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Extension of the Riemann ξ-Function’s
Logarithmic Derivative Positivity
Region to Near the Critical Strip

Kevin A. Broughan

Abstract. If K is a number field with nk = [k : Q], and ξk the symmetrized Dedekind zeta function of

the field, the inequality

ℜ
ξ ′

k
(σ + it)

ξk(σ + it)
>
ξ ′

k
(σ)

ξk(σ)

for t 6= 0 is shown to be true for σ ≥ 1 + 8/n
1
3
k

improving the result of Lagarias where the constant in

the inequality was 9. In the case k = Q the inequality is extended to σ ≥ 1 for all t sufficiently large or

small and to the region σ ≥ 1 + 1/(log t − 5) for all t 6= 0. This answers positively a question posed

by Lagarias.

1 Introduction

The Riemann ξ function is ξ(s) = s(s − 1)π−s/2
Γ(s/2)ζ(s)/2. In [8] Lagarias shows

that, assuming the Riemann hypothesis,

ℜ ξ ′(σ + it)

ξ(σ + it)
>
ξ ′(σ)

ξ(σ)

for all σ > 1/2 and for all t 6= 0. He also shows that this inequality holds uncon-

ditionally in case σ ≥ 10 and remarks that it seems likely the inequality could be

established unconditionally for σ > 1 + ǫ for any given fixed positive ǫ “by a finite
computation”.

The significance of the inequality is that the Riemann hypothesis is equivalent to
the statement

ℜξ
′(s)

ξ(s)
> 0 when ℜs >

1

2

(see [6, 8] and the use of an assumption weaker than the Rieman hypothesis [5]), so
an approach to a proof of the Riemann hypothesis requires extending the positivity

region of the ξ(s) function to the left.

Lagarias does quite a lot besides addressing positivity for the logarithmic deriva-
tive of the Riemann zeta function. For example if k is a number field of degree nK

over Q , then provided σ ≥ 1+9/n
1/3
k the infinum of ℜ ξ ′k(s)/ξk(s) on the vertical line

s = σ is attained at t = 0. Here ξk(s) is the product of the appropriate zeta function
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Positivity Region of Lagarias 187

for the number field ζk multiplied by an entire function (the gamma factor) which
ensures it is entire and satisfies a functional equation.

In this paper we show, using essentially the same approach as Lagarias but sum-

ming an infinite series in terms of the polygamma function, that the constant can be
reduced to 7.71542 · · · < 8. This is Theorem 3.1

In Theorem 3.2 we derive the Riemann zeta form (k = Q) of the inequality of

Lagarias unconditionally up to σ = 1, for sufficiently small or large t , and for mid-

range t to σ ≥ 1 + 1/(log |t| − 5). This will be Theorem 3.2, following six lemmas.

Sufficiently small means up to a value of t which satisfies |t| ≤
√

2 −
√

2γ, where γ is

the y-coordinate of the first off critical line non-trivial zero of ζ(s). Sufficiently large

means greater than e(e16c3
1 ), where c1 is the absolute constant appearing in an inequality

for the logarithmic derivative of ζ(s). This is presumably a very large number, a
“finite” computation, but far beyond the reach of anything practical.

The new technique for the “sufficiently small” region involves structuring and

bounding the derivative of a term, from the Mittag–Leffler expansion for the loga-

rithmic derivative of ξ(s), which consists of a sum of terms from four related off-
critical line zeros.

2 Preliminary Lemmas

Lemma 2.1 There exists an absolute constant c1 such that for all σ ≥ 1 and all

t ≥ t1 > 0
∣

∣

∣

ζ ′(s)

ζ(s)

∣

∣

∣
≤ c1(log t)2/3(log log t)1/3.

Proof This follows from Richert [10] or Cheng [3]. See also [11, Section 6.19].

Lemma 2.2 For σ > 1 let

f (σ) :=
ζ ′(σ)

ζ(σ)
+

1

σ − 1
− γo,

where γo is Euler’s constant. Then there exists a positive absolute constant c2 such that

−c2(σ − 1) < f (σ) < 0,

and c2 can be taken to be γ2
o − 2γ1 where

γ1 = − lim
N→∞

(

N
∑

m=2

log m

m
− log2 N

2

)

= −0.07235 · · · ,

so c2 = 0.47789 · · · .

Proof Write

f (σ) =
1

σ − 1
− γo −

∑

p,m≥1

log p

pmσ
,
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so

f ′(σ) =

∑

p,m≥1

m log2 p

pmσ
− 1

(σ − 1)2

=

∑

p

log2 p
∑

m≥1

m

(pσ)m
− 1

(σ − 1)2

=

∑

p

log2 p.pσ

(pσ − 1)2
− 1

(σ − 1)2
.

