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ASYMPTOTIC MONOTONICITY
OF THE RELATIVE EXTREMA
OF JACOBI POLYNOMIALS

R. WONG AND J.-M. ZHANG

ABSTRACT.  If py ,(a, B) denotes the relative extrema of the Jacobi polynomial
Pf,"‘ﬂ)(x), ordered so that p, ,(c, B) lies to the left of p; ,(a,B), then R. A. Askey
has conjectured twenty years ago that for a > 8 > —%, |t ne1(a B)] < |prnla, B)|
fork =1,..., n—1andn = 1,2,.... In this paper, we give an asymptotic expan-
sion for y; ,(a, B) when k is fixed and n — oo, which corrects an earlier result of
R. Cooper (1950). Furthermore, we show that Askey’s conjecture is true at least in the
asymptotic sense.

1. Introduction. Let —1 < y,—1, < --- <y, < 1 denote the critical points of
the Legendre polynomial P,(x), i.e., P,(yx,) = 0, and put yo, = 1 and y,, = —1.If
Lin = Py(k.n), then it was observed by Todd [11] that

(]1) |l‘k.n|<lll’k,n—1|7 k==1,...,n—1.

Cooper [3] was the firet to study this problem by using asymptotics. He showed that

2
; J .
(1.2) i ~ JoGi1e) + 55 oGia) + oo, asn— 0o,
for each fixed k, where jj 4 is the k-th positive zero of J) (x). From (1.2), it is evident that
Lk.n 1s asymptotically decreasing. The general case of (1.1) was proved by Szegdo [10],
and extended to the ultraspherical polynomial by Szasz [8].

Now let P#)(x) denote the Jacobi polynomial, and yi‘z;ﬁ ) be the location of the relative

extrema of PP (x) / PP (1) ordered by —1 = y{%P < yf:f? ?n << y(,‘i;ﬁ )< yffi;ﬁ ) =
1. Set
PO ()
(1.3) W)= ———="—, k=1,...,n— 1.
Hk,n ﬁ Pf,a‘ﬂ)(l)
In [9, p. 190}, it is conjectured that for « > 3 > —1,

(1‘4) lﬂk.n+l(a7/3), < Iluk,'l(a’ﬂ)l’ k: 1"'-9’17
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and that the inequalities are reversed for the function

_ P,(x)+P,—1(x
POD(x) = () ; 1 );

that is

(15) Il‘l‘k,rH-l(O’_l)l > ,p’k,n(ov_l)[, k= 1,...,”.

(These conjectures were made by Askey.) The inequalities in (1.5) have been recently
verified for all n by using asymptotic methods [12].

The purpose of this paper is to show that (1.4) holds for sufficiently large n. This
has been attempted by Cooper [3] more than forty years ago, but Cooper’s asymptotic
expansion of p ,(a, B) is incorrect, as pointed out by Askey [1, p. 32]. The problem to
reconsider (1.4) from the asymptotic point of view is suggested also by Askey [1]. In
Section 2, we will show that for each fixedk = 1,2, ...,

(16)  peaten) = Tt (=) Tutian 1+

a+1.k

a+36+ 2ji+1,k

24wz PONTY),

asn — oo, where N =n + %(a + B+ 1) and ju 1 is the k-th positive zero of the Bessel
function Ju4 (x). Our approach differs completely from that of Cooper. We shall make
use of the uniform asymptotic expansions of the Jacobi polynomial given in [5]. From
(1.6), it is evident that y ,(o, B) decreases for sufficiently large n as long as k is fixed.
However, the integer k in (1.4) may depend on n. Consequently, expansion (1.6) is not
sufficient to prove the conjecture in (1.4) even in the sense of asymptotics. To overcome
this difficulty, we shall first prove that (1.4) holds for all k > KV, where K{" is the
smallest positive integer satisfying

a—p

(a,8) —
1.7 ykﬁm <xp, Wwherexy= _a+ﬂ+1'

This is done in Section 3. (Note that —1 < xo < 1 when o > —% and 3 > —%.) We then
use a uniform asymptotic approximation of the Jacobi polynomial given by Baratella and
Gatteschi [2], which is sharper than that in [5], to show that (1.4) is true in asymptotic
sense when k < K2, where K? is the largest positive integer satisfying
1 26+1

(1.8) cosno < yi‘j;ﬁ), where 79 = cos ™! xo + 1 a_:%T

(Using the Mean Value Theorem, it is easily seen that 0 < 19 < .) This is done in
Sections 4 and 5. The asymptotic monotonicity of u ,(c, B) is established in Section 6,
where we prove that

