝐶𝑅 (𝑤)−1
������

𝑢deg(𝑅)

|𝑅 |5/6
𝑞

(
1 − 𝑢3 deg(𝑅)

|𝑅 |3/2
𝑞

) + 𝑢3 deg(𝑅)

|𝑅 |3/2
𝑞 − 𝑢3 deg(𝑅)

������
⎤⎥⎥⎥⎥⎥⎥⎦
−1

×
∏

𝑅∈F𝑞 [𝑇 ]
deg(𝑅) even

𝑅 |ℎ

⎡⎢⎢⎢⎢⎢⎢⎣1 + 𝐷𝑅 (𝑤)−1
������

𝑢deg(𝑅)

|𝑅 |5/6
𝑞

(
1 − 𝑢3 deg(𝑅)

|𝑅 |3/2
𝑞

) + 𝑢3 deg(𝑅)

|𝑅 |3/2
𝑞 − 𝑢3 deg(𝑅)

������
⎤⎥⎥⎥⎥⎥⎥⎦
−1

×
∏

𝑅∈F𝑞 [𝑇 ]
𝑅 |𝐵
𝑅�ℎ̃

⎡⎢⎢⎢⎢⎢⎢⎣1 +
������

𝑢deg(𝑅)

|𝑅 |5/6
𝑞

(
1 − 𝑢3 deg(𝑅)

|𝑅 |3/2
𝑞

) + 𝑢3 deg(𝑅)

|𝑅 |3/2
𝑞 − 𝑢3 deg(𝑅)

������
⎤⎥⎥⎥⎥⎥⎥⎦

= Z
(

𝑢

𝑞5/6

)
BnK(𝑢, 𝑤)

∏
𝑅∈F𝑞 [𝑇 ]

deg(𝑅) odd
𝑅 |ℎ

𝐸𝑅 (𝑢, 𝑤)−1
∏

𝑅∈F𝑞 [𝑇 ]
deg(𝑅) even

𝑅 |ℎ

𝐺𝑅 (𝑢, 𝑤)−1
∏

𝑅∈F𝑞 [𝑇 ]
𝑅 |𝐵
𝑅�ℎ̃

𝐹𝑅 (𝑢).

(8.22)

We now rewrite 𝑀1 using the generating series we have obtained and Perron’s formula for the sum
over 𝑓 . We need to deal with the terms involving [𝑔/2+1+deg( 𝑓1ℎ2)]3 that appear in equation (8.21). We
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notice that if 𝑔/2+1+deg( 𝑓1ℎ2) ≡ 0 (mod 3), then deg( 𝑓1) ≡ 𝑔−deg(ℎ2) −1 (mod 3), and in that case,
𝜌(1, [𝑔/2+1+deg( 𝑓1ℎ2)]3) = 1. If 𝑔/2+1+deg( 𝑓1ℎ2) ≡ 1 (mod 3), then deg( 𝑓1) ≡ 𝑔−deg(ℎ2) (mod 3).
In this case we also have 𝜏(𝜒3) = 𝑞 by Proposition 2.3, and 𝜌(1, [𝑔/2 + 1 + deg( 𝑓1ℎ2)]3) = 𝑞3,
since we are working over F𝑞2 . Using Perron’s formula (Lemma 2.2) twice and keeping in mind that
𝑋 ≡ 2 deg(ℎ) (mod 3), we get

𝑀1 =
𝑞5𝑔/6+5/3

𝜁𝑞2 (2)
∑
𝐵 |ℎ

deg(𝐵) ≤𝑔−𝑋−1

𝛿ℎ1=1

𝑞deg(𝐵)/2+deg(ℎ2)/3
1

(2𝜋𝑖)2

∮ ∮ HnK(ℎ; 𝑢, 𝑤)JnK (𝑤)
𝑤𝑔/2+1(1 − 𝑤)

×
∏

𝑅∈F𝑞 [𝑇 ]
deg(𝑅) odd

𝑅 |ℎ

𝐶𝑅 (𝑤)−1
∏

𝑅∈F𝑞 [𝑇 ]
deg(𝑅) even

𝑅 |ℎ

𝐷𝑅 (𝑤)−1
[

1
𝑢𝑔−𝑋−1−deg(𝐵) (

1 − 𝑢3) + 𝑞1/3

𝑢𝑔−𝑋−3−deg(𝐵) (
1 − 𝑢3) ] 𝑑𝑤

𝑤

𝑑𝑢

𝑢
.

