JOURNAL OF PLASMA PHYSICS

JOURNAL OF PLASMA PHYSICS exists for the publication of experimental and theoretical research papers on plasma physics and its applications.

EDITOR

DR J. P. DOUGHERTY

Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Silver Street, Cambridge CB3 9EW, England

ASSOCIATE EDITORS

PROF. D. BERSHADER Department of Aeronautics and Astronautics, Stanford University, Stanford, California, 94305, USA

PROF. F. D. KAHN

Department of Astronomy, University of Manchester, Manchester M13 9PL, England

PROF. W. B. THOMPSON

Department of Physics, University of California, La Jolla, California 92093, USA

Authors wishing to have papers published in the JOURNAL should communicate them to any one of the persons named above, choosing one in their own country where possible.

Authors are urged to ensure that their papers are written clearly and attractively, in order that their work will be readily accessible to readers.

Manuscripts should be typed in double spacing on one side of the paper only, with references listed at the end in alphabetical order of authors. Drawings should be done in Indian ink on plain white or transparent paper, and should not be larger than 15 in. by 24 in. Lettering should be shown clearly in pencil for reproduction by the printer, and as far as possible information relating to a figure should be placed in the caption rather than on the figure. A typed list of captions should be provided at the end of the manuscript. Proofs of papers from overseas will usually be despatched to authors by airmail. There is no charge for publication. Authors are entitled to receive 50 offprints of a paper in the JOURNAL free of charge, and additional offprints can be purchased if ordered in advance.

© Cambridge University Press 1987

Copying

This journal is registered with the Copyright Clearance Center, 21 Congress St., Salem, Mass. 01970. Organizations in the USA who are also registered with C.C.C. may therefore copy material (beyond the limits permitted by sections 107 and 108 of US copyright law) subject to payment to C.C.C of the per copy fee of \$05.00. This consent does not extend to multiple copying for promotional or commercial purposes. Code 0022-3778/85/2828-0001 \$05.00.

IS Tear Service, 3501 Market Street, Philadelphia, Pennsylvania 19104, USA, is authorized to supply single copies of separate articles for private use only.

For all other use, permission should be sought from Cambridge or the American Branch of Cambridge University Press.

JOURNAL OF PLASMA PHYSICS (ISSN 0022-3778) is published once every two months in February, April, June, August, October and December, by Cambridge University Press, The Edinburgh Building, Shaftesbury Road, Cambridge CB2 2RU and 32 East 57th Street, New York, NY 10022.

Three parts form a volume. The subscription price (which includes postage) of volumes 37 and 38 (1987) is £86.00 net per volume (US \$205.00 in the USA and Canada) for institutions; £44.00 (US \$105.00) per volume for individuals. Single parts cost £30.00 each (US \$72.00 in the USA and Canada) plus postage. All orders must be accompanied by payment.

Copies of the journal for subscribers in the United States of America and Canada are sent by air to New York to arrive with minimum delay.

Second class postage paid at New York, NY, and at additional mailing offices. *POSTMASTER*: send address changes in USA and Canada to Cambridge University Press, 32 East 57th Street, New York, NY 10022.

JOURNAL OF PLASMA PHYSICS

VOLUME 37 1987

CAMBRIDGE UNIVERSITY PRESS

Cambridge New York New Rochelle Melbourne Sydney Published by the Press Syndicate of the University of Cambridge The Pitt Building, Trumpington Street, Cambridge CB2 1RP 32 East 57th Street, New York, NY 10022 10 Stamford Road, Oakleigh, Melbourne 3166, Australia

© Cambridge University Press 1987

Printed in Great Britain by the University Press, Cambridge

CONTENTS TO VOLUME 37

PART 1 FEBRUARY 1987

The orbits of electrons and ions in the fields of the rotamak. W. N. HUGRASS and M. TURLEY	1
Drift instabilities of a relativistic plasma. Part 1. Kinetic description of drift effects in a relativistic plasma. A. B. MIKHAILOVSKII and O. G. ONISHCHENKO	15
Drift instabilities of a relativistic plasma. Part 2. Kinetic theory of low- frequency drift instabilities of a relativistic finite-pressure plasma. A. B. MIKHAILOVSKII and O. G. ONISHCHENKO	29
The ion-ion acoustic instability. S. P. GARY and N. OMIDI	45
Local analysis of extraordinary mode stability properties for relativistic non-neutral electron flow in a planar diode. R. C. DAVIDSON and H. S. UHM	63
Modified convective cells in plasmas. D. JOVANOVIĆ, H. L. PÉCSELI, J. J. RASMUSSEN and K. THOMSEN	81
Self-focusing of nonlinear ion-acoustic waves and solitons in magnetized plasmas. Part 2. Numerical simulations, two-soliton collisions. E. INFELD and P. FRYCZ	97
Nonlinear evolution of a wave packet propagating along a hot magneto- plasma column. B. Gноян and K. P. Das	107
Relativistic oblique magnetohydrodynamic shocks. G. M. WEBB, G. P. ZANK and J. F. MCKENZIE	117
Oblique propagation of nonlinear magnetosonic waves. H. A. SHAH and R. BRUNO	143
Thermal effects on parallel-propagating electron cyclotron waves. P. A. ROBINSON	149
PART 2 APRIL 1987	
Instability and saturation of drift-convective modes in an inhomo- geneous plasma. R. BALESCU, H. BESSENRODT, P. K. SHUKLA and K. H. SPATSCHEK	163

