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UNCOLOURING OF LIE COLOUR ALGEBRAS

D.S. MCANALLY AND A.J. BRAKCEN

The link between a Lie colour algebra and a corresponding Lie superalgebra is
clarified in the case of the general linear algebras. The Lie superalgebra inherits
from the colour cocommutative coproduct of the corresponding Lie colour algebra,
a super coproduct which differs from the usual one, and is not supercocommutative.
It is associated with a new R-matrix satisfying the super Yang-Baxter equation.

1. INTRODUCTION

The recent high level of interest in quantised universal enveloping algebras (quan-
tum groups and supergroups) has placed Lie algebras and superalgebras themselves
in a new perspective. They can now be viewed as being associated with a particular
limit (q -* 1) of quantum groups and quantum supergroups, which are more general
structures, being quasitriangular Hopf algebras.

One of the principal features of interest of such a Hopf algebra is the existence
of a universal element (iJ-matrix) which intertwines two associated coproducts of the
algebra, and provides a solution of the quantum Yang-Baxter equation, and thus may
be of interest in the construction of exactly solvable models, for example, in statistical
mechanics [1].

The introduction of Lie colour algebras by Rittenberg and Wyler [12] was a promis-
ing generalisation of the super case, with the idea that there might be possible applica-
tions in particle physics [2, 3, 4], but, although there are to date no important physical
applications, colour algebras and Lie colour algebras are interesting and potentially
important mathematical structures.

The works of Scheunert [13, 14, 15] and Kleeman [7, 8, 9] have established a
surprising link between Lie colour algebras and Lie superalgebras, with a well-defined
correspondence mapping any Lie colour algebra to a Lie superalgebra, involving how-
ever the introduction of new generators from outside the Lie colour algebra. This
correspondence between a Lie colour algebra and a Lie superalgebra can be extended
to their graded modules [7, 8, 9, 13, 14, 15]: for each colour-graded module of the
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426 D.S. McAnally and A.J. Bracken [2]

Lie colour algebra, there is a corresponding Z2-graded module of the corresponding Lie
superalgebra.

Work on quantum supergroups leads naturally to the question of quantisation of
colour algebras, in the hope of obtaining new solutions, both of the colour Yang-Baxter
equation, and of the non-graded Yang-Baxter equation, leading perhaps to new solvable
models. This is the primary motivation for our investigation of Lie colour algebras and
their quantisation.

The first step, taken here, will be a re-examination in some detail of the case of
the classical Lie colour algebra, to clarify similarities and differences between the colour
and super cases.

The results obtained demonstrate a correspondence between each Lie colour algebra
of the general linear type and a corresponding Lie superalgebra, in terms of the gener-
ators of the Lie colour algebra, without the necessity to introduce generators external
to the Lie colour algebra, as in earlier work [7, 8, 9, 13, 14, 15]. Furthermore, a Hopf
superalgebra structure can be imposed on the "completed" universal enveloping algebra
of the Lie colour algebra, and this Hopf superalgebra structure relates to the natural
colour coproduct on the Lie colour algebra. Bringing these two results together affords
a method for determining a new (and non-supercocommutative) coproduct structure
on the universal enveloping algebra of the Lie superalgebra gl(m\n), thus endowing this
universal enveloping algebra with a new non-supercocommutative Hopf superalgebra
structure and a new, nontrivial, ^-matrix. This procedure opens the door to the con-
struction of new and interesting solutions of the graded Yang-Baxter equation, when
extended to the quantised case, as we shall show in a subsequent article.

2. PHASE FUNCTIONS

Here we review the basic definitions of phase groups and phase functions, and their
properties.

Colour structures over a field F are a generalisation of superstructures in that the
grading is generalised; whereas superstructures are graded with respect to Z2, colour
structures are graded with respect to an arbitrary Abelian (additive) group F. The
grading is determined by F and a phase function w : F x F —¥ F satisfying

(2.1) u>(a,0)u(fi,a) = l, u>(a,/? + 7 ) = w(a,0)w(a,7).

EXAMPLES. (1) Ts = Z2 and u)s(a, /?) — (-1)Q/3. This is the now-familiar superstruc-

ture case.

(2) TQ = Z2 x Z2 and u>Q(a,P) = (_i)ai«a+«*2ft, where a = (a1,a2),/3 =
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[3] Uncolouring of Lie colour algebras 427

( A , & ) € Z2 x Z 2 , so that

(2.2) w«j(o,/3) = ^ .
(_ 1, otherwise,

that is, tjQ(a,P) = 1 if and only if either a or (3 equals (0,0) or they are equal.

(3) TSQ = T s x TQ = Z2 x Z2 x Z2 and

(2.3) « S Q ( « , / 3 ) =«5(oi , /3 i )wQ((a 2 ,o 3 ) l (A, /%))

Note that (FSQ,U>SQ) = ( r s > ws ) x (Fs,u;s) x ( r s , w s ) -
(4) For n ^ 1, F C ) n = Z x " = Z2 x • • • x Z2 and

(2.4) WC,n((«l, • • • , "n ) , (Pi, • • • , A,)) = ( ~ 1 ) W

= (-1) 4

Note that (rCi2,wc,2) =
(5) r n = Zn x Zn and wn((oila2),(j9i>A)) - Cnl A"°2 / J l f o r oi,oa,/?i,A € Zn,

where Cn = exp(27ri/n). Note that (F2,w2) = ( F Q ^ Q ) .

(6) For t e F nonzero, T?± = Z x Z and ^ ( ( a . f c ) , (c,d)) = (±l)a c(±l)6 dio d-b c

for a, 6, c, d € Z, where the first signs on each side agree, and the second signs agree.
This is the most general phase function on Z x Z.

(7) For z € C, Tz = K x R and wz((o, b), (c,d)) = exp (iz(ad - be)) for o, b,c,de
K. This is the most general continuous complex phase function on R x R .