We proceed as in [13], shifting the contour of integration over w to |𝑤 | = 𝑞1−𝜀 and computing the
residue at 𝑤 = 1. Writing

KnK (𝑢) = BnK (𝑢, 1)JnK (1),

we get

𝑀1 =
𝑞5𝑔/6+5/3

𝜁𝑞2 (2)
∑
𝐵 |ℎ

deg(𝐵) ≤𝑔−𝑋−1

𝛿ℎ1=1

𝑞deg(𝐵)/2+deg(ℎ2)/3
1

2𝜋𝑖

∮ KnK (𝑢)(
1 − 𝑢𝑞1/6) (

1 − 𝑢3) 𝑢𝑔−𝑋−1

(
1 + 𝑞1/3𝑢2

)
×

∏
𝑅∈F𝑞 [𝑇 ]

deg(𝑅) odd
𝑅 |ℎ

𝐸𝑅 (𝑢, 1)−1𝐶𝑅 (1)−1
∏

𝑅∈F𝑞 [𝑇 ]
deg(𝑅) even

𝑅 |ℎ

𝐺𝑅 (𝑢, 1)−1𝐷𝑅 (1)−1
∏

𝑅∈F𝑞 [𝑇 ]
𝑅 |𝐵
𝑅�ℎ̃

𝐹𝑅 (𝑢)
𝑑𝑢

𝑢

+𝑂
(
𝑞
𝑔
2 −

𝑋
6 +𝜀𝑔

)
.

Shifting the contour of integration to |𝑢 | = 𝑞−𝜀 and computing the residue at 𝑢 = 𝑞−
1
6 ,

𝑀1 = 2𝑞𝑔−
𝑋
6 +2 KnK

(
𝑞−1/6)

𝜁𝑞2 (2)
(√

𝑞 − 1
) ∑

𝐵 |ℎ
deg(𝐵) ≤𝑔−𝑋−1

𝛿ℎ1=1

𝑞2 deg(𝐵)/3+deg(ℎ2)/3

∏
𝑅∈F𝑞 [𝑇 ]

deg(𝑅) odd
𝑅 |ℎ

𝐸𝑅

(
𝑞−1/6, 1

)−1
𝐶𝑅 (1)−1

×
∏

𝑅∈F𝑞 [𝑇 ]
deg(𝑅) even

𝑅 |ℎ

𝐺𝑅

(
𝑞−1/6, 1

)−1
𝐷𝑅 (1)−1

∏
𝑅∈F𝑞 [𝑇 ]

𝑅 |𝐵
𝑅�ℎ̃

𝐹𝑅

(
𝑞−1/6

)
+𝑂

(
𝑞

5𝑔
6 +𝜀𝑔

)
.
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Now note that we can extend the sum over B to include all 𝐵 | ℎ at the expense of an error term of
size 𝑂

(
𝜏(ℎ)/𝑞 2

3 (𝑔−𝑋 )
)
, giving a total error term of size 𝑂

(
𝑞
𝑔
3 +

𝑋
2 +𝜀𝑔

)
. Then

𝑀1 = 2𝑞𝑔−
𝑋
6 +2 KnK

(
𝑞−1/6)

𝜁𝑞2 (2)
(√

𝑞 − 1
) ∏

𝑅∈F𝑞 [𝑇 ]
deg(𝑅) odd

𝑅 |ℎ

𝐸𝑅

(
𝑞−1/6, 1

)−1
𝐶𝑅 (1)−1

∏
𝑅∈F𝑞 [𝑇 ]

deg(𝑅) even
𝑅 |ℎ

𝐺𝑅

(
𝑞−1/6, 1

)−1
𝐷𝑅 (1)−1

×
∑
𝐵 |ℎ

𝛿ℎ1=1

𝑞2 deg(𝐵)/3+deg(ℎ2)/3

∏
𝑅∈F𝑞 [𝑇 ]

𝑅 |𝐵
𝑅�ℎ̃

𝐹𝑅

(
𝑞−1/6

)
+𝑂

(
𝑞

5𝑔
6 +𝜀𝑔 + 𝑞

𝑔
3 +

𝑋
2 +𝜀𝑔

)
. (8.23)

Recall that ℎ = 𝐶𝑆2𝐸3 with 𝐶, 𝑆 square-free and coprime. Then for the sum over B we can write an
Euler product as follows:∑

𝐵 |ℎ

𝛿ℎ1=1

𝑞2 deg(𝐵)/3+deg(ℎ2)/3

∏
𝑅∈F𝑞 [𝑇 ]

𝑅 |𝐵
𝑅�ℎ̃

𝐹𝑅

(
𝑞−1/6

)

=
∏

𝑅∈F𝑞 [𝑇 ]
𝑅 |𝐶

�����
ord𝑅 (ℎ)−1∑

𝑗=1
𝑗≡1 (mod 3)

1
|𝑅 |2 𝑗/3

𝑞

+
ord𝑅 (ℎ)−1∑

𝑗=2
𝑗≡2 (mod 3)

1

|𝑅 |
1
3+

2 𝑗
3

𝑞

+
𝐹𝑅

(
𝑞−1/6)

|𝑅 |
2 ord𝑅 (ℎ)

3
𝑞

�����
×

∏
𝑅∈F𝑞 [𝑇 ]