Hence

f ′ ′(σ) =
2

(σ − 1)3
+

∑

p

log3 p.pσ

(pσ − 1)2
− 2

∑

p

log3 p.pσ

(pσ − 1)3

=
2

(σ − 1)3
+

log3 2.2σ(2σ − 3)

(2σ − 1)3
+

∑

p≥3

log3 p.pσ(pσ − 3)

(pσ − 1)3
.

If σ ≥ log2 3, each term is non-negative, so f ′ ′(σ) > 0. If 1 < σ < log2 3,
the sum of the first two terms is positive, so in all cases f ′ ′(σ) > 0. Hence f (σ) is

concave upwards on (1,∞).

Now the Laurent expansion of ζ(s) in the neighborhood of s = 1 [7, Theorem 1.4]

is

ζ(s) =
1

s − 1
+ γ0 + γ1(s − 1) + · · ·

where, for k ≥ 0

γk =
(−1)k

k!
lim

n→∞

(

n
∑

m=1

logk m

m
− logk+1 n

k + 1

)

,

so γ0 is Euler’s constant and γ1 < 0. From this it follows that in a neighborhood of
σ = 1

ζ ′(σ)

ζ(σ)
+

1

σ − 1
− γo = (2γ1 − γ2

0 )(σ − 1) + O(|σ − 1|2),

so f ′(1) = 2γ1 − γ2
0 . Therefore, by the concavity of f (σ), f (σ) > (2γ1 − γ2

0)(σ− 1)

for σ > 1.

Now, by continuous extension, f (1) = 0 and f ′(1) < 0. If there was a value σ > 1
with f (σ) ≥ 0 then, by Rolle’s theorem, there would be a value with f ′(σ) = 0 and

so, since limσ→∞ f (σ) = −γ0, a point with f ′ ′(σ) = 0. But by what we have proved

this is impossible. Hence f (σ) < 0 for all σ > 1.

Note that the constant c2 is the best possible, since it is the absolute value of the

slope of f (σ) at σ = 1. Note also the interesting inequality of Delange [4], which

apparently can be extended to about σ = 0.9184 · · · , i.e., to the left of the line σ = 1.
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Lemma 2.3 If 1 ≤ σ < 10 and t ≥ t2 > 0 :

ℜΓ
′(s/2)

Γ(s/2)
− Γ

′(σ/2)

Γ(σ/2)
≥ log

t

2
− 2 − 2

5t2
.

Proof This follows directly using the asymptotic expression

Γ
′(z)

Γ(z)
= log z − 1

2z
+ R, |R| ≤ 1

10|z|2 , |z| ≥ 2,ℜz > 0.

and the bound
∣

∣

∣

Γ
′(σ/2)

Γ(σ/2)

∣

∣

∣
≤ 2

which holds for 1 ≤ σ ≤ 10.

Lemma 2.4 Let σ ≥ 1, 0 < β < 1/2, γ > 0 be real numbers and define

h(t) :=
(γ − t)2 + (σ − 1/2)2 − (1/2 − β)2

((σ − β)2 + (γ − t)2)((σ + b − 1)2 + (γ − t)2)
,

and f (t) := h(t) + h(−t). Let c4 =

√

2 −
√

2. Then for all t with |t| < c4γ, f (t) >
f (0).

Proof Define u := σ − β and v := σ + β − 1. Then u > v > 0 and we can write

h(t) =
(γ − t)2 + uv

((γ − t)2 + u2)((γ − t)2 + v2)
=

1

u + v

( u

(γ − t)2 + u2
+

v

(γ − t)2 + v2

)

.

Then

f (t) = h(t) + h(−t)

=
1

u(u + v)

( 1

(γ − t)2/u2 + 1
+

1

(γ + t)2/u2 + 1

)

+
1

v(u + v)

( 1

(γ − t)2/v2 + 1
+

1

(γ + t)2/v2 + 1

)

.

Let

gγ(t) :=
1

(γ − t)2 + 1
+

1

(γ + t)2 + 1
.

Then the derivative

g ′
γ(t) =

4t(−t4 − 2(1 + γ2)t2 + (3γ4 + 2γ2 − 1))

((γ − t)2 + 1)2((γ + t)2 + 1)2

and g ′
γ(0) = 0, g ′

γ is an odd function of t , and the numerator is positive if

0 < t < (γ2 + 1)1/4(2γ − (γ2 + 1)1/2)1/2,
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or for the slightly smaller but more convenient range 0 < t <
√

2 −
√

2γ = c4γ, so

g ′
γ(t) > 0 in this range. Hence

f ′(t) =
1

u2(u + v)
g ′
γ
u

( t

u

)

+
1

v2(u + v)
g ′
γ
v

( t

v

)

is positive for t with 0 < t/u < c4γ/u and 0 < t/v < c4γ/v, that is the same range

as before. Therefore f (0) < f (t). But f (t) is even, so the same inequality holds for t

negative also.