(1.9) K,(,l) < Kf,2) for all sufficiently large n.
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2. Asymptotic expansions of y; (o, 3). From the differentiation formula
d
@2.1) P = —(n +o+ B+ PO ()

(a+1,6+1)
k,n—1 of

(x). Thus the relative extrema py ,(cx, 3) given in (1.3) can also be expressed as

it is evident that the critical points y\*? of P (x) are exactly the zeros x
platlpsh) '
n—1

Pg,a’ﬁ)(COS e(a+l,lﬂ+l))

(2.2) () = knol k= 1,...,n—1,

where xf(";*_l’]ﬁ“) = cos 0;(":11&” As in [9, p. 121], we enumerate the zeros of Jacobi

polynomials in decreasing order:
3 (a,8) . (o, 8) §
—1<aEP << <0< < <o <

In [5], it is shown that for « > 3 > —-%, we have

PP (cos ) = Tatatl) (sin g>_a<cos g)_ﬁ(.i)l/2

n! 2 2 sind

(2.3) a+8(N0) m —m—a
ZA(B)NM +0"ON~""%)|,

where

2.4) N=”+%(°‘+ﬁ+l)

and the O-term is uniform with respect to 8 € [0, ™ — €], € > 0; see also the comments
in [6, p. 396]. The coefficients Ay(#) are analytic functions in 0 < § < 7™ — ¢, and are
O(6%) in that interval. In particular, Ag(f) = 1 and

2.5) a® = (- 7)(F522) - 2 ;ﬁ2 an?.

It is also shown in [5] that the zeros 6%P) of Pff"ﬂ ) (cos ) satisfy
k,n

(@f) _ Jak 1
(2.6) o =Lk 4 (t) .-y O(Nz)

where ¢ = jox /N. The O-term is uniformly bounded for all values of k = 1,2,..., [¥n],
where Y € (0, 1) is a constant.
For simplicity, we introduce the function

2.7) o) = (sin g)ﬂx(cosg)_ﬂ(ﬁ)%,

(u+1 ﬁ+1)

and suppress the dependence of the zeros 0 on « and f; i.e., we write

(2.8) Ount = O3 k=1, n—1.
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Since
In+a+1)
2.9 PeB(y = ———
2.9 (D nTa+1)’
coupling (2.2) and (2.3) gives
(2.10)
INa+1 Jos1(NO — _
Lin(a, B) = ( ) 8Ok n—1)|Ja(NOp1) 'l"Al(Bk,n—l)—ﬂ(—‘k’—‘l‘2 02,1 ON~?)

for all k satisfying 0,(,,,_1 <m—e¢,e>0.Let

@.11) T = T2
and
T.0r) < 2 1jl=7eotry 1 2 2 ean T
2.12) A.(T)_[(a+1) 4]( - ) Jl@+ 17 =@+ 1]an 3.
Then (2.6) gives
o |
2.13) Oknt = Ton + A1) 15 +¢,§,,,0(m).

For each fixed k, 7 , — 0 as n — o0. Thus from the Maclaurin expansions

03 » (_ 1 )n—l 22nan

1
(2.14) ——cot9—9+—~+ 6y, 16) < 2m,

] 457" (2n)!
[/ 0 03 (_l)n—122n(22n _ 1)BZn 9 2n—1
(215) tan§—§+§+---+ (Zn)’ (5) +oeey |0|<7T,
we have
~ _Jastk (1 2 171 1 2 2
@16) A = L@ 1) - 5] - Sl@s D2 =@+ 171 +
and

_Jorik | Jarrk 1 17 1 2 2 -5
Q@17 Gy = + {6[(a+1) 4] sl+17 = @+1) ]}+0(N ).

N N3
From (2.7) it follows
_ etk [, a1 , 1 _(01+1)2—(,3+1)2}
86kn-1) = ( 2N ) [1 N2{6[(°‘”) 4] 8
(2.18) 1542
a+50+ ]cz+1k —4
t——— T O )]

By Taylor’s theorem,
2.19)
Jast(NOg 1) = JoreGar1 k)

+‘]£x+£(ia+l,k){'16[(a+ 1 — ﬂ -
+O(N™%)

(@+ 1 —(B+1) }ja+1,k
8 N?
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for{ =0,1,2,.... Since

(2.20) ja+1,k-](lx(ia+l,k) = aSo(for1,4) and J:x+1 Uat1.6) = Jalar1 i)
and since A{(#) = O(6), inserting (2.18) and (2.19) in (2.10), we obtain the desired result
(1.6).