(8) For z,w e C, FZi1u = C x C and wz<w((a, b), (c, d)) = exp (zSR(ad - 6c)
+u;3(ad — 6c)) for a,b,c,d € C. The phase function wZ)U, = wZtiZ is the most general
complex analytic phase function on C x C, and w.tW = uZi-iz is the most general
complex antianalytic phase function on C x C.

Some general properties of phase functions, consequent to (2.1), are as follows:

• w(a, f3) is nonzero for all a,/? e F,
• w(a + /3,7) = u>(a,7)w(/?,7),
• w(a, a) = ±1 for all a € F,
• w{a + 0,a + 0)=w{a,a)u(fit0)t

• w(0,a) = w(a,0) = 1,
• for given a , the maps (3 i-> w(a, /?) and /? >-> w(/3, a ) are one-dimensional

representations of F in F .
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Let an element a € F be called even (respectively odd) if w(a, a) = 1 (respec-
tively —1). The sum of 2 even elements or 2 odd elements of F is even. The sum of
an even element and an odd element of F is odd. Note that either all elements of F
are even, or the distinction partitions F into two cosets (the set of odd elements form
a coset of the group of even elements).

The phase functions on a group F form an Abelian group: if w and u> are phase
functions, then their product is defined by

(2.5) (ww)(o,/3) = w(a,0)2(a,0).

The identity of this group is the trivial phase function:

(2.6) we(o,/3) = l,

and the multiplicative inverse is given by

(2-7) (ur1)(a,/3)=(u;(a,/?))-1.

Given (F, u), define ip : F ->• Z2 by

{ 0, w(a,a) = l,
i
1, w(a,o;) = - l ,

then V is a group morphism by the Property 3 above, and rp(a) = 0 if a is even,
tp(a) = 1 if a is odd. Define wo : F x T -» F x (where F x is the multiplicative group
of nonzero elements in F) by

(2.9)

then LJQ is a phase function and

(2.10) tuo(a,a) =u)(a,a), a€ F.

Also,

or p even,

both odd.
{ 1, a even,

- 1 , a, P b

For (F, u>), let 77 — wo^"1, then TJ is a phase function, r)(a, a) = 1 for all a 6 F,
and

—-r, a even, or /? even,

(2.12)
both odd.

https://doi.org/10.1017/S0004972700034080 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700034080


[5] Uncolouring of Lie colour algebras 429

EXAMPLES. (1) For (T,w) = (Ts,us), then WQ — WS, and 77 is trivial, that is, 77 = we.

(2) For (r ,w) = (TQ,U}Q), then UIQ is trivial, that is, u)Q — we, and TJ = U)Q.

(3) For (r ,w) = (TSQ,WSQ), then

(4) For (F, w) = (rc,niWc,n)i then WQ is trivial, that is, WQ = u)e, and 77 = wc,n-

(5) For (T,w) = (Tn,wn), then wo is trivial, that is, w0 = ^ e , and r){a,0) =

(6) For (F, w) = (r̂ 1""1", w * + ) , then w0 is trivial, that is, w0 = we, and r;((a, b), (c, d))

t 6 c - a d . For ( I » = ( r t + - , w t
+ - ) , then wo((a,6), (c,d)) - ( - 1 ) M , and f,((O,6), (c,d))

t 6 c - ° d . For (r ,w) = ( r t -
+ , o ; t -

+ ) , then a;0((o,6), (c,d)) = ( - l ) ° c , and r,((a,b), (c,d))

tbc~ad. For ( I » = ( r t — , « r " ) . ^ e n wo((a,6), (c,d)) = (_i)(»+fc)(«+*, and

(7) For (F, w) = (Fz, u>z), then w0 is trivial, that is, u>o = ue, and r7((a, b), (c, d)) =

exp (iz(bc — ad)).

(8) For (F, w) = (rZ ) U J ,uZ t W) , then w0 is trivial, that is, UJO= we, and r}{(a,b), (c,d))

= exp (z$l(bc - ad) + w^l(bc - ad)).

(9) As a final example, if (T,u) = ( r s , w s ) x n , so that T = Z j n ( = r c , n ) and

w(a,/3) = (-1) * , then

(2.14) wo(a,/3) = ( - l ) '

3. COLOUR STRUCTURES

We now review the definitions and properties of important colour structures, specif-
ically, colour algebras, colour coalgebras, colour bialgebras, Hopf colour algebras, and
Lie colour algebras.

(i) COLOUR ALGEBRAS.

A graded (or colour) space M over the field F is a vector space over F such that

(3.1) M •-

If M and TV are colour spaces over F , then there is a natural graded twist T : M®N ->

N ® M defined by

(3.2) T(m ® n) — o>(/i, v)n ® m, m 6 MM, n 6 TV,,,
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which is distinct from the nongraded twist T given by

(3.3) T(m ® n) = n ® m.

A colour algebra is a graded unital associative algebra (an algebra with consistent
grading), so that

(3.4) F C Ao, AaA(, C Aa+f).

The colour tensor product of two colour algebras has product determined by

(3.5) A®B®A®BX^lA®A®B®BM-^A®B,

so that if x e A, z€ J3C, x' € A?, z' € B, then

(3.6) (x ® z){x' ® z') = u((,,£')xx' ® zz'.

This contrasts with the nongraded tensor product A® B in which the product is given

by

(3.7) (x®z)(x'®z') = xx'® zz'.

The colour tensor product and the nongraded tensor product are generally not isomor-

phic as algebras.

If A is a colour unital algebra then an A-module M is called a graded .A-module

if M is a graded space over F (graded with respect to the same grading group V as

A), and

(3.8) AaMp C Ma+fi, a , / ie r .

