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Instability of co-flow in a Hele-Shaw cell with
cross-flow varying thickness
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We analyse the stability of the interface between two immiscible fluids both flowing in the
horizontal direction in a thin cell with vertically varying gap width. The dispersion relation
for the growth rate of each mode is derived. The stability is approximately determined by
the sign of a simple expression, which incorporates the density difference between the
fluids and the effect of surface tension in the along- and cross-cell directions. The latter
arises from the varying channel width: if the non-wetting fluid is in the thinner part of the
channel, the interface is unstable as it will preferentially migrate into the thicker part. The
density difference may suppress or complement this effect. The system is always stable to
sufficiently large wavenumbers owing to the along-flow component of surface tension.
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1. Introduction

The parallel co-flow of two fluids occurs in many industrial, biological and environmental
processes. It is often important to understand the interfacial instability and develop
strategies to control it. Frequently, these flows occur in thin channels whose thickness
varies in the cross-flow direction. Examples include: the flow of cement and drilling fluid
within a casing pipe of a subsurface well, where the intermingling of cement and mud can
produce poorly sealed wells with the attendant risks of leakage; the flow of coatings in the
corner region along the line of intersection between two planes, where the displacement
of air limits the formation of non-coated zones (Weislogel & Lichter 1996); flows of
reactants in microfluidic channels (Sauer 1987; Huang et al. 2018); and the displacement
of water by CO2 in permeable channels used for CO2 sequestration, where intermingling
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Figure 1. (a) Schematic of the set-up. Large arrows indicate the flow direction. (b) Cross-section
perpendicular to the x direction. (c) Cross-section in the x direction.

may enhance the efficiency of the sequestration (Woods & Mingotti 2016). For the last
example of CO2 sequestration, the pore-scale dynamics, which is controlled by capillary
effects and the interpore geometry, is not fully understood but can have a significant effect
on macroscale mechanisms such as the flux and the residual trapping of the CO2, which are
key to estimating storage efficiency (Zhao et al. 2019; Benham, Bickle & Neufeld 2021).
If the initial flow involves the displacement of one fluid by a second along the channel,
the displacing fluid will migrate along the wide part of the channel, stretching out the
interface; at long times, the interface is approximately directed along the channel, and the
flow evolves to the co-flowing geometry of the present problem (cf. Woods & Mingotti
2016; Mortimer & Woods 2021).

We investigate how the stability of the interface between the two fluids in a thin cell with
vertically varying gap width is controlled by cross-layer buoyancy and capillary effects
(figure 1). We assume that inertia plays a negligible role in the base flow. It has been
shown that when inertia plays a significant role and the two fluids in the Hele-Shaw cell
have significantly different viscosities, the shear-controlled Kelvin–Helmholtz instability
may occur as has been observed experimentally (Zeybek & Yortsos 1992; Gondret &
Rabaud 1997; Rabaud & Moisy 2020). In wider channels, it has been shown that even
at zero Reynolds number the vertical shear associated with the no-slip boundaries at the
top and bottom can give rise to interfacial instabilities in the co-flow of two fluids of
different viscosity (Yih 1967). Similar behaviour can occur in two-layer gravity-driven
flow (Loewenherz & Lawrence 1989).

In the present work, we consider a laterally thin cell in which the vertically varying
velocity arises from variations in the cell width. The stability is primarily controlled by
the density difference between the fluids and surface tension. It is well established that the
along-flow component of surface tension stabilises larger wavenumbers. The combination
of surface tension and the cross-cell variation in thickness introduces a new (de)stabilising
process for small wavenumbers in the case that the (non-)wetting fluid is in the thinner part
of the channel. This effect may complement or suppress the effect of a density difference
between the two fluids on the stability of the interface.