𝑅 |𝑆

�����
ord𝑅 (ℎ)−1∑

𝑗=2
𝑗≡2 (mod 3)

1
|𝑅 |2 𝑗/3

𝑞

+
ord𝑅 (ℎ)−1∑

𝑗=0
𝑗≡0 (mod 3)

1

|𝑅 |
1
3+

2 𝑗
3

𝑞

+
𝐹𝑅

(
𝑞−1/6)

|𝑅 |
2 ord𝑅 (ℎ)

3
𝑞

�����
×

∏
𝑅∈F𝑞 [𝑇 ]

𝑅 |𝐸
𝑅�𝐶𝑆

�����
ord𝑅 (ℎ)−1∑

𝑗=0
𝑗≡0 (mod 3)

1
|𝑅 |2 𝑗/3

𝑞

+
ord𝑅 (ℎ)−1∑

𝑗=1
𝑗≡1 (mod 3)

1

|𝑅 |
1
3+

2 𝑗
3

𝑞

+
𝐹𝑅

(
𝑞−1/6)

|𝑅 |
2 ord𝑅 (ℎ)

3
𝑞

����� .
Simplifying and using the fact that 𝐹𝑅

(
𝑞−1/6) = |𝑅 |𝑞

|𝑅 |𝑞−1 , we get∑
𝐵 |ℎ

𝛿ℎ1=1

𝑞2 deg(𝐵)/3+deg(ℎ2)/3

∏
𝑅∈F𝑞 [𝑇 ]

𝑅 |𝐵
𝑅�ℎ̃

𝐹𝑅

(
𝑞−1/6

)
=

1
|𝐶 |2/3

𝑞 |𝑆 |1/3
𝑞

∏
𝑅∈F𝑞 [𝑇 ]

𝑅 |ℎ

|𝑅 |𝑞
|𝑅 |𝑞 − 1

.

Using this and equation (8.23), it follows that

𝑀1 = 2𝑞𝑔−
𝑋
6 +2 KnK

(
𝑞−1/6)

|𝐶 |2/3
𝑞 |𝑆 |1/3

𝑞 𝜁𝑞2 (2)
(√

𝑞 − 1
) ∏

𝑅∈F𝑞 [𝑇 ]
deg(𝑅) odd

𝑅 |ℎ

𝐸𝑅

(
𝑞−1/6, 1

)−1
𝐶𝑅 (1)−1

×
∏

𝑅∈F𝑞 [𝑇 ]
deg(𝑅) even

𝑅 |ℎ

𝐺𝑅

(
𝑞−1/6, 1

)−1
𝐷𝑅 (1)−1 ×

∏
𝑅∈F𝑞 [𝑇 ]

𝑅 |ℎ

|𝑅 |𝑞
|𝑅 |𝑞 − 1

+𝑂
(
𝑞

5𝑔
6 +𝜀𝑔 + 𝑞

𝑔
3 +

𝑋
2 +𝜀𝑔

)
.
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Putting everything together, we get

𝑆11,dual

=
2𝑞𝑔− 𝑋

6 +2KnK
(
𝑞−1/6)

|𝐶 |2/3
𝑞 |𝑆 |1/3

𝑞 𝜁𝑞2 (2)
(√

𝑞 − 1
) ∏

𝑅∈F𝑞 [𝑇 ]
deg(𝑅) odd

𝑅 |ℎ

𝐸𝑅

(
𝑞−1/6, 1

)−1
𝐶𝑅 (1)−1

∏
𝑅∈F𝑞 [𝑇 ]

deg(𝑅) even
𝑅 |ℎ

𝐺𝑅

(
𝑞−1/6, 1

)−1
𝐷𝑅 (1)−1

×
∏

𝑅∈F𝑞 [𝑇 ]
𝑅 |ℎ

|𝑅 |𝑞
|𝑅 |𝑞 − 1

+𝑂
(
𝑞

5𝑔
6 +𝜀𝑔 + 𝑞

𝑔
3 +

𝑋
2 +𝜀𝑔

)

+ 𝑞−
𝑔
2 −1 1

2𝜋𝑖

∮
|𝑢 |=𝑞−2𝜎

∑
𝑓 ∈M𝑞,≤𝑔−𝑋−1

1
𝑞deg( 𝑓 )/2

∑
𝑁 ∈F𝑞 [𝑇 ]

deg(𝑁 ) ≤ 𝑔
2 +1

(𝑁 , 𝑓 ℎ)=1

𝜇(𝑁)𝐺𝑞2

(
𝑓 ℎ2, 𝑁

) Ψ̃𝑞2
(
𝑓 ℎ2𝑁, 𝑢

)
𝑢𝑔/2+1−deg(𝑁 )

𝑑𝑢

𝑢
.