If A, B are unital colour algebras, M is a graded .A-module, and N is a graded
S-module, then M®N is a graded -405-module, and the action of A®B on M®N

is determined by

(3.9) A®B®M®N1^1 A®M®B®N—>M®N,

where A ® M -> M and B <g> N —> N are given by the actions of A on M, and B on
N, respectively. In particular, if x e A, z £ B^, m € M^, n € N, then

(3.10) (x® z)(m®n) = u(£,n)xm® zn.
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[7] Uncolouring of Lie colour algebras 431

(n) COLOUR COALGEBRAS.

A colour coalgebra is a graded counital coassociative coalgebra (a coalgebra with
consistent grading), so that, if e and A denote the counit and coproduct respectively,
then

e{Aa) = 0, a ^ 0,

(3-n) &{Aa)<Z{A®A)a= 0 A0®AT

The colour tensor product of two colour coalgebras has coproduct determined by

(3.12) A ® B ^ A ® A ® B ® B 1 ^ 1 A ® B ® A ® B,

so that

(3.13) A(x®z) =

where in a specific term in the sum, X(2) € A$,2), Z(Xj € Bo , some £(2),C(i) €
F (Sweedler's notation [16] is being used here). Note that this contrasts with the
nongraded tensor product A ® B in which the coproduct is given by

(3.14) A(x®z) =

and that the colour tensor product and the nongraded tensor product are generally not
isomorphic as coalgebras.

(m) COLOUR BIALGEBRAS.

A colour bialgebra is a colour algebra and colour coalgebra with consistent gradings
in which A : A -> A® A, e : A —> F are colour algebra morphisms and M : A® A —> A,
u : W —> A are colour coalgebra morphisms, where M denotes the product on A, and u
denotes the unit embedding F into A (so that u(l) is the multiplicative identity). Note
that since the colour tensor product A® A and the nongraded tensor product A® A
are generally not isomorphic either as algebras or coalgebras, then a colour bialgebra
generally does not have the structure of a bialgebra.

(iv) H O P F COLOUR ALGEBRAS.

A Hopf colour algebra A is a colour bialgebra with a linear map (antipode) SA •

A -» A of grading zero such that

(3.15) ^1^(5.4 ® 1)AA = m A ( l ® SA)&A = uAeA.
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The antipode SA reverses both the product and the coproduct, in other words,

SAmA = mAT{SA ® SA) = m'A(SA <8> SA),
(3.16)

AASA = (SA ® SA)TAA = (SA ® SA)A'A,

or, in particular,

(3.17) SA(xx') = w((,t')SA(x')SA{x),

for x € A% and x' € A^i, and

(3.18) AA(SA(x)) = Y.U)(^)A2))SA{X(2)) ® SA(x(1)),

where £(!) and f(2) are as before.

(v) LIE COLOUR ALGEBRAS.

A Lie colour algebra £ over F is a graded vector space endowed with a colour
commutator of grading zero satisfying colour anticommutativity and the colour Jacobi
identity, so that

£ = 0 £ « , [Ca,Cp]QCa+0,
aer

[a,b] = -u{a,f3)[b,a], a€Ca,beCp,

LJ{J, a)[a, [b, c}) + w(a, /3)[b, [c, a}} + w(P, 7)[c, [a, b]] = 0,

(3.19) a e Ca, b € Cp, c 6 £7.

A homomorphism from a Lie colour algebra C to a Lie colour algebra M, with
the same grading group and phase function, is a linear map / of degree zero (so that
f(£a)QMa) such that

(3.20) f([a,b]) = [f(a),f(b)}, a,beC.

The universal enveloping algebra U(C) of a Lie colour algebra is the unital asso-
ciative algebra generated by £ subject to

(3.21) ab - u(a, p)ba = [a, b], a € Ca, b € Cp.

The universal enveloping algebra U(C) is a Hopf colour algebra with coproduct, counit
and antipode determined by

A(a) = a ® l + l ® a , a€ C,

(3.22) e(a) = 0, a € £,

S(a) - - a , a 6 C,

so that if V and W are graded £-modules, then V ® W is an jC-module, with the
action of £ given by

(3.23) a(m ® n) = am ® n + u(a, n)m ®an, a G £o, m e VM, neW.

Also, the adjoint action of a € £ is determined by (ada).i = [a,x].
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[9] Uncolouring of Lie colour algebras 433

4. KNOWN RESULTS FOR L I E COLOUR ALGEBRAS

Here, we review relevant work of Kleeman [7, 8, 9], specifically his results establish-
ing a general correspondence between Lie colour algebras and Lie superalgebras, along
with embedding of a Lie superalgebra in the extended universal enveloping algebra of
the Lie colour algebra (after the introduction of generators external to the Lie colour
algebra).

For this Section, the notation for the colour commutator will be (a, b) in line with
Kleeman's notation, so that in the universal enveloping algebra,

(4.1) (a,b) = ab - w(a,P)ba.

If a : F x F —¥ F x is a multiplier [11] on F , so that a(a, /?) is a nonzero scalar and

(4.2) a(a + j8,7Ma,/3) = <7(a,/3 + 7M/?,7), a^^eV,

then define

(4.3) u/(a,/J) = <T{atP)o-l(flia)u(fxtp).

Then a/ is a phase function on F, and C can be regarded as a Lie colour algebra
C" with grading group and phase function (F, w') with new colour commutator (a, b)a

defined by

(4.4) (a,b)a = a(a,0)(a,b), a € Ca, b G C0.

If a satisfies the stronger conditions

a(
(4.5)

a(a, 0 + 7) = a(a, P)cr(a, 7),

then let U"(C) be the unital associative algebra generated by the universal enveloping
algebra U(C) and further generators K"{a) (a € F) of grading zero (Ka(a) are called
Klein operators by Kleeman [9]), subject to

K°(a)K°(P) = K"(a + 0), K°(0) = 1,

K'(a)b = a((3,a)bK"(a), b £ (U(C))p.