The impact of variations in the surface tension associated with variations in the channel
width have been explored in detail for the related problem in which an input fluid displaces
an ambient fluid in a cell whose width varies in the direction of flow (Homsy 1987;
Al-Housseiny, Tsai & Stone 2012; Dias & Miranda 2013; Grenfell-Shaw & Woods 2017).
These studies have identified that the effect of cross-cell curvature can complement or
suppress the classical Saffman–Taylor instability (Saffman & Taylor 1958).
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Instability of co-flow in a Hele-Shaw cell with cross-flow varying thickness

2. Formulation

The flow and the cell geometry are illustrated in figure 1. The cell occupies 0 < y < H
and has width b( y) which varies in the vertical direction,

b( y) = b0 + αy, (2.1)

where α represents the inclination of the cell walls, which may be positive or negative,
and α > −b0/H, so that the cell width is non-negative. Flow is driven in both fluids in
the x direction by a background pressure gradient with magnitude G. For relatively slow
flows, we can apply the lubrication approximation, which is to say that the leading-order
velocities are independent of x. Under this assumption, the momentum and continuity
equations for the gap-averaged velocity in each fluid take the form (equation (11) of
Gondret & Rabaud 1997)

∂ū
∂t

+ ū · ∇ū = − 1
ρ

∇p − 12μ

ρb2 ū − gey, ∇ · (bū) = 0, (2.2a,b)

where ∇ = (∂/∂x, ∂/∂y), ey is the unit vector in the y direction and μ and ρ are the fluid
viscosity and density, respectively. Also, p is the pressure, g represents gravity, which acts
in the negative y direction, and ū = (ū, v̄) is the width-averaged velocity in the x and
y directions. The boundary conditions are no-flux at the top and bottom of the channel,
v̄ = 0, whilst at the fluid–fluid interface, y = yI , the velocity in each fluid satisfies the
kinematic boundary condition

∂yI

∂t
+ ū

∂yI

∂x
= v̄. (2.3)

In addition, there is a pressure jump at the interface associated with its curvature, κ =
∇2yI , given by

�p = γ κ, (2.4)

where γ represents surface tension. The unperturbed steady base flow is given by

ū = U0( y) = b( y)2G
12μ

, v̄ = 0, p = P0(x, y) = −ρgy − Gx + const. (2.5a–c)

The fluids are immiscible and the location of the fluid–fluid interface, yI = h, is a constant
for the case of steady flow, which depends on the channel angle, the relative flux in each
layer and the viscosity ratio. Although the curvature of the interface in the along-flow
direction vanishes since yI is independent of x, there is curvature in the cross-channel
direction owing to the contact angle at the wall and the varying channel width (figure 1b).
Hence, there is a pressure jump at the interface, which is independent of x, and the
constants in P0 in the base flow are different in the two fluids.

We consider perturbations to the interface and steady base flow of the form

yI = h + ζ exp(i(kx − ωt)), (2.6)

(ū, v̄) = (U0( y), 0) + (u( y), v( y)) exp(i(kx − ωt)), (2.7)

p = P0(x, y) + p( y) exp(i(kx − ωt)), (2.8)
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where ζ , u( y), v( y) and p( y) are assumed to be small. We seek to determine the stability
of such perturbations. The linearised governing equations in each fluid are

−iωu + ikU0u + vU′
0 = −ikp

ρ
− 12μu

ρb2 , (2.9)

−iωv + ikU0v = −p′

ρ
− 12μv

ρb2 , (2.10)

ikub + (vb)′ = 0, (2.11)

where a prime (′) denotes differentiation with respect to y. We eliminate p′ to obtain

− iωu′ + ik(U0u)′ + (vU′
0)

′ − kωv + k2U0v = 12ikμv

ρb2 − 12μ(u/b2)′

ρ
. (2.12)

Also, continuity yields

u = i(vb)′

kb
= i

k

(
v′ + vα

b

)
, (2.13)

which can be used to eliminate u( y) from (2.12) and obtain a differential equation for v( y),

A( y)v′′ + B( y)v′ + C( y)v = 0, (2.14)

where the coefficients are defined below for the dimensionless analogue.