We treat 𝑆12,dual similarly, and since deg( 𝑓 ) = 𝑔 − 𝑋 we have [𝑔/2 + 1 + deg( 𝑓1ℎ2)]3 = 1. Then, as
before, 𝜌(1, 1) = 𝜏(𝜒3) = 𝑞3, and we get

𝑆12,dual

=
𝑞𝑔−

𝑋
6 +2KnK

(
𝑞−1/6)

|𝐶 |2/3
𝑞 |𝑆 |1/3

𝑞 𝜁𝑞2 (2)
(
1 − √

𝑞
) ∏

𝑅∈F𝑞 [𝑇 ]
deg(𝑅) odd

𝑅 |ℎ

𝐸𝑅

(
𝑞−1/6, 1

)−1
𝐶𝑅 (1)−1

∏
𝑅∈F𝑞 [𝑇 ]

deg(𝑅) even
𝑅 |ℎ

𝐺𝑅

(
𝑞−1/6, 1

)−1
𝐷𝑅 (1)−1

×
∏

𝑅∈F𝑞 [𝑇 ]
𝑅 |ℎ

|𝑅 |𝑞
|𝑅 |𝑞 − 1

+𝑂
(
𝑞

5𝑔
6 +𝜀𝑔 + 𝑞

𝑔
3 +

𝑋
2 +𝜀𝑔

)

+ 𝑞−
𝑔
2 −1

1 − √
𝑞

1
2𝜋𝑖

∮
|𝑢 |=𝑞−2𝜎

∑
𝑓 ∈M𝑞,𝑔−𝑋

1
𝑞deg( 𝑓 )/2

∑
𝑁 ∈F𝑞 [𝑇 ]

deg(𝑁 ) ≤ 𝑔
2 +1

(𝑁 , 𝑓 ℎ)=1

𝜇(𝑁)𝐺𝑞2

(
𝑓 ℎ2, 𝑁

) Ψ̃𝑞2
(
𝑓 ℎ2𝑁, 𝑢

)
𝑢𝑔/2+1−deg(𝑁 )

𝑑𝑢

𝑢
.

Combining the two previous equations, we get

𝑆1,dual = −
𝑞𝑔−

𝑋
6 +2KnK

(
𝑞−1/6) 𝜁𝑞 (1/2)

|𝐶 |2/3
𝑞 |𝑆 |1/3

𝑞 𝜁𝑞2 (2)

∏
𝑅∈F𝑞 [𝑇 ]

deg(𝑅) odd
𝑅 |ℎ

𝐸𝑅

(
𝑞−1/6, 1

)−1
𝐶𝑅 (1)−1

∏
𝑅∈F𝑞 [𝑇 ]

deg(𝑅) even
𝑅 |ℎ

𝐺𝑅

(
𝑞−1/6, 1

)−1
𝐷𝑅 (1)−1

∏
𝑅∈F𝑞 [𝑇 ]

𝑅 |ℎ

|𝑅 |𝑞
|𝑅 |𝑞 − 1

+𝑂
(
𝑞

5𝑔
6 +𝜀𝑔 + 𝑞

𝑔
3 +

𝑋
2 +𝜀𝑔

)
(8.24)
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+ 𝑞−𝑔/2−1 1
2𝜋𝑖

∮
|𝑢 |=𝑞−2𝜎

∑
𝑓 ∈M𝑞,≤𝑔−𝑋−1

1
𝑞deg( 𝑓 )/2

∑
𝑁 ∈F𝑞 [𝑇 ]

deg(𝑁 ) ≤ 𝑔
2 +1

(𝑁 , 𝑓 ℎ)=1

𝜇(𝑁)𝐺𝑞2

(
𝑓 ℎ2, 𝑁

) Ψ̃𝑞2
(
𝑓 ℎ2𝑁, 𝑢

)
𝑢𝑔/2+1−deg(𝑁 )

𝑑𝑢

𝑢

+ 𝑞−
𝑔
2 −1

1 − √
𝑞

1
2𝜋𝑖

∮
|𝑢 |=𝑞−2𝜎

∑
𝑓 ∈M𝑞,𝑔−𝑋

1
𝑞deg( 𝑓 )/2

∑
𝑁 ∈F𝑞 [𝑇 ]

deg(𝑁 ) ≤ 𝑔
2 +1

(𝑁 , 𝑓 ℎ)=1

𝜇(𝑁)𝐺𝑞2

(
𝑓 ℎ2, 𝑁

) Ψ̃𝑞2
(
𝑓 ℎ2𝑁, 𝑢

)
𝑢𝑔/2+1−deg(𝑁 )

𝑑𝑢

𝑢
.

Now using the work from [13], we have

KnK
(
𝑞−1/6)

𝜁𝑞2 (2)
=
AnK

(
1/𝑞2, 1/𝑞

)
𝜁𝑞 (3)

.