A graded £-module M can be endowed with the structure of an V (£)-module by
defining

(4.7) K°(a)m = a(fi, a)m, m e MM.
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For a G £, define

(4.8) a" = K°{-a)a, a € Ca,

and extend by linearity, then

so that L° can be embedded into Ua(C), and U"{Ca) is isomorphic to Ua{C). In
other words, the Lie colour algebra Ca is embedded in the algebra Ua{C) generated
by the universal enveloping algebra U(C) and the Klein operators K°(a), and the
Lie colour algebra £ is embedded in the algebra U"(C) generated by the universal
enveloping algebra U{C) and the Klein operators K"{a) : they can be embedded in
the extended universal enveloping algebra of each other.

A finitely generated Abelian group F possesses a unique (up to isomorphism)
decomposition given by

(4.10) F = FP1 x FP2 x . . . FPn x Z x • • • x Z

—— X p i \U L. pn \i) • • • X « _ \jy (Li \jp • • • y^ ™ ĵ

where FPi is an Abelian pj-subgroup of F (where pi are prime). Each FPi can be
further decomposed into cyclic subgroups:

(A \"\\ p —- rfl. r V . . . V ^ r

In the case of a finite group, the copies of Z are omitted in (4.10).

Let {qi} be the set of cyclic generators of F , so that g< is the generator of either

one of the copies of Z/ yk or of one of the copies of Z. Define w^ (here, Kleeman's

notation Eij is not used since there is the possibility of confusion with the generators

of gl(m,..., fJ.n) below) by

(4.12) Wii=«(fc,^)^0.

Then

(4.13) u/(a, 0) = [ I (u>ii)nimi J ] («i fc)B'mfc-B*m',
t j<k

where

(4.14)
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[11] Uncolouring of Lie colour algebras 435

If qt generates a copy of %{pa)
rb and qj generates a copy of %(pc)

rd (i i1 j), then

(1) If a = c, then Wf, is a Vij-th. root of unity, where

(4.15) Vij = mm((pa)
r», (po)r«) = (pa)

min ^'^;

(2) If a^c, then wy = 1.

If qi generates a copy of 1nj,ayb and qj generates a copy of Z , then Wij is a (pa)
r |>-th

root of unity.
If qi generates a copy of Z and qj generates a copy of %(pa)

rb, then w^ is a (pa) r 6-th
root of unity.
If qi generates a copy of Z and qj generates a copy of Z (i ^ j), then w^ is an
arbitrary nonzero element of F.
If qi generates a copy of %>(pa)

rb , then

(1) If pa - 2, then uH = ± 1 ;
(2) If pa^ 2, then wH = 1.

If g< generates a copy of Z , then w« = ± 1 .

THEOREM. If F is finitely-generated and w is a phase function in T such that

w(a, a) = 1 for all a € F, then there exists a function J I T X T ^ F such that

(4.16) ff(a + 0,7) = * (a ,7M/3 ,7 ) ,

a(a, 0 + 7) = <r(a, /?)a(a, 7).

P R O O F : By (4.13),

(4.17) u/(a, /3) = J ] (W<i)"im<

for

0—

where Uij — u>(qi,qj). Since w(a,a) = 1 for all a 6 F, then, taking a = qi, ua = 1
for all i, so

(4.19) ^ a . / ^
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The function

(4.20) a(a,p)

satisfies the conditions (4.16). D

By defining u»o and rj as in Section 2, then 77 is a phase function such that r](a, a) =

1 for all a £ F, and so if F is finitely-generated, there exists a function a : F x F —> F
such that

a{a,P)a~1{fi,a) =77(0:,/?),

(4.21) <7(a + /3,7)=<7(a,7)<7(/},7),

cr(a, /? + 7) = cr(a, /3)<r(a, 7),

so that L>0(a,{5) = a(a,/3)a~1(P, a)u>(a,/3).

If w is a phase function and a :F xF -*F satisfies

a(a, P)a~1{fi,a)uj{a, (3) =wo(a,(3),

(4.22) <7(a + /3,7) = <r(a,7M/?,7),

<r(a, (3 + 7) = a{a, 0)<r{a, 7),

then C becomes a Lie superalgebra under (-,-)(T, and the Lie superalgebra can be
embedded into Ua(C). It follows that if F is a finitely-generated Abelian group,
then for an appropriate choice of a, a Lie superalgebra C can be embedded into
the extended universal enveloping algebra U"(C).

On the other hand, suppose that F is not finitely-generated. Since there is no
guarantee that a function a satisfying (4.22) exists, then there may not exist a function
a such that a Lie superalgebra can be embedded into Ua(C). Suppose £ is a finitely-
generated colour Lie algebra (with homogeneous generators). Let {xi : i — 1 , . . . ,n} be

n
such a set of generators, and suppose Xi 6 £^ for i — 1 , . . . , n. By defining Fc — X) ^£«

i = l

and u>c to be the restriction of w on Fc x Fc, then £ is a Lie colour algebra with
respect to (Fc,wc)- Since Fc is finitely-generated, then a suitable function a can be
defined on Fc x Fc, so that, introducing K"{a) for a € Fc satisfying

) , K°(0) = 1,
( 4 ' 2 3 ) K"(a)b = a{fl, a)bK°(a), b e (U{C))0, (3 € Fc,

then there is a Lie superalgebra embedded in U'T(C) where Ua(C) is the unital associa-
tive algebra generated by £/(£) and K". Thus it follows that such a Lie superalgebra
is guaranteed to exist if £ is finitely-generated by homogeneous elements.
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[13] Uncolouring of Lie colour algebras 437

The essential feature of these embeddings of a Lie superalgebra into an algebra
containing a given Lie colour algebra is that the introduction of new generators from
outside the universal enveloping algebra was required. We shall show in Section 8 that
a Lie superalgebra can be defined within the context of the universal enveloping algebra
of colour gl(n) purely in terms of the generators of gl(n), so that there is no need to
introduce anything external to the algebra to obtain the Lie superalgebra.