For our discussions in Sections 4 and 5, we need a uniform asymptotic expansion of
the Jacobi polynomial given by Baratella and Gatteschi [2], which is quite different from
the one stated in (2.3). As in [2], we let

(2.21) A=1—4d, B=1-—43,
2 0 6
(2.22) af) = = —cot=, b(f) = tan—,
2’ 2
1
(2.23) FO) = NO+ 7 [4a(®) + Bb(O)],
and

(2.24) Co=2"IN"

(5]

Fora,ﬂ>—% and 0 < 6 <7 — ¢, we have

_Ovard oAb 01
(2.25) (sm 5) (cos —2-) P B(cos ) = f,((a))] {CoJolf(0)] — I},
where
(2.26) = et D = D ogv-e-ty,

Baratella and Gatteschi actually considered only the case —% <a f < % However,
their argument can be extended to allow «, 3 > —%, if we are willing to accept the order
estimate (2.26), instead of the numerical bound which they obtained for the error term /.
An important consequence of (2.25) is the following uniform asymptotic approximation
of the zeros O(a P,

(o) _ Jak
(.27 oD = S 6N2 —— [Aa(z) + Bb(1)] + 1,

for all k satisfying Hfz;ﬁ ) <1 —¢, wheret = Jax/N and

(2.28) e1 = ljak - ONT/?).

Note that for fixed k, (2.27)—(2.28) is weaker than (2.6), but if & is allowed to grow with n
then (2.27)—(2.28) is stronger than (2.6). A combination of (2.2), (2.25) and (2.27) gives

80k n-1) U(ak n—1) ] 12 Na
,n( ) ) = r( + 1) . .
(2.29) Heal B * VOnot U Ora)

i g (4 )] )
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where
(2.30) e = ON""/?)

for all k satisfying 0y ,—; <7 —¢e < . Asin [12, eq. (4.13)], it can be shown that

(2.31) %ﬁ%]l/z=[1+g—‘g%iﬁ+s3]-\/(ﬁ,
where

2.32) 20 = A[%ﬁ) - a’(a)] +B[b—(:2 - b’(e)]
and

(2.33) g3 = 0N

for all 6; ,—; < 7 — €. Substituting (2.31) in (2.29), we obtain

fa(e, B) = T(e + 1)g<0k,n_1>N’“[‘ # 80) 53]

32N?

Ngalf @ 14 7 (5 +5)] )

compare the O-term in (2.10) with the O-terms in (2.30) and (2.33).

(2.34)

3. Monotonicity of |y ,(c, )] when k > K. Motivated by the arguments in [9,
p. 168] and [1, p. 19], we let

N )
3.1 e — B
3.1 o (X) PP
and
_ 2y 4 p@B 2
3.2) fn(x)=[R§,“’ﬁ)(x)]2+(l LR (x)]

nn+a+pB+1)
Using the Jacobi differential equation, we obtain

2[a — B+ (ax+ B + 1)x]
nn+a+L+1)

(3.3) fi) =

BRIk

see [9, p. 168, (7.32.4)]. Thus f,(x) is an increasing function in xo < x < 1, and a
decreasing function in —1 < x < xg, where xo is the point given in (1.7). The following
result shows that {f,(x)} is a monotonically decreasing in n for —1 <x < 1.
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LEMMA 1. Fora > (> —%, we have

Sor1 () Sfulx), —1<x<1.

PROOF. Let
rx) = [REP )P — [REP 2.

From (3.1) and (2.9), it follows that
n!Ta+1)

I'n+a+2)
[+ o+ DPEP(x) + (n + HPXD ().

n+l

2
] [+ o+ DPEP(x) — (n+ PP (0]

n+l

r(x) = [

The recurrence relations [4, p. 173]

G4 (n+5+5+1)0 = 0PEI@ = 4 @k DPEOW — (4 DPED ),

n+l1

3.5) (n + g- + g + 1)(1 + 0P B () = (n+ B+ DPP(x) + (n + PSP (x)

n+l

then give
_[nT@+ D] 2ntatfr2
) = F(n+a+2)] 2 (=P
AL+ B+ DPEPx) + (n+ VPSP @] + (a — HPEP ()}
2
- [ril(!{io;lz?) (= = - ) (1 = PO PO
n!T'(a+1) 2 _ _ ort+1,8) .2n+0‘+ﬁ+2 (a.8)
[F(n +a+ 2)] (1 =)= HPPE) 2 e