When deg(𝑅) is odd, note that we have

𝐸𝑅

(
𝑞−1/6, 1

)−1
𝐶𝑅 (1)−1 |𝑅 |𝑞

|𝑅 |𝑞 − 1
= 1,

and when deg(𝑅) is even, we have

𝐺𝑅

(
𝑞−1/6, 1

)−1
𝐷−1
𝑅

|𝑅 |𝑞
|𝑅 |𝑞 − 1

=
|𝑅 |2𝑞

|𝑅 |2𝑞 + 2|𝑅 |𝑞 − 2
= 𝑀𝑅

(
1
𝑞2 ,

1
𝑞

)
.

Hence combining equations (8.24) and (8.16), we get

𝑆
1,

+ 𝑆1,dual =
𝑞𝑔+2𝜁𝑞 (3/2)

𝜁𝑞 (3) |𝐶 |𝑞
√
|𝑆 |𝑞

AnK

(
1
𝑞2 ,

1
𝑞3/2

) ∏
𝑅∈F𝑞 [𝑇 ]

deg(𝑅) even
𝑅 |ℎ

𝑀𝑅

(
1
𝑞2 ,

1
𝑞3/2

)

+ 𝑞−
𝑔
2 −1 1

2𝜋𝑖

∮
|𝑢 |=𝑞−2𝜎

∑
𝑓 ∈M𝑞,≤𝑔−𝑋−1

1
𝑞deg( 𝑓 )/2

∑
𝑁 ∈F𝑞 [𝑇 ]

deg(𝑁 ) ≤ 𝑔
2 +1

(𝑁 , 𝑓 ℎ)=1

𝜇(𝑁)𝐺𝑞2

(
𝑓 ℎ2, 𝑁

) Ψ̃𝑞2
(
𝑓 ℎ2𝑁, 𝑢

)
𝑢𝑔/2+1−deg(𝑁 )

𝑑𝑢

𝑢

+ 𝑞−
𝑔
2 −1

1 − √
𝑞

1
2𝜋𝑖

∮
|𝑢 |=𝑞−2𝜎

∑
𝑓 ∈M𝑞,𝑔−𝑋

1
𝑞deg( 𝑓 )/2

∑
𝑁 ∈F𝑞 [𝑇 ]

deg(𝑁 ) ≤ 𝑔
2 +1

(𝑁 , 𝑓 ℎ)=1

𝜇(𝑁)𝐺𝑞2

(
𝑓 ℎ2, 𝑁

) Ψ̃𝑞2
(
𝑓 ℎ2𝑁, 𝑢

)
𝑢𝑔/2+1−deg(𝑁 )

𝑑𝑢

𝑢

+𝑂
(
𝑞

5𝑔
6 +𝜀𝑔 + 𝑞

𝑔
3 +

𝑋
2 +𝜀𝑔 + 𝑞𝑔−

𝑋
2 +𝜀𝑔

)
.

Using Proposition 2.3 and following similar steps as in the proof at [13, page 48], we get

𝑞−
𝑔
2 −1 1

2𝜋𝑖

∮
|𝑢 |=𝑞−2𝜎

∑
𝑓 ∈M𝑞,≤𝑔−𝑋−1

1
𝑞deg( 𝑓 )/2

∑
𝑁 ∈F𝑞 [𝑇 ]

deg(𝑁 ) ≤ 𝑔
2 +1

(𝑁 , 𝑓 ℎ)=1

𝜇(𝑁)𝐺𝑞2

(
𝑓 ℎ2, 𝑁

) Ψ̃𝑞2
(
𝑓 ℎ2𝑁, 𝑢

)
𝑢𝑔/2+1−deg(𝑁 )

𝑑𝑢

𝑢

� 𝑔𝑞
3𝑔
2 −(2−𝜎)𝑋+2 deg(ℎ)

( 3
2−𝜎

)
,

as long as 𝜎 ≥ 7/6. The second integral involving the sum over 𝑓 ∈ M𝑞,𝑔−𝑋 is similarly bounded.
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Collecting the estimate for𝑆
1,

+ 𝑆1,dual with the proper error terms and the estimate for𝑆
1,≠

from
Section 8.2, we get∑

𝜒∈C(𝑔)
𝜒(ℎ)𝐿

(
1
2 , 𝜒

)
=

𝑞𝑔+2𝜁𝑞 (3/2)
𝜁𝑞 (3) |𝐶 |𝑞

√
|𝑆 |𝑞

AnK

(
1
𝑞2 ,

1
𝑞3/2

) ∏
𝑅∈F𝑞 [𝑇 ]

deg(𝑅) even
𝑅 |ℎ

𝑀𝑅

(
1
𝑞2 ,

1
𝑞3/2

)

+𝑂
(
𝑞
𝑋+𝑔

2 +𝜀𝑔 + 𝑞
3𝑔
2 −(2−𝜎)𝑋+2 deg(ℎ) ( 3

2−𝜎) + 𝑞
5𝑔
6 +𝜀𝑔 + 𝑞𝑔−

𝑋
2 +𝜀𝑔

)
,

where 7/6 ≤ 𝜎 < 4/3. We pick 𝜎 = 7/6 and 𝑋 = 3𝑔
4 + deg(ℎ)

2 . Then the error term becomes
𝑂

(
𝑞

7𝑔
8 + deg(ℎ)

4 +𝜀𝑔
)
. Since deg(ℎ) < 𝑔

10 − 𝜀𝑔, the main term dominates the error term, and we have a
genuine asymptotic formula.