2.1. Non-dimensionalisation
To scale the system, we use the tank height, H, as the length-scale, and the time-scale is
T = μ2/(GH). The pressure scale is GH. We write

(x̂, ŷ) = (x, y)/H, k̂ = Hk, ŵ = Tw, b̂(ŷ) = b( y)/H = b̂0 + αŷ, (2.15a–d)

with b̂0 = b0/H, ĥ = h/H and ζ̂ = ζ/H. The upper fluid is labelled fluid 2, whilst the
lower is labelled fluid 1 (figure 1). Henceforth, all quantities are dimensionless unless
stated otherwise, and we discard the hat notation. The dimensionless equation in fluid
j = 1, 2 becomes

A( j)( y)v( j)
yy + B( j)( y)v( j)

y + C( j)( y)v( j) = 0, (2.16)

with coefficients

A( j) = ωb( y)4

k
− Mjb( y)6

12
+ ib( y)2RjA

k
, (2.17)

B( j) = ωαb( y)3

k
− Mjαb( y)5

12
− iαb( y)RjA

k
, (2.18)

C( j) = −ωα2b( y)2

k
+ Mjα

2b( y)4

12
− kωb( y)4 + Mjk2b( y)6

12
− ikb( y)2RjA − 3iα2RjA

k
,

(2.19)

where M1 = M, M2 = 1 and R1 = R, R2 = M, and we have introduced the dimensionless
parameters

M = μ2

μ1
, R = ρ2

ρ1
, A = 12μ1μ2

ρ2H3G
, (2.20a–c)

which respectively represent the viscosity ratio, the density ratio and the importance of
viscous drag relative to inertia; A is inversely proportional to a Reynolds number.
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Instability of co-flow in a Hele-Shaw cell with cross-flow varying thickness

2.2. Boundary conditions
The perturbed no-flux boundary conditions are

v(1)(0) = v(2)(1) = 0. (2.21)

The kinematic boundary conditions (2.3) at the fluid–fluid interface become

v(1)(h) = iζ
[

b(h)2M
12

k − ω

]
, v(2)(h) = iζ

[
b(h)2

12
k − ω

]
. (2.22a,b)

The dynamic boundary condition at the interface accounts for a jump in pressure
associated with surface tension and curvature. This comprises two contributions: the
along-channel curvature and the cross-channel curvature. The former is proportional to the
second derivative of the interface yI in the x direction, which furnishes a term proportional
to k2. Treating the cross-channel curvature requires more care. The contact angle, θ̃ , is
defined as the angle between fluid 1 and the channel wall (figure 1b). In a cell with inclined
walls, the radius of curvature is adjusted from the case of a parallel-sided cell and we define
an effective contact angle, θ = θ̃ − φ, where tan φ = α/2 (Park & Homsy 1984; Romero
& Yost 1996; Grenfell-Shaw & Woods 2017). The discontinuity in the perturbed pressures
at the interface is then given by

p2(h) − p1(h) = Cζ

[
R − 1 − Bo−1

(
k2 + 2α cos θ

b(h)2

)]
, (2.23)

where we have introduced the following dimensionless groups:

C = ρ1g
G

, Bo = gρ1H2

γ
. (2.24a,b)

We use the dimensionless analogues of (2.9) and (2.13) to obtain the dimensionless
pressures in terms of the vertical velocity, v, in each fluid,

pj = 12iω
k2RjMjA

(v( j)b)′

b
− i

k
b(v( j)b)′

ARj
+ 2iαbv( j)

kARj
− 12

Mjk2
(v( j)b)′

b3 . (2.25)

We substitute the pressures into the dynamic boundary condition (2.23) to obtain

αv(1)

(
ω

kb
+ Mb

12
+ iRA

kb3

)
+ dv(1)

dy

(
ω

k
− Mb2

12
+ iRA

kb2

)
− Rαv(2)

(
ω

kb
+ b

12
+ iMA

kb3

)
− R

dv(2)

dy

(
ω

k
− b2

12
+ iMA

kb2

)
= kRMAi

12
Cζ

[
R − 1 − Bo−1

(
k2 + 2α cos θ

b2

)]
, (2.26)

where the suppressed argument of v(1), v(2), dv(1)/dy, dv(2)/dy and b is y = h.