Lemma 2.5 Let c0 be a positive real number representing the y coordinate of the first

zeta zero which is off the critical line (assuming such a zero exists). If 0 < t < c4c0 and

1 ≤ σ < 10, then

ℜξ
′(σ + it)

ξ(σ + it)
>
ξ ′(σ)

ξ(σ)

Proof With the same notation as in Levinson and Montgomery [9], we can write

ℜξ
′(σ + it)

ξ(σ + it)
− ξ ′(σ)

ξ(σ)
= (σ − 1/2)I(σ, t),

where I(σ, t) = To + T1 and

To =

∑

β<1/2

[ (γ − t)2 + (σ − 1/2)2 − (1/2 − β)2

((σ − β)2 + (γ − t)2)((σ + β − 1)2 + (γ − t)2)

− γ2 + (σ − 1/2)2 − (1/2 − β)2

((σ − β)2 + γ2)((σ + β − 1)2 + γ2)

]

,

T1 =

∑

β=1/2

[ 1

(σ − 1/2)2 + (t − γ)2
− 1

(σ − 1/2)2 + γ2

]

.

The proof of Lagarias [8], assuming the Riemann Hypothesis, shows that T1 > 0

whether or not the Riemann hypothesis is assumed to be true. Lemma 2.4 shows
that, since each γ ≥ c0, each term in the sum for To is positive for t < c4c0 so the

Lemma follows directly.

Lemma 2.6 Let ψ(n)(z) be the polygamma function. Then for n ≥ 2 and all real

x > 0, (n − 1)! ≤ −(−1)nxnψ(n)(x).

Proof This follows from an examination of the proof of [1, Theorem 4].

Note that other properties of the digamma and polygamma functions can be

found in [2] and the references in that paper.
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3 Proofs of the Two Main Results

First we show that the constant in Lagarias’ Theorem 1.2 can be reduced from 9 to

less than 8.

Theorem 3.1 Let k be an algebraic number field of degree nk = [k,Q]. For σ ≥
1 + 8/n

1
3

k and t 6= 0 we have

ℜ ξ ′k(σ + it)

ξk(σ + it)
>
ξ ′k(σ)

ξk(σ)
.

Proof The proof of Lagarias implies that it suffices to show that for σ0 = 9 the
inequality

nk

∞
∑

n=1

1

(σ0 + 2n)3
≥ 1

(σ0 − 1)3

holds. The infinite sum can be given explicitly in terms of the polygamma function,

so the inequality becomes

nk
1

16
|ψ(2)(

2 + σ0

2
)| ≥ 1

(σ0 − 1)3
.

By Lemma 2.6, this is true if

(σ0 − 1)3

(1 + σ0/2)2
≥ 16

nk

.

Lagarias’ theorem shows we can assume σ0 ≤ 10 so, substituting the valueσ0 = 10
in the denominator, the inequality will hold if

(σ0 − 1)3 ≥ 16 × 62

nk

.

This implies the result is true for σ0 ≥ 1 + 3
√

576/n
1/3
k , so we can assume σ0 ≤

9.32043 · · · . Replacing the upper bound 10 with this lower value and iterating the
procedure (or equivalently solving the inequality (1) with nk = 1 for the smallest

possible value of σ0), lead to σ0 = 8.71542 so

σ0 ≥ 1 +
7.71542 · · ·

n
1
3

k

,

and the result of the theorem follows.

Note that in his proof, Lagarias neglects the positive contribution to the right

hand side of the target inequality when he “shifts the contribution of the poles at
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odd negative integers to the neighboring even negative integers” using his inequality
(2.21). In total this contribution is:

t2
∑

n odd

1

(σ + n)((σ + n)2 + t2)
− 1

(σ + n + 1)((σ + n + 1)2 + t2)
=

2ψ
(

1 +
σ

2

)

− 2ψ
( 1 + σ

2

)

+ 2ℜψ
( 1 + σ + it

2

)