We also recall that

(3.6) @n+a+B+ PP (x)=@n+a+p+1)PeB(x) — (n+BHPP (x),
(B.7) @n+a+ B+ DHPEP) = (n+a+ B+ DPEHV) + (n + )P %P (x);

see [4, p. 173]. From these equations, we obtain

_ [ n!T(a+1) 1= o+1,B+1) (ae+1,8+1)
r(x)—[r(n+a+2)] 2 [(n+ o+ B+ 2)P, () +(n+a+ HP* P (x)]

[+ o+ B+ 2PEFD () — (n+ B+ P (n)

[n!F(a+l)]2 nto+f+2
I'h+a+2) 2

(a—p)(1 — x)Pfl"»ﬂ)(x)Pﬁlaﬂ,ﬁ)(x)

https://doi.org/10.4153/CJM-1994-075-1 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1994-075-1

JACOBI POLYNOMIALS 1325

n! T+ 1) ] 1 —x?
[F(n +a+2) 4

[+ o+ B+ 2P (x) + (n + o+ PSP ()

A+ o+ B+2)PEED () — (n+ o + PO ()]

L [T+ ]2. 1—x?

[F(n +a+2) 4

+(n+a+ l)P(cl+1 A0 - (o — ,B)Pffll’ﬂﬂ)(x)

[ n!T(ax+1) ] 2n+oa+5+2

[(n+ o+ B+ 2)P1 B (x)

(o — B)(1 — )PP (x) Pt tB) (),

I'h+a+2) 2
which in view of (2.1) can be written as
1 =% 1d ap 1- (@)
™ =Gy [dx w1 (8 )] n+ a+[3+ 1)2 [_R (x)] N,
where
_ [ n!T(x+1) 2. 1—x? e a+1,8+1)
ne = et @ pEe

[+ o+ B+ 2P () + (n+ o+ P ()
[ nT(a+1) ]2 nta+f+2

(@=B)- (1 = )PP PO,

I'n+a+2) 2
From (3.7), we also have
(3.8) :
2l ! 1- ’ a+l,6+
al@+ D] ot at B2 s e
[F(n+a+2)] (=% (@ = fy=—— P PP )
[T+ 1) 2‘ e i)
_‘[ml“(n+a+2)} (a@—PB)- Qn+a+p+2)P* A (x)

. {1_4__P(a+1 B )+ . (aB)( )}
Adding (3.4) and (3.5) gives
(1 — )P B () + (1 +x)P@PD () = 2P@B)(x),
which together with (3. 6) yields

1— P16 )+ (aﬂ)( )
4
1— 1 — x)?
== [P;cx_-l-ll,ﬂﬂ)(x)+P§la,ﬁ+l)(x)]+( 4x) P&aﬂ,ﬂ)(x),
1— 2
= m . [(”l + +,B + 2)P§,°‘+]’B+1)(x) + (I’l + o+ I)Pilof—l"ﬁﬂ)(x)]

1— 2
N Gk 4x) PO )
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From (3.7), it follows that

1 —x? 1—x 1=+ (1—x)? .,
7 Pﬁfj-llﬂﬂ)(x)_'_ 5 Pﬁa’ﬂ)()() — Z Pﬁ +l,ﬁ)(x)_
Inserting this in (3.8), we obtain
T +1)71° 1 —x
|2 \eT _ 2 N—[pletlB 2 > (.
ne [F(n+a+2)] (= B)2n+ o+ B+ 2)—= PP @] 2
Consequently,

(1 — [ LRP 0
(n+a+p+1)2
(1 = A)[LR@P )2

£u(0 > [R*P(x))* +

= Ry or + iy T
(1 — A [LR@P )
(a,3) 2 dx” "n+l
Z R N+ s a s ey T

2 far1 (%)
THEOREM 1. Forall k > K", we have

ll-Lk,n(a7 /B)l > |”k,n+l(a’ ﬁ)l

PROOF.  For simplicity, we write y; , = yi":ﬁ). By Lemma I,

(et B) = Qi) > st Okn)-

Since k > Kf,') implies yg 41 < X0, we have from [1, pp. 17-18]

Yin < Yinsl < Xo.

Since f,(x) is decreasing in —1 < x < Xy, it follows that

V1 Otn) > fort Gnet) = e (0 ),
thus proving the theorem.
4. Expansions for g(0; ,—;) and Jo[f (6 ,—1)]. Let
.1 A=1—4@+1* and B=1-4@+1)
and recall the notations in (2.8) and (2.11). By (2.27) and Taylor’s theorem,

8 ,(Tk,n )
16N?