8.4. Proof of Theorem 1.3

Proof. Here we will finish the proof of Theorem 1.3. From equation (8.2) and Proposition 8.1, it follows
that the main term in the mollified first moment is equal to

𝑞𝑔+2𝜁𝑞 (3/2)
𝜁𝑞 (3)

AnK

(
1
𝑞2 ,

1
𝑞3/2

) 𝐽∏
𝑟=0

𝑇 (𝑟), (8.25)

where

𝑇 (𝑟) =
∑

𝑃 |ℎ𝑟⇒𝑃∈𝐼𝑟
Ω(ℎ𝑟 ) ≤ℓ𝑟
ℎ𝑟=𝐶𝑟𝑆2

𝑟𝐸
3
𝑟

(𝐶𝑟 ,𝑆𝑟 )=1,𝐶𝑟 ,𝑆𝑟 square-free

𝑎(ℎ𝑟 ; 𝐽)𝜆(ℎ𝑟 )𝜈(ℎ𝑟 )
|𝐶𝑟 |3/2

𝑞 |𝑆𝑟 |3/2
𝑞 |𝐸𝑟 |3/2

𝑞

∏
𝑅∈F𝑞 [𝑇 ]
deg 𝑅 even

𝑅 |ℎ𝑟

𝑀𝑅

(
1
𝑞2 ,

1
𝑞3/2

)

≥
∑

𝑃 |ℎ𝑟⇒𝑃∈𝐼𝑟
ℎ𝑟=𝐶𝑟𝑆2

𝑟𝐸
3
𝑟

(𝐶𝑟 ,𝑆𝑟 )=1,𝐶𝑟 ,𝑆𝑟 square-free

𝑎(ℎ𝑟 ; 𝐽)𝜆(ℎ𝑟 )𝜈(ℎ𝑟 )
|𝐶𝑟 |3/2

𝑞 |𝑆𝑟 |3/2
𝑞 |𝐸𝑟 |3/2

𝑞

∏
𝑅∈F𝑞 [𝑇 ]
deg 𝑅 even

𝑅 |ℎ𝑟

𝑀𝑅

(
1
𝑞2 ,

1
𝑞3/2

)

−
∑

𝑃 |ℎ𝑟⇒𝑃∈𝐼𝑟
ℎ𝑟=𝐶𝑟𝑆2

𝑟𝐸
3
𝑟

(𝐶𝑟 ,𝑆𝑟 )=1,𝐶𝑟 ,𝑆𝑟 square-free

2Ω(ℎ𝑟 )

2ℓ𝑟 |𝐶𝑟 |3/2
𝑞 |𝑆𝑟 |3/2

𝑞 |𝐸𝑟 |3/2
𝑞

,

where in the second line we have added the ℎ𝑟 with Ω(ℎ𝑟 ) ≥ ℓ𝑟 to the main sum, and we have also used
the facts that 2ℓ𝑟 ≤ 2Ω(ℎ𝑟 ) and the bound 𝜈(ℎ𝑟 ) ≤ 1. Now we have

1
2ℓ𝑟

∑
𝑃 |ℎ𝑟⇒𝑃∈𝐼𝑟
ℎ𝑟=𝐶𝑟𝑆2

𝑟𝐸
3
𝑟

(𝐶𝑟 ,𝑆𝑟 )=1,𝐶𝑟 ,𝑆𝑟 square-free

2Ω(ℎ𝑟 )

|𝐶𝑟 |3/2
𝑞 |𝑆𝑟 |3/2

𝑞 |𝐸𝑟 |3/2
𝑞

≤ 1
2ℓ𝑟

∑
𝑃 |𝐶𝑟⇒𝑃∈𝐼𝑟

2Ω(𝐶𝑟 )

|𝐶𝑟 |3/2
𝑞

∑
𝑃 |𝑆𝑟⇒𝑃∈𝐼𝑟

4Ω(𝑆𝑟 )

|𝑆𝑟 |3/2
𝑞

×
∑

𝑃 |𝐸𝑟⇒𝑃∈𝐼𝑟

8Ω(𝐸𝑟 )

|𝐸𝑟 |3/2
𝑞

=
1

2ℓ𝑟
∏
𝑃∈𝐼𝑟

(
1 − 2

|𝑃 |3/2
𝑞

)−1 (
1 − 4

|𝑃 |3/2
𝑞

)−1 (
1 − 8

|𝑃 |3/2
𝑞

)−1

,
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so combining the two previous equations, we get