3. Solution method

The system for v( y) comprises two second-order linear ordinary differential equations
in 0 < y < h and h < y < H (2.16) and four boundary conditions: no-flux at the top and
bottom boundaries (2.21) and the kinematic and dynamic boundary conditions (2.22a,b),
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(2.26) at the interface. We note that the two equations for the kinematic condition (2.22a,b)
can be used to eliminate ζ from the problem. To solve this system, we first simplify the
problem by writing b̄( y) = kb( y)/α and obtain the following equation for v( j)(b̄):

A( j)( y)v( j)
b̄b̄

+ B( j)( y)v( j)
b̄

+ C( j)( y)v( j) = 0, (3.1)

with

A( j) = a( j)
6 b̄6 + a( j)

4 b̄4 + b̄2, (3.2)

B( j) = a( j)
6 b̄5 + a( j)

4 b̄3 − b̄, (3.3)

C( j) = −a( j)
6 (b̄6 + b̄4) − a( j)

4 (b̄4 + b̄2) − b̄2 − 3, (3.4)

where for each fluid we have introduced

a( j)
6 = −Mjα

4

12iRjAk3 , a( j)
4 = ωα2

iRjAk2 . (3.5a,b)

The general solution for v in each fluid is given by a linear combination of two
independent power series, Φ( j)(b̄) and Ψ ( j)(b̄), whose coefficients are determined by
Frobenius’ method (given in Appendix A). The velocities are ( j = 1, 2)

v( j)( y) = c( j)

(
Φ( j)(b̄( y))

Φ( j)(b̄( j − 1))
− Ψ ( j)(b̄( y))

Ψ ( j)(b̄( j − 1))

)
, (3.6)

where c( j) are constants and we have used the no-flux boundary conditions at the base and
the top (y = j − 1). The dynamic boundary condition may be written as follows (at y = h):

(v(1)b̄)b̄

b̄3
+ a(1)

4
(v(1)b̄)b̄

b̄
+ a(1)

6

(
v(1)

b̄

)
b̄

b̄3 (3.7)

− M

[
(v(2)b̄)b̄

b̄3
+ a(2)

4
(v(2)b̄)b̄

b̄
+ a(2)

6

(
v(2)

b̄

)
b̄

b̄3

]
(3.8)

= iMα2v(1)

12kω
C
[

R − 1 − Bo−1
(

k2 + 2α cos θ

b2

)](
a(1)

6

a(1)
4

b̄2 + 1

)−1

. (3.9)

The kinematic boundary condition may be written as

v(1)

(
a(2)

6

a(2)
4

b̄2 + 1

)
= v(2)

(
a(1)

6

a(1)
4

b̄2 + 1

)
. (3.10)

Combining the velocities with these two boundary conditions furnishes the following
dispersion relation:

D(1)E(1) − ME(2)D(2) − S = 0, (3.11)

927 R1-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

73
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.731


Instability of co-flow in a Hele-Shaw cell with cross-flow varying thickness
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Figure 2. (a) Growth rate, ωI , as a function of wavenumber k in the case of equal-density fluids (R = 1).
The curves are calculated using the method in § 3. The critical wavenumbers predicted by (4.3) are shown as
crosses. We use Bo = 5, h = 0.5, b0 = 0.3, M = 2, A = 1 and C = 1. (b) Schematic corresponding to the blue
curve.

where

E( j) = tj
b̄2

+ 1
b̄3

+ a( j)
4

(
tj + 1

b̄

)
+ a( j)

6

(
tjb̄2 − b̄

)
, (3.12)

D( j) = a( j)
6

a( j)
4

b̄2 + 1, (3.13)

S = iMα2

12kω
C
[
R − 1 − Bo−1(k2 + 2α cos θ/b(h)2)

]
, (3.14)

t1 =
Φ

(1)

b̄
(b̄(h))/Φ(1)(b̄(0)) − Ψ

(1)

b̄
(b̄(h))/Ψ (1)(b̄(0))

Φ(1)(b̄(h))/Φ(1)(b̄(0)) − Ψ (1)(b̄(h))/Ψ (1)(b̄(0))
, (3.15)

t2 =
Φ

(2)

b̄
(b̄(h))/Φ(2)(b̄(1)) − Ψ

(2)

b̄
(b̄(h))/Ψ (2)(b̄(1))

Φ(2)(b̄(h))/Φ(2)(b̄(1)) − Ψ (2)(b̄(h))/Ψ (2)(b̄(1))
, (3.16)

with i denoting the imaginary unit. For any value of k and the dimensionless parameters,
we may obtain a solution for the growth rate, ω, that satisfies (3.11) (e.g. figure 2a).