(4.2) 8Okn—1) = 8(Tip) — [Aa(ri,) + Bb(Ty )] + €4,
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where

@3 a=gme+ L

: (Ra(r,) + Bbtr,) 1)

16N?
¢1 being an arbitrary point between 7y, and 6y, .
We first estimate the leading term in (4.3). Straightforward differentiation gives

B+3

+1
(4.4) §6) = g5 + 22

ad) + b(e)]

where a(f) and b(8) are as given in (2.22). Hence

B+3 e
= 0b(9)] 7

1
g O)e1 = gO)—a+ = ; 20a(9) +

From (2.14), it is evident that 0 < fa(f) < 2 for 0 < 8 < 7. Since 0b(0) is also bounded
on 0 <6 < 7 — g, it follows from (2.28) that

4.5) &' (Ten)er = g(Tin) - ON/?)

for all k satisfying 6y ,—; < 1o < 7, where 7 is given in (1.8).
We next estimate the second term in (4.3). Clearly

. Cl Cl Tk,n
sin > = sm +(cos( )( > )
for some (; between %Q, and %Tk,n. By (2.27),
.G . Tkn /. Tin l = ’
LI N P
sin > 2 (sm > ){1 5 (s ) oV [Aa(ri,) + Bb(1i.0)] + € }

™
> (sin 22 ) {1 — —|—
> (sin )1 - 5

Since a(ty,,) and b(ry,) are bounded for all 7, < 7 — ¢, we have

s lAai,) + Bbr) +ei] ).

sm% > sm 2 [1+0N"?)

for all k satisfying 6y ,—1 < no. In a similar manner, we obtain

cos% > cos T—"ﬂ [1+O0(N"2).

Therefore

g(G)

4.6
( ) g(Tk,n)

= 0(D)

for all k satisfying ;. ,—; < no. Again by differentiation

2"(0) = g(0)g2(0),
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where
@+l 0 atd 0 1 axl g
g200) = y) cot 2+ ) csc BT T cot >
(@+DB+3) B+5 6 (ﬂ+%)2 20 B+z o8
> + T tan2+ 2 tan 2 2 ~—Zsec >

From the Maclaurin expansions (2.14) and (2.15), it is easily seen that #2g,(8) is bounded
on [0, m — €]. The second term in (4.3) can be written as

1 2 (T \2[ 1 [a0)  2bma)] . e\’
zg«l)gz(cl)c](—g—) {—]W [A e YB ]+%} :

Since a(f)/6 and b(9) /8 are bounded on [0, 7 — €], it is equal to g({;) - O(N~*) for all
k < K®. Consequently, we have by (4.6)

1 | S ~ 2 B
@7 38" e Aatmn) + Bbrl +er | = g - ONTY).
Inserting (4.5) and (4.7) in (4.3) yields
(4.8) €4 = §(1n) - ONT'/?).
for all k < K. We summarize the above results in the following lemma.

LEMMA 2. The function g(0) defined in (2.7) has the asymptotic approximation

On-1) = §(Tin) — g1(6 42 (Rari) + Bbtr) + €4,

where A and B are given in (4.1) and €4 satisfies (4.8).
We now turn to the consideration of Jo[f(y ,—1)]. From (2.23) and (2.27), we have

1
fOkn-1) = Nbgp—1 + —=I[Aa(brn—1) + Bb(Or n—1)]
4.9) 116N
= jorik + —16N[(A — A)a(ri,) + (B — BYb(1i )] + €5,

where

= Nei + == [Ad'() + BY'Q)] - {— e Aa(ri,) + Bbm)) + 1},

{ 16N2

¢ being an arbitrary point between 6 ,—; and 73 ,. Since a(f) = O(6) and b() = O(0) for
0 <0 < —eg, it follows that

(4.10) es = ot - ON™'1?)
for all k < K{?. By Taylor’s theorem,
_ . J{z(iaH,k) e i
Jalf Orn—1)] = Jalar1 ) + W[(A — A)a(ty,) + (B — B)b(1y. )]
J”(/a+1 k) e 5 2
S1ON2 5 [(A — Aa(rin) + (B — B)b(1i,0)]” + €6,
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where
o JoGari ) 1 2
g6 = Jolari)es + ~En= (A = Dalren) + (B = BYb(rinles + 5 e )3
3
+ J”’oa+1k){16N[(A Aali) + (B = BYbmi)] +s)
(‘”(o{ [(A = A)a(rin) + (B — B)b(ry, )J+55}4
T2 N Ten " "

and ( is between jq4 & and f(6y ,—1). Since

o? a )
.11 Talian) = (70— = 70— = 1 alar1)
]a+1k ]a+Lk
. l—a o —32+2a .
(4.12) T Garii) = (T + T2 ot )
Ja+1,k Jot1 k

and JP(©) = O(1), it follows from (2.20) that

(4.13) €6 = \VJarik - Jaliarix) - ONT/2),

Here we have again used the fact that a(8) = O(f) and b(f) = O(@) on 0 < § < 7 — .
The following lemma summarizes the above results.