The following results, also related to those of Kleeman [7, 8, 9], may be noted.

Define

(4.24) To = {a € T : u/(a, 0) = 1 V/3 € F},

and call F reduced if To = 0 [9]. In [10], the term "nondegenerate" is equivalent to
"reduced" here. Set F r = F/Fo, then F r inherits a phase function wr from F, so that

(4.25) wr(a + r0 , /} + r 0 )=cj(a , /?) .

Note that (Fr)o = 0.

The following theorem is inspired by a theorem of Kleeman on canonical groups

and phase functions.

THEOREM. If (F, cu) is a finite reduced Abelian group and phase function, then

(F, u>) can be decomposed as

(4-26) ( I » = (rP l ,wP l) x • • • x (rPn,uPn),

where each pi is prime and each (Tp.,(jjPi) can be decomposed as

(4.27) (Fp.,Wp.) = (r[(w)r«],WKf).)rn])
X*1 X • • • X (^[(pifimir0J[(p.fimi])

for pi odd, where r t l , . . . , rimi are distinct positive integers, and jn,... ,jimi are pos-

itive integers, where for n € N,

(4.28) r [ n ] = Z x Z n ,

u[n]((a,b),(c,d)) = (£d-bc,a,b,c,deZn.

Here £n is a primitive n-th root of unity, so {P[n]>u[n]) & meaningful only if ¥ has
primitive n-th roots of unity. Specifically, if F is a finite field (GF(q), for q a prime
power), it is meaningful only if q - 1 is divisible by n, and if F has characteristic p,
then (F[n],W[n]) is meaningless if n is divisible by p. In the case of pi = 2,
(4.29)

( F 2 , W 2 ) = ( r p ' i l l . e ^ . j j W p r a j ) X ( r [ 2 r j l ) , W [ 2 r J i ] ) X : ' i l ~ 1 X •••

""• X (r(2),w(2)),
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where l,rn,... ,Timi are distinct positive integers, jn,---,jimi are positive integers,

o i , . . . , am< e Z2, £[m] is the phase function on Z2m x %2m defined by

(4.30) e[m]((a, b), (c,d)) = ( - l ) o c , a,b,c,de Z2m,

and either

(4.31) (r(2),a;(2))=(r[ 2 ] ,W [ 2 ])
x m,

where m is a non-negative integer, or

(4.32) (r(2)M2)) = (rs,u>s)*
m,

where m is a positive integer. In the case of (4.31), at most one of 01 , . . . ,am< is

nonzero, and in the case of (4.32), all of 0 1 , . . . , amj are zero.

5. AN EXAMPLE: COLOUR gl(n)

In this Section, we give a general definition for colour gl(n), and introduce its
vector representation and its contragredient representation.

Let HI, ...fin S F be given. The Lie colour algebra gl(ni,.. . ,Mn) has basis
{Elj :i,j = l,...,n}, where Exj e (3/(^1,.. . , Mn))M_^. 1 with colour commutator

(5.1) [Ei
j,E

k
l] = SfE't - 6i

lw(ni,mMlJ'i,^kMfJ.k,lij)co{fJ.j,Hi)Ek
j.

The Lie colour algebra gl{fii, • • • ,fin) is isomorphic to the Lie colour algebra of
matrices over a graded n-dimensional vector space, V, with a basis {efc}, where ek €
V^k for k — 1 , . . . , n. The action of E*j on this basis is determined by

(5.2) £ > * = 5ke\

so that the matrix elements of Elj are given by

(5.3) (£4i) f c '=W
Call the representation on V the vector representation. The contragredient represen-

tation is defined on V*, where the dual basis {e*k} (for which (e£,e') = 6l
k) satisfies

e*k € Vl^k , with the action given by

(5.4) E^el = -5ku(m, fn)^j, Pi)e*j-

The Lie colour algebras gl((ii, • • • ,Mn) and <?Z(jxi + v,..., fin + u) have a natural

isomorphism for all v € F (E%j <-> Elj), and for a 6 <Sn, there is an isomorphism of

gl(n\, • • •, Hn) and gl(fia(i),- • •, /Mr.)) determined by Elj o Ea {t)
a-i(j) •

In the case where Hi and H2 have the same parity (so that H\ — M2 is even), the
generators of gl{ni, H2) satisfy the same relations as the corresponding generators for
gl(2). Similarly, in the case where Hi aid M2 have opposite parity (so that (ii - A*2
is odd), the generators of gl(n\,H2) satisfy the same relations as the corresponding
generators for gl(\\\).

https://doi.org/10.1017/S0004972700034080 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700034080


[15] Uncolouring of Lie colour algebras 439

6. COLOUR BOSONS AND FERMIONS

Here, we introduce a realisation of colour gl(n) in terms of colour boson and fermion
generators.

Just as there is a realisation of gl(n) in terms of ordinary boson operators, and of
gl(m\n) in terms of ordinary boson and fermion operators, so there is a realisation of
colour gl(n) in terms of colour boson and fermion operators. Take the unital associative
colour algebra generated by {a* : i — 1 , . . . , n} (the creation operators) and {a-i : i =
l , . . . , n } (the annihilation operators), where a* has grading Hi and aj has grading
—^ , subject to

[a*, aj] = a V - u(m, p^oPa* = 0,

(6.1) [oj, Oj] = ajaj - w(ni, Hj)a.jai = 0,

[au a
j) = aia? - W{HJ, /ii)oJa< = 5\.

Note that if m is even, then

(6.2) did1 - (jai = 1,

so that aj and a1 are ordinary boson operators, and if fii is odd, then

(af = 0,
(6-3) (f l i)

2 = 0,

cud1 + aldi = 1,

so that di and a* are ordinary fermion operators. The generators of gl{fii, • • •, (in) can
be realised in terms of colour boson and fermion operators by

(6.4) E{j = atdj.