4. Analysis

The terms in the square brackets in S (3.14) correspond to the pressure jump at the
interface, and we define

J = R − 1 − Bo−1[k2 + 2α cos θ/b(h)2]. (4.1)

In general, J > 0 is associated with instability and J < 0 is associated with stability.
The first term, R − 1, represents the density difference between the fluids. It stabilises
the interface for R < 1 and destabilises it for R > 1. The term −Bo−1k2 stabilises the
interface; it arises from surface tension suppressing the curvature in the along-channel (x)
direction. The final term, −2Bo−1α cos θ/b(h)2, is associated with surface tension acting
on the curvature across the thickness of the cell. It drives or suppresses an instability
depending on whether the wetting or non-wetting fluid is in the thinner part of the channel.
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This corresponds to the sign of α and the sign of cos θ . To interpret the instability, we
consider the simpler cases of equal density in § 4.1 and parallel walls in § 4.2 before
returning to the full problem in § 4.3.

4.1. Equal density (R = 1)
In the case of equal-density fluids, R = 1, the pressure jump reduces to

J = −Bo−1[k2 + 2α cos θ/b(h)2]. (4.2)

For small wavenumber, k, the cross-cell surface tension term controls the stability as
demonstrated in figure 2(a). The red and yellow curves correspond to the non-wetting
fluid occupying the thicker part of the channel, and the system is stable, as this fluid will
remain in the thicker part of the channel. The blue and purple curves represent the converse
situation, in which the non-wetting fluid is in the thinner part of the channel and will
move to the wider side of the channel, leading to an instability (see figure 2b). For larger
wavenumbers, the along-channel term stabilises the interface. The along-channel and
cross-channel curvature terms balance (Bo−1k2 + 2Bo−1α cos θ/b(h)2 = 0) at a critical
wavenumber,

kc =
√−2α cos θ

b(h)
. (4.3)

For k > kc, we anticipate that the system is stable. The critical wavenumbers are shown
by crosses for the two unstable set-ups in figure 2, demonstrating good agreement with
the predictions from § 3. The small discrepancy between the prediction of J (4.3) and
the numerical results arises because of the physical effects, such as inertia, that are
incorporated in the numerics but are neglected when using J as an approximation of the
stability criterion.

In many settings, it is important to understand how the instability depends on the flux in
each layer. To analyse this, we calculate the relative flux, Q, of the top to the bottom layer,

Q = Q2

Q1
= M−1 (b0 + α)3 − (b0 + αh)3

(b0 + αh)3 − b3
0

. (4.4)

The quantity MQ = μ2Q2/(μ1Q1) depends only on α, h and b0. We consider channels of
fixed dimensionless area, so that∫ 1

0
b( y) dy = b0 + α/2 = const. (4.5)

For a given channel area and relative flux Q, we can calculate the interface height h as a
function of the channel angle α (see figure 3(a) for the case with dimensionless area 0.2).
We can also calculate the critical wavenumber, kc, by using (4.3) (see figure 3(b) for the
case θ = 3π/4).

4.2. Parallel cell walls (α = 0)
In the case that the cell walls are parallel,

J = R − 1 − Bo−1k2. (4.6)

For small k, the stability is controlled solely by the density ratio, R. In the case that R < 1,
the system is stabilised by the density difference and there are no destabilising effects
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Figure 3. (a) The interface height, h, as a function of the relative flux and viscosity and the channel angle, α,
for a fixed dimensionless channel area of 0.2. (b) The corresponding critical wavenumber, kc, above which the
system is stable according to (4.3) for θ = 3π/4. Note that the system is stable for all k for α � 0.
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Figure 4. Growth rate, ωI , as a function of wavenumber, k, in the case of parallel cell walls (α = 0) calculated
using the method of § 3. The density ratio is R = 0.4, 0.8, 1.6, 3.2, 6.4. The crosses correspond to the critical
wavenumber for neutral stability for R > 1 given by (4.7). We use h = 0.5, b0 = 0.3, M = 2, A = 1, C = 1
and Bo = 1.