LEMMA 3. Forallk <KP, we have

Jo a1 k)
16N

(A — Aa(m,) + (B — B)b(Ti.))* + €,

Jalf Bn-1)] = Jalar16) + [(A = A)a(ryn) + B — B)b(1i.0)]

N JoGarix)
512N?

where €¢ satisfies (4.13).

5. Asymptotic monotonicity of |y ,(a, )| when k < K?. From the asymptotic
expansion (2.34), it is clear that the difference

5.1 D = py (e, B) — prns1(a, B)
can be written as

81kn—1)
32N?

N1l O [+ = (5 + 2]+ )
(5.2) +T(a + 1)g(0r )N + 1)"*D,

Nvalt Ot + 2 (54 3)] )

D=r(a+1)-D,-[1+ +53(n)]

810k.n)

+ T (o + 1)g(Okn)(N + 1)_a[1 + 32N +1)2

+e(n+ 1)] - D3,
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where
(5.3) Dy = g(6kn-1)N™* — gBr)(N + 1),
Oy By
(5.4) D, = g————';z"l’vz‘) +e3(n) — ————35(‘151: 1))2 —es(n+1)
and
A B\1-@
s = Jelf O |1+ o (5 +5)] e

— Il Ol + e (5 +3)] — D

In the above equations, we have indicated the dependence of €; and €3 on n. We shall
now estimate each of the values of D, D, and Ds.
By Lemma 2, we have

(5.6) D) =Dy +Dj3+ D3,
where
(5.7) D = gn)N™% = g(m)(N + 1)7%,

Dy = 80 k")[Aamn) + Bb(r) N2
(5.8) (7- )

——*—"*L[A (Trns1) + Bb(Tipst)IN + 1)7072

and
5.9) Diz =€4(n) N % —e4(n+1)-(N+ 1)~

We first deal with Dy;. Put
23(0) = 6°g(6).

Then
Dt = (o1 4) " %183Tkn) — 83Thne1)] = (a1 £) " 83Tk — Tions1)
for some ¢ € (Tg u+1, Tr.n)- Since by (2.14) and (2.15)

40 =050 (ar 1) (1= e §) (94 5) 3 n 5]

S a+§+3(ﬂ+§)
- 12

g3(0) is increasing and

g%'g(0) >0, 0<6 <,

(@+D+3B+3)  Jans
D N(Na+1)a+2 8(ens1) > 0.

(5.10) Dy >
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To estimate D, we put

1 1
—[_%t2 8,83 0 5
8s0) = | ~—Lcotz +—2tanz + 29] [Aa®) + Bb(B)],

From (4.4) and (5.8), we have

Du ga(min) 2 8Tkns1)
1D 2 16 7, 1652

a+l.k

(N + 1) *[ga(Trn) — 84T+ ]
Since

) A -
(5.12) 8i0) = —(5 + B)a() +6g5(0),

where gs5(f) can be shown to be a continuous function on [0, 7], g4(0) = O(f) and
24(8) = 0(8%). Therefore it follows from (5.11) that

8Tk n1)

Diy =Dy - O(N™}) — —>—"2
1672, (N + 1)

- 84(G1) - Tien — Tine1)
for some {; € (Tyn+1, Tk n)- Inserting (5.12) in the last equation gives

Di» = Dy; - ON7?) — 8(Tinr1) [_(A

5 +B)ag +Cles)|

5.1 162, W+ D=l \3 NN +1)
' _ oy, ol g(Tar)

=Dy - ON )+E(SA+B)N——(N+])M2 e,

where | ( ) )
(i, 8(Tk,n+1 T Ja+lk
= (3A+B)16j§+l’k(N+])°‘ @ G =T gy Ty
8(Tinr1) 3 Jot1k
162, (N+ 1) Ges@yn

= g(Tkne1 asi - ON™*7/2),

The estimate of D3 follows immediately from (4.8), and we have
(5.14) D13 = g(Tims1 Va1 KON ™7T/7;

cf. the argument leading to (4.6). A combination of (5.10), (5.13) and (5.14) yields the
following lemma.