𝑇 (𝑟) ≥
∑

𝑃 |ℎ𝑟⇒𝑃∈𝐼𝑟
ℎ𝑟=𝐶𝑟𝑆2

𝑟𝐸
3
𝑟

(𝐶𝑟 ,𝑆𝑟 )=1,𝐶𝑟 ,𝑆𝑟 square-free

𝑎(ℎ𝑟 ; 𝐽)𝜆(ℎ𝑟 )𝜈(ℎ𝑟 )
|𝐶𝑟 |3/2

𝑞 |𝑆𝑟 |3/2
𝑞 |𝐸𝑟 |3/2

𝑞

∏
𝑅∈F𝑞 [𝑇 ]
deg 𝑅 even

𝑅 |ℎ𝑟

𝑀𝑅

(
1
𝑞2 ,

1
𝑞3/2

)

− 1
2ℓ𝑟

∏
𝑃∈𝐼𝑟

(
1 − 2

|𝑃 |3/2
𝑞

)−1 (
1 − 4

|𝑃 |3/2
𝑞

)−1 (
1 − 8

|𝑃 |3/2
𝑞

)−1

.

Let 𝑈 (𝑟) denote the first term. Then

𝐽∏
𝑟=0

𝑇 (𝑟) ≥
𝐽∏
𝑟=0

𝑈 (𝑟)
𝐽∏
𝑟=0

������
1 − 1

2ℓ𝑟𝑈 (𝑟)
∏

𝑃∈𝐼𝑟

(
1 − 2

|𝑃 |3/2
𝑞

) (
1 − 4

|𝑃 |3/2
𝑞

) (
1 − 8

|𝑃 |3/2
𝑞

) ������
. (8.26)

We first focus on

U :=
𝐽∏
𝑟=0

𝑈 (𝑟) =
𝐽∏
𝑟=0

∑
𝑃 |ℎ𝑟⇒𝑃∈𝐼𝑟
ℎ𝑟=𝐶𝑟𝑆2

𝑟𝐸
3
𝑟

(𝐶𝑟 ,𝑆𝑟 )=1,𝐶𝑟 ,𝑆𝑟 square-free

𝑎(ℎ𝑟 ; 𝐽)𝜆(ℎ𝑟 )𝜈(ℎ𝑟 )
|𝐶𝑟 |3/2

𝑞 |𝑆𝑟 |3/2
𝑞 |𝐸𝑟 |3/2

𝑞

∏
𝑅∈F𝑞 [𝑇 ]
deg 𝑅 even

𝑅 |ℎ𝑟

𝑀𝑅

(
1
𝑞2 ,

1
𝑞3/2

)

=
𝐽∏
𝑟=0

∏
𝑃∈𝐼𝑟

[
1 +

∞∑
𝑒=0

𝑎(𝑃; 𝐽)3𝑒+1(−1)3𝑒+1

|𝑃 |3(𝑒+1)/2
𝑞 (3𝑒 + 3)!

(8.27)

×
(
𝑎(𝑃; 𝐽)2 + 3(𝑒 + 1) (−𝑎(𝑃; 𝐽) + 3𝑒 + 2)

)
𝑁𝑃

(
1
𝑞2 ,

1
𝑞3/2

)]
,

where 𝑁𝑃

(
1
𝑞2 ,

1
𝑞3/2

)
= 𝑀𝑃

(
1
𝑞2 ,

1
𝑞3/2

)
or 1 according to whether deg(𝑃) is even or odd. Thus

U =
∏

deg(𝑃) ≤(𝑔+2) 𝜃𝐽

[
1 +

[
1
3

(
1 + 1

|𝑃 |1/2
𝑞

+ 1
|𝑃 |𝑞

)
exp

(
−𝑎(𝑃; 𝐽)

|𝑃 |1/2
𝑞

)
+1

3

(
1 + 𝜉3

|𝑃 |1/2
𝑞

+
𝜉2

3
|𝑃 |𝑞

)
exp

(
−𝜉3𝑎(𝑃; 𝐽)

|𝑃 |1/2
𝑞

)
+ 1

3

(
1 +

𝜉2
3

|𝑃 |1/2
𝑞

+ 𝜉3
|𝑃 |𝑞

)
exp

(
−
𝜉2

3𝑎(𝑃; 𝐽)

|𝑃 |1/2
𝑞

)
− 1

]
× 𝑁𝑃

(
1
𝑞2 ,

1
𝑞3/2

)]
. (8.28)
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For the second product of formula (8.26), we have