The colour commutation relations between the realisations of E1j and the creation
operators {ak} (the annihilation operators {dk}) are then given by

[E'j, dk] = Ei
ja.k - w(

[Elj,dk] = Eljdk - u}(iik, vi)u{iij, VkidkE1 j = -5kw(m, fj.i)u[ij.j, tufa,

so that {dk} form a vector operator, and {dk} form a contragredient operator.

Note that the colour bosons and fermions differ from the modular statistics oper-
ators of Green [3], which are also associated with Lie colour algebras.
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7. UNCOLOURING OF BOSONS AND FERMIONS

Here, we uncolour the colour boson and fermion operators in the realisation, using
only operators within the "complete" universal enveloping algebra (so that the un-
coloured bosons and fermions are defined completely in terms of the generators of the
Lie colour algebra).

Take the colour Fock space for the colour boson and fermion operators. Define

fc-i

(7.i) u[k]=n
m=l

where u>o is defined as in Section 2 (so U[l] = 1), then

(7.2) [a1, l> k,

and

-^uik] = { w(w>
(7-3) U[k]- . _ ,

and

(7,4) U[k)U[l) = U[l)U[k).

Define

(7.5)

then

(7.6) bibj - woO*i, VLj)bjbi = 0,

biW - wo{m, Hj)

in particular, if /x< is even or fij is even, then

6V =
(7.7) 6i6j- =
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and if pi and fij are both odd, then

&'V = -Vb\

(7.8) bib; = -bjbi,

bib
i + Vbi = Si

i,

so that {b1} and {bi} are standard boson and fermion operators. Let F'j = b'bj, then

Fi
j = U[i\Ei

jU\j]-1,

so the Cartan elements remain unchanged, and

(7.10) Fi
iF

ki -

in particular, if ^ and fij have the same parity, or if fj,k and HI have the same parity,
then

(7.11) FijFki - Fk
tF

i
j = $F*i - 8\Fkj,

and if fn and /J,J have opposite parity and /z* and m have opposite parity, then

(7.12) Fi
jF

ki + FkiFi
j = 5kF{, + 5iFkj,

so that {F*j} span a Lie superalgebra isomorphic to gl(p\q), where p is the number of
even Hi, and q is the number of odd m (p + q = n).

8. UNCOLOURING OF COLOUR gl(n)

Here, the method developed in Section 7 is generalised to arbitrary modules of
colour gl(n) within certain very wide-ranging categories (any weight module is a direct
sum of modules from within these categories).

In a cyclic module generated by a homogeneous (with respect to the grading group
F) nonzero vector w with weight A — (Ai , . . . ,A n ) , so that Eliiv = Ajtw for all t,
every weight n = ( « ! , . . . , Kn) satisfies «j — A* e Z for all i, that is, K — A is integral.
Furthermore, for all elements A G H*, where % is the Cartan subalgebra (the span of
Eli), let O\ be the category of graded modules with a homogeneous weight basis (a
basis in which every vector v is homogeneous with respect to the grading group F and
has a weight n) in which every weight differs from A by an integral element of H* (so
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that O\ and OK are identical if A — K is integral). Every module with a homogeneous

weight basis is decomposable into a direct sum of modules from individual categories.

Take a nontrivial module W in the category O\, so every weight differs from A

by an integral element of H*. Note that if z is nonzero, then zB*«-A« is well-defined

on W. Since Eli has grading zero, then zE%i~Xi has grading zero. Let C,ij be nonzero

elements of F for i,j — 1 , . . . , n. Define

m = l

then W\[i] has grading zero, and

and

(8.3) WA[«]WA[j] = Wx\j\W\[i\.

Define

so that, in particular, Fli = E'i, so the Cartan elements remain unchanged, then Fij

has grading fj,{ - fij, and

If there exists a phase function t] such that

(8.6) 7?(/Xi, fj.j) = CijC^, i,

so that T]{ni,Hi) = 1 for all i, then

(8.7) Fi
jF

ki -

and F* j generate a colour algebra under grading group F and phase function 77W. Note

that {T)w){m,Hi) = v{ni,l*i) for all i.

Given a phase function 7/ satisfying r)(fj.i,fii) = 1 for all i, put

{ 1. * $ j ,
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so that

fc-i
(8.9) Wx[k) = J J "1

and Wx[l] = l. Then

(8-10)

and so, with this choice for ^ ,

(8.11) F'jF", -

= SkF'i - Si

If w{ni,fii) = u(fj,i, m) for all i, then by putting -q = UJW~1 , so T)(iJ,i, fit) = 1 for
all i, it follows that with an appropriate choice of Qj,

(8.12) Fi
jF

k,-w(»i,nk)Z(»h»i)Z(fik,N)Z(fij,IM)Fk
lF

i
j

so that Flj generate a Lie colour algebra with grading group F and phase function w.

Since u>o(a,a) — u)(a,a) for all a € F, then for an appropriate choice of Cij,

fc-i

(8.13) wx[k]=n
m=l

and

(8.14) Fi
jF

k
l-

in particular, if ^ and /x̂  have the same parity, or if /** and ^i| have the same parity,
then

(8.15) Fi
jF

k
i - F*^ = 6^F*, - 8\Fkj,

and if /Xj and fij have opposite parity and nk and m have opposite parity, then

(8.16) Fi
jF

ki + Fk
lF

i
j = SkF{i + 8}Fk

h

so that {F*j} span a Lie superalgebra isomorphic to gl(p\q), where p is the number of
even \ii, and q is the number of odd Hi (p + q — n). Note that {Flj} do not close on
a Lie colour algebra.
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The tensor product of modules maps O\ x OK to O\+K. Since A(Elj) = E*j <g>
1 + 1 <g> E'j, then

(8.17)

on ordered pairs of modules in O\X OK, where F*j is defined using W\ on modules
in Ox and WK on modules in OK.