LEMMA 4. Forall k <K, the difference D, in (5.3) satisfies

S @+ +36B+3)  Janx

D .
! 12 NN + )22

a (1A+B> 8Tk ne1) €s,

A TR 7

where
€8 = Jowix * 8Tkns1) - ON—"/2),
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To estimate D, in (5.4), we return to (2.32) and observe that

) 00 —a®) Y00 —b0O)

where a(f) and b(6) are given in (2.22). From (2.14) and (2.15), it is easily seen that g} (6)
is bounded on [0, 170]. Hence by (2.27) and the Mean-Value Theorem,
(5.15) 810kn—1) = g1(Ticn) + €9,
where
69 = 810~ ras At + Bbr)] + €1 ) = ON)
for all k < K. Put
£10) = 6°51(6).

Differentiation gives

N Ala@® d@© b@) ') }

=0 {-|———=—d"6 - —=-b"0)|}.

=0 [A[12 1O _pip) E[ID_VO_ )
Since each of the two terms inside the curly bracket is in absolute value an increasing
function on [0, ), we have

(5.16) 210 = 0(6®), 0<6<n;
cf. (2.14) and (2.15). By (5.15), D; can be written as

1 go(n) eg(n+1)
D, = 2 %.m L (81(Tkn) — &1 (Tine1)] + 32[ e IR } +e3(n) —ex(n+1)
_ 1 ek 1 Teo(m)  e9(n+ 1)] _
=5e . BOzwan* [ N eip | temoetsD
for some ¢ € (jaﬂ’k J(N+ 1), jor1k / N). Therefore it follows from (5.16) that
(5.17) Dy = jou - ONTY).
We finally come to the estimation of D3 given in (5.5), which we shall rewrite as
A B\T“
(5.18) D3 = D31 - Jolf (O n-1)] + [1 + m(g + 5)] D33 + D33,
where
1 A B 1 A B
(5-19) Dai = [ 16N2( )} _[1 16(N+1)2( +2)} :
(5.20) D3y = Jalf (Okn-1)] — Jalf (Bxn)]
and

D33 = ex(n) — ex(n+1).

It is easily seen that

oA 1 4
(5.21) D3,_—16(3 +B)-N(N+])2+O(N )
and by (2.30)
(5.22) Dy = OWN%) = 2,14 Jaliasi ) - ON/?).

For Ds,, we have the following result.
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LEMMA 5. Fork < K{®,

D3 = 2[(0,_,_1) +3(ﬂ+1)]M + €10,

6 2 2JIN(N +1)?
where
(5.23) €10 = j241 4 * JaGarip) - ONTT/2).
PROOF. Let
86(0) = 0[(A — A)a(d) + (B — B)b(6)]
and

£1(60) = 6[(A — A)a(9) + (B - BYb(O)I”.

Differentiation gives

(5.24) gl = 80[% (a + %) + (,3 + %)] + 803[(a + %)gg(e) + (ﬂ + %)gg(e)]

and
g0 = 12803[(a+ 1)5‘@ + (5+ l)f’@]
(5.25) 270 )78
| ! bO) .,
' “‘“5)[%0) +d@|+(8+ )[% b(o)”,

where .

gs(0) = 0—2[‘—1% +d'(0) - —],
and .

9(0) = @[—%—) +b'(6) - 1].

Using (2.14) and (2.15), it is readily shown that both gg(6) and go(f) are bounded on
[0, 10]. By Lemma 3 and (5.20), we have

JoGoer1 4)
16jar1,k
+ Jg(jo&l,k)

51272

a+l,k

Dy = [86(Tkn) — 86(Tine1)]
(5.26)

[87(Tin) — 871(Tns1)] + €6(n) — €6(n + 1).