− 2ℜψ
(

1 +
σ + it

2

)

and as t → ∞ this expression tends to 0, so no improvement in the result can come

from this approach.
Note also that if we simply solve the inequality (1) for explicit values of nk we

obtain the values for σ0:

nk σ0 nk σ0 nk σ0

1 8.71542 2 6.06835 3 5.04472

4 4.4734 5 4.09879 6 3.82964

7 3.62447 8 3.46148 9 3.32799

10 3.21606 11 3.12045 12 3.03753

13 2.96473 14 2.90012 15 2.84228

16 2.7901 17 2.74269 18 2.69938

19 2.65959 20 2.62287 21 2.58885

22 2.5572 23 2.52766 24 2.5

25 2.47403 26 2.44958 27 2.4265

28 2.40468 29 2.38399 30 2.36435

Theorem 3.2 Let 1 ≤ σ < 10 and t 6= 0. Then there exist absolute constants c1 and

c2, so that (unconditionally) for {σ + it : |t| ≤ c1, 1 ≤ σ < 10} or {σ + it : |t| ≥
c2, 1 ≤ σ < 10} or {σ + it : log |t| ≥ 5 + 1/(σ − 1), 1 < σ < 10}, we have

ℜξ
′(σ + it)

ξ(σ + it)
> ℜξ

′(σ)

ξ(σ)
.

Proof Let s = σ + it and 1 < σ. Then since ξ(s) = s(s − 1)π−s/2
Γ(s/2)ζ(s)/2, we

can write

∆0 := ℜξ
′(s)

ξ(s)
− ξ ′(σ)

ξ(σ)
= ∆1 + ∆2 + ∆3 + ∆4,where

∆1 := − t2

σ(σ2 + t2)
,

∆2 := − t2

(σ − 1)((σ − 1))2 + t2)
− ζ ′(σ)

ζ(σ)
,

∆3 := ℜζ
′(s)

ζ(s)
,

∆4 :=
1

2

(

ℜΓ
′(s/2)

Γ(s/2)
− Γ

′(σ/2)

Γ(σ/2)

)

.

https://doi.org/10.4153/CMB-2009-021-3 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2009-021-3


Positivity Region of Lagarias 193

First, ∆1 > −1/σ. From Lemma 2.2 it follows that

∆2 ≥ −γ0 +
σ − 1

(σ − 1)2 + t2
.

By Lemma 2.1 we can write

∆3 = ℜζ
′(s)

ζ(s)
≥ −c1(log t)

2
3 (log log t)

1
3 .

By Lemma 2.3 we can write ∆4 = log t − c5θ for some small positive constant c5 (we
can take c5 = 4) and real θ with |θ| < 1. Hence ∆0 > 0 if

log t − c1(log t)2/3(log log t)1/3 > 4.

This is true if and only if

1 − c1

( log log t

log t

) 1/3

>
4

log t
.

If we assume t ≥ t3 := e8, then 1 − 4/log t ≥ 1/2, so with this restriction we require

log log t

log t
<

1

8c3
1

.

This inequality holds if t ≥ t4 := e(e16c3
1 ). So provided γ0c4 ≥ t4 the two regions

(0, γ0c4], [t4,∞) overlap and the Lagarias inequality holds for all σ > 1. If however

t4 > γ0c4, we argue differently. First let

∆
′
2 := − t2

(σ − 1)((σ − 1))2 + t2)
and ∆

′
3 := ℜζ

′(s)

ζ(s)
− ζ ′(σ)

ζ(σ)
,

so ∆0 = ∆1 + ∆
′
2 + ∆

′
3 + ∆4. Since | ζ ′(s)

ζ(s)
| ≤ − ζ ′(σ)

ζ(σ)
, ∆ ′

3 ≥ 0 for all t ≥ 0. Therefore

∆0 > − 1

σ
− 1

σ − 1
+ log t − 4,

so ∆0 > 0 if log t > 4 + 1/σ + 1/(σ − 1), and this is true if log t > 5 + 1/(σ −
1). The best uniform value of σ which may be obtained using this method is given

approximately by

σ0 = 1 +
1

log c4c0 − 5
.

If we assume c4c0 = 108, this leads to σ0 = 14/13. Strengthening the above
approach to the Lagarias problem requires the derivation of a good explicit value for

the constant c1 (compare [3]) and knowledge of the best current value value for c0

(currently 3.2 × 109) [12].

https://doi.org/10.4153/CMB-2009-021-3 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2009-021-3


194 K. A. Broughan

References

[1] H. Alzer, On some inequalities for the gamma and psi functions. Math. Comp. 66(1997), no. 217,
373–389.

[2] H. Alzer, Sharp inequalities for the digamma and polygamma functions. Forum. Math. 16(2004),
no. 2, 181–221.

[3] Y. Cheng, An explicit upper bound for the Riemann zeta-function near the line σ = 1. Rocky
Mountain J. Math. 29(1999), no. 1, 115–140.
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