Restricting to Oo, then each nontrivial module has an integral weight basis, so
that if (Ai,.. . , An) is a weight, that is, there exists a nonzero vector w G W such that
E'iW = XiW for all i, then Aj e Z for all i, then Eli possesses only integer eigenvalues,
so for arbitrary nonzero z 6 F, zB** is well defined. Note that the tensor product of
modules defines a binary operation on OQ- Note that (8.13) becomes

(8.18)

and

(8.19)

W0[k] =

A (zBt') =

A(W0\i]) =

fc-i

m=l

zEiU

W0[i]

Since WAM a re defined in terms of the Lie colour algebra (and the representation),
then F'j are defined in terms of the Lie colour algebra, as opposed to the work of Klee-
man, which necessitated the introduction of operators from outside the algebra. Also,
whereas Kleeman modified each homogeneous (with respect to the grading) subspace,
the above modifies the generators of the Lie colour algebra.

9. QUASITRIANGULARITY

Here, colour quasi triangularity and its relation to non-graded quasi triangularity
are reviewed.

A Hopf colour algebra A is quasitriangular if there exists 72. e (A <%> A)o such that

• TlA(x) = A'(x)TZ,

• 72- is invertible.
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Some consequences are as follows:

= 7^23^13^12 (colour Yang-Baxter equation),

Here, u(l) is as in Subsection 3 (iii), the Subsection on Colour Bialgebras: u(l) is the
multiplicative identity of A.

Since the universal enveloping algebra of a Lie colour algebra is colour cocommu-
tative, then it is quasitriangular with It = 1 <E> 1.

The results given in [10] (in which reduced grading groups were referred to as
nondegenerate) are generalisable to the case where the grading group need only be
finite. Specifically, if (I\w) is the grading group and phase function (and T is finite),
then a colour algebra A can be augmented to a unital associative algebra A using
further generators Ua (a € F), subject to

UaU0 = Ua+0,

(9.1) Ua = 1, a e To,

Uax = w(a,£)xUa, x € A$,

and denoting the algebra monomorphism embedding A into A by LA • As in the case
of [10], a graded A-module M can be endowed with the structure of an A-module by
defining

(9.2) Uam = w(a, /x)m, m € MM.

Call this the natural A-module structure on M, and call the corresponding represen-
tation of A the natural extension of the representation of A.

The algebra morphisms $A,B, ^'A B> * A , B and &'AB are defined as in [10], and
have the same properties as far as commutativity of diagrams is concerned. In the
case where A is a colour Hopf algebra, then A is a nongraded Hopf algebra and the
nongraded coproduct and nongraded antipode are defined as in [10].

Define V by

(9.3) p = |r|-1|r0|"1

a,per

then V satisfies similar relations to those in [10], that is,
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THEOREM. The following conditions are satisfied by V.

(1) If F is finite, A and B are colour algebras graded with respect to T,

M is a graded A-module, and N is a graded B-module, then under the

natural extension,

(9.4) V{m®_n) = u(n, v)m®n, m € MM, n € Nv.

(2) If F is finite, and A and B are coiour algebras, then

(9.5) V$(x®z) = &(x®z)V, x®z€ A<8)B,

so that V intertwines $ and

(3) If T is finite, then

(9.6a) (A® 1)(7?) = Pi3"P23 € A® A®B,

(9.6b) (l®A)(P)=V13P12eA®B®B.

(4) If F is finite, then V is invertible with inverse

(9.7) V-1 = IT]-1 \To\-1

The proofs are similar to those given in [10].

If A is quasitriangular, then A is quasitriangular, with i?-matrix 7£ given as in

[10].

Similarly, if F is finite, then given a solution TZ(x) of the colour parameter-

dependent Yang-Baxter equation,

(9.8) Tl{x) = V${n{x)) = &(R,(x))V

is a solution of the nongraded parameter-dependent Yang-Baxter equation.

Note that the boundary condition

(9.9) tt(0) = / ,

automatically gives us that

(9.10) S(0) = V,

so that if the colour parameter-dependent ii-matrix satisfies the boundary condition
(9.9) and the phase function is not trivial, then the nongraded parameter-dependent
.ft-matrix does not satisfy that boundary condition.
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10. gl(p\q) •• A N E W COPRODUCT, H O P F STRUCTURE AND ^ - M A T R I X

Here, a set of operators corresponding to a general phase function on the grading
group is considered, and this set of operators is used to relate Hopf colour algebras with
isomorphic grading groups, but with different phase functions. This relation is shown
to preserve colour quasitriangularity, where for each Hopf colour algebra, the phase
function is the phase function appropriate to that Hopf colour algebra. The results
are applied to colour gl(n): the correspondence with gl(p\q) is identified, the gl(p\q)

generators and their coproducts for the Hopf colour algebra are identified, and the new
coproducts for the Hopf superalgebra are found. This identifies a new coproduct, Hopf
superalgebra structure, and ii-matrix for the "complete" universal enveloping algebra
for gl(p\q).

Although {Flj} span a Lie superalgebra, the coproducts (8.17) and (8.19) are still
coproducts corresponding to the phase group F and phase function u>.

The results in Section 9 can be generalised. Let u> be a phase function on F , and
let

(10.1) fo = { a e r : 2(a,/3) = l, V/? € F}.

A colour algebra A with respect to (F, w) can be augmented to a unital associative
algebra A using further generators Ua (a € F) of grading zero subject to

UaUp = Ua+0,

(10-2) Ua = l,a€ f o,

Uax = w(a,£,)xUa, x £ A$.

Here, A is graded with respect to (F, ww"1). Denote the algebra monomorphism
embedding A into A by 7A • A graded ^4-module M can be endowed with the structure
of an j4-module by defining

(10.3) Uam = w(a, (x)m, m e MM.

Call this the natural A-module structure on M, and call the corresponding represen-
tation of A the natural extension of the representation of A to a representation of
A.