The first term on the right of (5.26) is equal to

o JoGasip) Jarlk
16 2., &N N+ D

on account of (2.20) and (2.11), where

Jatlk Jot1k
= 1— =y —., 0 <L
Cz ClTk,n +( Cl)'rk,nH N+1 Cl NN +1) < Cl
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Applying this and (5.24) to (5.26) gives

D = %[(‘“ %) * 3<ﬁ )]NZJ(\]fa+llk))2 e

where

=73 N2(1\§1+1)2[( 1)+3(ﬁ+ 2)[etiesi)

+ 2 S Jalastn) N(ﬁV(N“L—% (o 5) s+ (8+ 5 )0

JH(iaH k) ]a+1 k
-87(G) - +e6(n) —eg(n + 1),
512 (21+1 Kk N(N 1)
(3 € (Tkne15Thn)- The desired order estimate (5.23) now follows from (4.11), (4.13) and
(5.25). -
A combination of (5.18), (5.21), (5.22) and Lemma 5 gives
(5.27)
a (A 1
Dy=|——(= S — -4, 5
1 A B a 1 a(]ar+l k)
M Teave 1)2( " 2)] {6 [( 2) +3(p+ )]N(N+ e
+ g - Jaliar1 ) - ONTT/2),
Since
1 A B )
[1 16(N+l)2< +2)] =1+0W™)
and

Jalf Bk n-1)] = Jalias1 )1 + ON™)

by Lemma 3, we obtain

D ——{ d (A+B)+ d [(a+1)+3(ﬂ+l)“
(5.28) PT U IN(N + 1)2\3 16N(N + 1)? 2 2
Jalart ) + st gl alar1 1) - owT7?).

We now return to (5.2), and consider the quantity [Ja(jaﬂyk)]‘lD. First we replace
D, D, and Dj; by their respective estimates given in Lemma 4, (5.17) and (5.28). To the
resulting expression, we then apply Lemmas 2 and 3. This leads to the inequality
T +1) {(a+%)+3(,6+%) L (A )

2 - —+B
N(N + 1)a+2 12 16J§+1,k 3

~ta G 8) gl ) +3(6+3)]

Jorrk " 8Tins1) + €10
_ T(a+1) (a+2)+3(ﬁ+2)2
= NV + 1) 12 Jarik

VaGar )] ™'D >

8Tk 1) + €11,
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where
K —1
£l = J%z+],kg(7'k,n+l) - O(N"2),

THEOREM 2. For all k < K and for all n sufficiently large, we have

|ttn(0t, B)] > |pner (. B)).

PROOF. Let

E= %Ja(jaﬂ’k)l\/{—_l\(faT—-:)l“)ﬁ [(0( + %) + 3(,3 + %)]jiﬂ,k - 8(Thns1)-

We first note that Jo(igr14) = JhsUor1.x), and that the slope of Jq.1(x) alters in sign at
its Zeros ju41 x- Since J;H(jo,ﬂ,l) < 0, it follows that

Sgn{Ja(ia+l,k)} = (—l)k-
Consequently, E > 0. We next observe that

Sgn{”’k,n(a’ ,B)} = (—l)kv

which can be proved in a manner similar to that given in [12, Theorem 6a]; cf. (1.6).
Therefore

(@ B)] = |pions1 (@, B)| = (=1)D > E{1 + ON"1)}. .

6. Proof of (1.9). By Theorem 1, we know that conjecture (1.4) is true for all kK >
K{V. By Theorem 2, we also know that (1.4) holds in the asymptotic sense when k < K.
Thus, to show that (1.4) is asymptotically true for all k = 1,...,n, it suffices to prove
(1.9):

6.1) KD < K for all sufficiently large n.

We shall establish this by contradiction. Suppose that there exists a sequence of positive
integers {£,,} such that

lim £,, = +oo0
m—o0

and
0 @)
Ky, > Ky,

Then we can choose a sequence of positive integer k,, such that either

Ky > b 2 K

or
1) 2)
K(em '>_ km > K(em '
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Since yi%%) = cos 6%"#*D and 6, = 8% by (2.8), we obtain from (1.7) and (1.8)
(6.2) Otu—1.6, < COS™' X0, Bpatt,—1 > To-

In view of the wellknown asymptotic approximation [7, p. 247]

j <k+1a 1)7T 4o’ — 1
K~ o — -\ - ...
* 27 4 8(k+ 50— Pm
equation (2.27) gives
k, — D)m+ O(1)
Op,-1,0, = ———————
£n+1
and
(km + D)+ O(1)
Or1,60-1 = Y S
m
Consequently,
ke o)
0 _1¢ —0 = o +
km 1r£m klll+]slm 1 zm(em + 1) gm
and
6.3) lim (6k,,—1,¢,, — Ok,+1,6,—1) = 0.
m—00

But, from (6.2) and (1.8), we have

1 28+1
0, =0k _1p >mo—cos lxpg= - ——w—0
k1,8, —1 kn—1,8, = 710 0 da+f+1

This contradicts (6.3), and therefore (6.1) holds.
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