𝐽∏
𝑟=0

������
1− 1

2ℓ𝑟𝑈 (𝑟)
∏

𝑃∈𝐼𝑟

(
1 − 2

|𝑃 |3/2
𝑞

) (
1 − 4

|𝑃 |3/2
𝑞

) (
1 − 8

|𝑃 |3/2
𝑞

) ������
≥

(
1 − 1

2ℓ0
exp

( ∞∑
𝑛=1

𝑞𝑛

𝑛

(
1

𝑞3𝑛/2 − 1
+ 2
𝑞3𝑛/2 − 2

+ 4
𝑞3𝑛/2 − 4

+ 8
𝑞3𝑛/2 − 8

)))
×

𝐽∏
𝑟=1

���1 − 1
2ℓ𝑟

exp ���
(𝑔+2) 𝜃𝑟∑

𝑛=(𝑔+2) 𝜃𝑟−1

15
𝑛𝑞𝑛/2 +𝑂

(
1

𝑞2𝑔𝜃𝑟−1

)������
≥

(
1 − 1

2ℓ0
𝐾

) 𝐽∏
𝑟=1

(
1 − 1

2ℓ𝑟
+𝑂

(
1

2ℓ𝑟 𝑞𝑔𝜃𝑟−1/2

))
≥ 1 − 1

𝑒𝑒84 ,

where in the second line we used the inequality form of the Prime Polynomial Theorem (2.1),
𝐾 = exp

(∑∞
𝑛=1

𝑞𝑛

𝑛

(
1

𝑞3𝑛/2−1 + 2
𝑞3𝑛/2−2 + 4

𝑞3𝑛/2−4 + 8
𝑞3𝑛/2−8

))
, and the estimate in the last line is taken

with the constants chosen in Section 7.
Putting together all this information, we obtain

𝑞𝑔+2𝜁𝑞 (3/2)
𝜁𝑞 (3)

AnK

(
1
𝑞2 ,

1
𝑞3/2

) 𝐽∏
𝑟=0

𝑇 (𝑟) ≥
(
1 − 1

𝑒𝑒
84

)
𝑞𝑔+2𝜁𝑞 (3/2)

𝜁𝑞 (3)
AnK

(
1
𝑞2 ,

1
𝑞3/2

)
U. (8.29)

Finally, summing the error term coming from Proposition 8.1 gives

𝑞
7𝑔
8 +𝜀𝑔

∑
deg(ℎ) ≤𝑤 (𝑔+2)

|ℎ|1/4

|ℎ|1/2 ∼ 𝑞
7𝑔
8 +𝜀𝑔+ 3𝑤 (𝑔+2)

4 , (8.30)

where 𝑤 =
∑𝐽

𝑗=0 𝜃 𝑗ℓ 𝑗 . Note that because of formula (4.2), we have

𝐽∑
𝑗=0

𝜃 𝑗ℓ 𝑗 ≤
1

20
,

so formula (8.30) constitutes an error term. This finishes the proof of Theorem 1.3. �

Proof of Corollary 1.4. Note that from expression (8.27), we can write

U ≥
∏

deg(𝑃) ≤(𝑔+2) 𝜃𝐽

(
1 − 𝑎(𝑃; 𝐽)

6|𝑃 |3/2 (𝑎(𝑃; 𝐽)2 − 3𝑎(𝑃; 𝐽) + 6)
)

≥
∏

deg(𝑃) ≤(𝑔+2) 𝜃𝐽

(
1 − 1

|𝑃 |3/2

)
≥ 𝜁𝑞 (3/2)−1.
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We also have

AnK

(
1
𝑞2 ,

1
𝑞3/2

)
=

∏
𝑅∈F𝑞 [𝑇 ]

deg(𝑅) odd

1
1 + 1

|𝑅 |2

∏
𝑅∈F𝑞 [𝑇 ]

deg(𝑅)even

1 + 2
|𝑅 |

(
1 − 1

|𝑅 |3/2

)
(
1 + 1

|𝑅 |

)2 .

For the factors involving R of even degree, we have

1 − 1
(|𝑅 | + 1)2 − 2

|𝑅 |1/2 (|𝑅 | + 1)2 >

(
1 − 1

|𝑅 |2

)2
,

and this leads to

AnK

(
1
𝑞2 ,

1
𝑞3/2

)
≥ 𝜁𝑞 (2)−2.

Combining everything, the main term of the mollified moment in formula (8.29) satisfies

≥
(
1 − 1

𝑒𝑒
84

)
𝑞𝑔+2

𝜁𝑞 (2)2𝜁𝑞 (3)
≥ 0.6143𝑞𝑔+2,

where we have bounded by the worst case 𝑞 = 5. �

9. Conclusion

The method we used for the family of cubic L-functions would be expected to work in general for
families where one can compute the first moment with a power-saving error term, and it is useful in
families where the second moment is not known. The method allows us to get a sharp upper bound for
the second mollified moment, which is enough to obtain a positive proportion of nonvanishing (under
the GRH). For the family of cubic twists, we expect that the Kummer case would be similar, and the
results would hold in that setting as well. Our results should also transfer over to number fields, but it
would be conditional on the GRH.
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