The algebra morphisms ^>A,B I ^'A,B > ®A,B and &A,B a r e defined similarly to

[10], in particular, ^A,B,&A,B • A®B -> A®B and ®A,B,&A,B • A® B -* A®B are
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given by

^A,B({X ® z)Ua) =xU<;+a®zUa, z

= Uax®Ui+az, x

x e A$,

and have the same properties as those in [10] as far as commutativity of diagrams is
concerned. In the case where A is a colour Hopf algebra with respect to (F, w), then
A is a Hopf colour algebra with respect to (F^a)" 1 ) , with new coproduct, counit and
antipode, given by

eix),

S(x C/a) = U-(-aS(x), x € A

The reverse coproduct is given by

(10.6) A' (x Ua) = *'(A'(a;)) (pa®Ua)

If F is finite, define V by

(10.7) V = IFp

then V satisfies similar relations to those in [10], that is:

THEOREM. The following conditions are satisfied by V.

(1) If F is finite, A and B are colour algebras graded with respect to (F, w),
M is a graded A-module, and N is a graded B-module, then under the

natural extension,

(10.8) V(m®n) = w{n, v)m®n, m e AfM, n £ Nv.

(2) If F is finite, and A and B are colour algebras graded with respect to

(F,w), then

(10.9) V®(x ® z) = $'(x ® z)V, x®z&
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so that V intertwines $ and $ ' .
(3) If F is finite, then

(10.10a)

(10.10b)

(10.11)

The proofs are similar to those given in [10].

If A is quasitriangular, then A is quasitriangular (as a Hopf colour algebra with

grading group and function (F, wu;"1)), with R-matrix,

(10.12) U = V$(R) = 9'{H)V.

Similarly, if F is finite, and 7l(x) is a solution of the colour parameter-dependent
Yang-Baxter equation, then

(4) If F is finite, then V is invertible with inverse

~ . , _ - l

is a solution of the colour parameter-dependent Yang-Baxter equation with respect to

(F.ww-1).

The boundary condition

(10.14) TZ(O) = I,

becomes in the new algebra

(10.15) H{0) = V,

so that if the colour parameter-dependent .ft-matrix for A satisfies the boundary con-
dition (10.14) and the phase function u> is not trivial, then the colour parameter-
dependent i?-matrix for A does not satisfy that boundary condition.

Let w = WWQ = TJ"1 , where a»o and rj are defined as in Section 2, specifically, (2.9)
and (2.12), then ww"1 = u>0, so that

(10.16) (wST1)^,/?) = wo(a,P) = ( - l )
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It follows that A is a Hopf superalgebra, and that all even elements of A are even
elements of A, and all odd elements of A are odd elements of A.

By (8.17), the coproduct on ordered pairs of modules in O\ x OK is

A

(10.17) A(Wx+K[i\) = Wx[t[ <g> WK[i\,

i
j) = F*i ® WK[i\WK\j]-1 + Wx[i[Wx\j]-1

so t h a t in [U{gl(ni,..., fin))],

A (z
Eii-<-Xi+KiA = zEi*

(10.18) A(Wx+K\i}) = Wx[i\®WK[i],

and on an ordered pair of modules in OQ x Oo, the coproduct is

Note that this coproduct for the Hopf superalgebra is distinct from the standard co-
product for the Hopf superalgebra U(gl(p\q)), which is given by

(10.20) A " ^ ) = FV;®1 + I®*1*,-.

Not only are (10.18) and (10.19) distinct coproducts from (10.20), but there is no algebra
homomorphism of U(gl(p\q)) which will transform (10.20) into (10.18) or (10.19). This
means that (10.18) and (10.19) are entirely new coproducts.

Since the coproduct (10.20) is supercocommutative, then the Hopf superalgebra
is quasitriangular with .ft-matrix Tl = 1®1. Since the coproduct (10.18) and (10.19)
is not supercocommutative, then the identity 1<8>1 is not an .R-matrix for this Hopf
superalgebra. The .R-matrix corresponding to the coproduct is

(10.21) ^ = P = |rr

Note that since operators Ua were introduced to define the Hopf superalgebra
[U(gl(tii,...,Hn))]y fcnen (10.18) and (10.19) are not coproducts on U(gl(fj,i,.. .,fin))
as a Hopf superalgebra.
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On the other hand, for a phase function w on T and a € F , define Va[X] on a

module in O\ by

(10.22)

Then

(10.23)

VQ[X)VP[X]

Va[X]

Va[X]x

Va[X] -

= Va+0[X],

= 1, a€

i=\

so that Ua = Va[X], which are denned in terms of gl(fii, • • •, /xn) i satisfy (10.2).

By (10.18), the coproduct on ordered pairs of modules in O\ x OK is

A

= Wx[i\®WK{i\,

- ^SW^WW^y] - 1 + Wx[ilWx\j]-lVIH-llj[\]®Fi
jt

and on ordered pairs of modules in OQ X OQ , the coproduct is

A (zEti) = z£li®zB'%
(10.25) ^ J

A{W0[i\) = W0\i]®W0[i],

Note that this is genuinely a coproduct for the Hopf superalgebra U(gl(ni,... ,p.n))
(and equivalently U(gl(p\q))), and is distinct from the standard coproduct (10.20).

11. CONCLUDING REMARKS

It is interesting that there exist different Hopf structures for the Lie superalgebra
gl(m\n), which can be obtained as a consequence of their relationship with Lie colour
algebras of general linear type. Preliminary investigations suggest this phenomenon
extends to other Lie superalgebras (those of types A — G in Kac's notation [5, 6]).
More importantly, the phenomenon does extend to quantised Lie superalgebras, opening
the way for the construction of more interesting solutions of the graded and ungraded
Yang-Baxter equation, which may be of importance in applications. These extensions
will be pursued in subsequent articles.
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