(Gondret & Rabaud 1997). For R > 1, the Rayleigh–Taylor instability is stabilised for
large k owing to the along-cell surface tension. Neutral stability is given by

kc =
√

Bo(R − 1). (4.7)

Figure 4 shows the growth rate as a function of wavenumber (obtained in § 3). For R > 1,
the critical wavenumber prediction is indicated by crosses, showing good agreement.

4.3. Competition between density difference and surface tension
The cross-cell surface tension effect may be nullified or complemented by buoyancy,
depending on whether the wetting or non-wetting fluid is denser. The critical value of
R corresponding to neutral stability is (see (4.1))

Rc(k) = 1 + k2

Bo
+ 2α cos θ

Bo(b0 + αh)2 . (4.8)

The system is stable for all wavenumbers when R < Rc(0), which is shown as a continuous
blue line in figure 5. The results from § 3 for neutral stability for k = 0.2 are plotted as
black circles, showing good agreement. A comparison is also shown for k = 1.5 as a
broken blue line.
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Figure 5. Neutral stability curves for (a) θ = π/4 and (b) θ = 3π/4. Blue lines show the predictions of (4.8)
for k = 0 and k = 1.5. Circles and crosses show the results from § 3 for k = 0.2 and k = 1.5, respectively. We
use Bo = 5, h = 0.5, b0 = 0.3, M = 2, A = 1 and C = 1.
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Figure 6. Critical value of R corresponding to neutral stability from (4.8) as a function of cell wall inclination
α and relative flux QM for k = 0, θ = 3π/4, Bo = 5. The cell area is fixed as 0.2, and the interface position is
given in figure 3(a).

Figure 6 shows the critical density ratio Rc(0) as a function of the relative flux, and
the channel inclination α in the case of a constant cell area, 0.2. The interface height h
is obtained from (4.4). When α is small, the critical density ratio becomes independent
of the relative flux (and hence the interface height h) because wetting effects become
unimportant.

5. Conclusion

We have obtained the dispersion relation for the co-flow of two immiscible fluids in a
Hele-Shaw cell with vertically varying gap width. The stability of the system is accurately
predicted by the sign of the quantity

J = R − 1 − Bo−1[k2 + 2α cos θ/b(h)2]. (5.1)

The last term, associated with channel wall inclination, represents the preference of the
non-wetting fluid to occupy the thicker part of the channel. The interface is stable when
the fluids have equal density and the wetting fluid occupies the thinner part of the channel.
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A density difference may complement or oppose this effect. We have obtained critical
values of the density ratio, R, below which the system is stable to all wavenumbers. Our
results also provide a basis for exploring the stability of important but more complex
situations such as cells with elastic walls and cells whose vertical structure varies in the
horizontal direction (e.g. Pihler-Puzović et al. 2013).
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Appendix A. Coefficients for Frobenius’ method

In either fluid, the governing equation takes the form

(b̄2 + a4b̄4 + a6b̄6)vb̄b̄ + (−b̄ + a4b̄3 + a6b̄5)vb̄ + (−3 + (−1 − a4)b̄2

− (a4 + a6)b̄4 − a6b̄6)v = 0. (A1)

The indicial polynomial is n2 − 2n − 3 = 0, which has solutions n = 3 and n = −1. We
write the first power series of v(b̄) as

Φ(x) = x3
∞∑
0

Pnxn, (A2)

with P0 = 1 and the recurrence relation

Pn

[
n2 + 4n

]
+ Pn−2 [n(n + 2)a4 − 1] + Pn−4

[
a6(n2 − 2n) − a4

]
− Pn−6a6 = 0.

(A3)
The second independent power series solution is given by

Ψ (x) = Φ(x) log x + x−1
∞∑
0

Qnxn, (A4)

where Q0 = 16/(4a4 − 1), Q2 = −Q0/4, Q4 = 1 and

0 = (n2 − 4n)Qn + Qn−2 [a4(n − 2)(n − 4) − 1] + Qn−4 [a6(n − 4)(n − 6) − a4] (A5)

− Qn−6a6 + Pn−4(2n − 4) + Pn−6a4(2n − 6) + Pn−8a6(2n − 10). (A6)
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