MHD instabilities of a cylindrical plasma with a realistic energy equation. G. TORRICELLI-CIAMPONI, V. CIAMPOLINI and C. CHIUDERI

163

175

The interaction of a conducting object with a supersonic plasma flow: ion deflection near a negatively charged obstacle. R. L. MERLINO and N. D'ANGELO 185

vi	Contents	
Convective cell and Alfvén vortices magnetoplasma. P. K. SHUKLA a	s in an inhomogeneous rotating cold nd R. Внакитнкам	199
An approximate theory of electroma relativistic plasma. S. S. SAZHIN	agnetic wave propagation in a weakly	209
Almost perpendicular electromagne relativistic inhomogeneous plasm	tic wave transformation in a weakly a. S. S. Sazhin	231
The Zakharov equations: a deriv MELROSE	vation using kinetic theory. D.B.	241
Spectrum cascade processes and not turbulence. D. MAJUMDAR	nlinear stability in interchange mode	247
Compton and Raman free electron electron beam propagating throu DAVIES, R. C. DAVIDSON and G.	laser stability properties for a warm igh a helical magnetic wiggler. J. A. L. Јониsтои	255
Turbulent relaxation of a confined J. P. DAHLBURG, D. MONTGOMER	l magnetofluid to a force-free state. y, G. D. Doolen and L. Turner	299
Corrigendum. S. G. TAGARE		322

PART 3 JUNE 1987

A model of an isolated magnetic flux tube in the stratified atmosphere. W. R. Hu	323
Particle and energy transport due to magnetic field-line reconnection in a tokamak. S. IIZUKA, Y. MINAMITANI and H. TANACA	335
Short-wavelength compressive instabilities in cosmic ray shocks and heat conduction flows. G. P. ZANK and J. F. MCKENZIE	347
The interaction of long-wavelength compressive waves with a cosmic ray shock. G. P. ZANK and J. F. MCKENZIE	363
Two-stream and filamentation instabilities for a light ion beam-plasma system. T. OKADA and W. SCHMIDT	373
Ripple transport in 'transport optimized' stellarators. W. N. G. HITCHON and H. E. MYNICK	383
Transport properties of the two-component strongly coupled plasma. R. CAUBLE and W. ROZMUS	405
The effect of a steady azimuthal field on rotating magnetic field current drive. W. K. BERTRAM	423
Dispersion of electron Bernstein waves including weakly relativistic and electromagnetic effects. Part 1. Ordinary modes. P. A. ROBINSON	435
Dispersion of electron Bernstein waves including weakly relativistic and electromagnetic effects. Part 2. Extraordinary modes. P. A. ROBINSON	449

Contents	vii
A manifestly gauge-invariant Hamiltonian theory of the oscillation- centre dynamics. B. WEYSSOW and R. BALESCU	467
The effect of the ion temperature on the ion acoustic solitary waves in a collisionless relativistic plasma. Y. NEJOH	487
Single-particle motion under the influence of the perpendicular ponderomotive force. M. C. FESTEAU-BARRIOZ, M. L. SAWLEY and J. VÁCLAVÍK	497
Author Index to Volume 37	507

Continued from back cover

A manifestly gauge-invariant Hamiltonian theory of the oscillation-centre dynamics	467
The effect of the ion temperature on the ion acoustic solitary waves in a collisionless relativistic plasma	107
YASUNOBI NEJOH Single-particle motion under the influence of the perpendicular ponderomotive force	487
M. C. FESTEAU-BARRIOZ, M. L. SAWLEY AND J. VÁCLAVÍK	497
AUTHOR INDEX TO VOLUME 37	507

JOURNAL OF PLASMA PHYSICS

Volume 37 Part 3 June 1987

CONTENTS

A model of an isolated magnetic flux tube in a stratified atmosphere WEN-RUI HU	page (323
Particle and energy transport due to magnetic field-line reconnection in a tokamak SATORU IIZUKA, YASUJIROH MINAMITANI AND HIROSHI	Ε	
TANACA		335
Short-wavelength compressive instabilities in cosmic ray shocks and heat conduction flows		0.47
G. P. ZANK AND J. F. MCKENZIE		347
The interaction of long-wavelength compressive waves with a cosmic ray shoek		
G. P. ZANK AND J. F. MCKENZIE		363
Two-stream and filamentation instabilities for a light ion beam- plasma system		
TOSHIO OKADA AND WINFRIED SCHMIDT	5	373
Ripple transport in 'transport-optimized' stellarators W. N. G. HITCHON AND H. E. MYNICK	2	383
Transport properties of the two-component strongly coupled plasma		
R. CAUBLE AND W. ROZMUS	4	105
The effect of a steady azimuthal field on rotating magnetic field current drive		
W. K. BERTRAM	4	123
Dispersion of electron Bernstein waves including weakly relativistic and electromagnetic effects. Part 1. Ordinary modes		
P. A. ROBINSON	4	135
Dispersion of electron Bernstein waves including weakly relativistic and electromagnetic effects. Part 2. Extraordinary modes		
P. A. ROBINSON	4	149

Continued on inside back cover

© Cambridge University Press 1987

CAMBRIDGE UNIVERSITY PRESS

THE PITT BUILDING, TRUMPINGTON STREET, CAMBRIDGE CB2 1 RP 32 EAST 57TH STREET, NEW YORK, NY 10022, USA 10 STAMFORD ROAD, OAKLEIGH, MELBOURNE 3166, AUSTRALIA

Printed in Great Britain by the University Press, Cambridge