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Abstract

In this paper we study asymptotic consistency of law invariant convex risk measures
and the corresponding risk averse stochastic programming problems for independent,
identically distributed data. Under mild regularity conditions, we prove a law of large
numbers and epiconvergence of the corresponding statistical estimators. This can be
applied in a straightforward way to establish convergence with probability 1 of sample-
based estimators of risk averse stochastic programming problems.
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1. Introduction

In many practical situations one has to make decisions about uncertainty in the future. This
raises the question of how to make such decisions in some optimal way, i.e. how to formulate
an appropriate optimization problem. In the classical approach of stochastic programming one
specifies a probability distribution of the uncertain parameters and optimizes (say minimizes)
a relevant objective function on average. Since this does not take into account deviations of
the possible realization of the objective from its expected value, this approach is referred to
as risk neutral. Recently, considerable attention has been paid to risk averse formulations of
stochastic programs.

To be specific, let us consider the optimization problem

min
x∈X

G(x, ξ),

depending on parameter vector ξ ∈ � ⊂ R
d . Here X ⊂ R

n is the feasible set of decision
variables and G : X × R

d → R is the objective function. An optimal solution of this problem
depends on a particular realization of ξ , which is not known at the time when decision x should
be made. If ξ is modeled as a random vector with a specified probability distribution then we
can average the objective by taking the expectation g(x) := E[G(x, ξ)], and, consequently,
minimize g(x) subject to the feasibility constraints x ∈ X. If this procedure is repeated many
times, under more or less similar conditions, such a decision will be optimal on average and can
be justified by the law of large numbers. However, for a particular realization of the random
vector ξ and given x, the value of random variable Gx(ξ) = G(x, ξ) can be quite different from
the expected value g(x). This gives a motivation for considering an appropriate functional ρ
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534 A. SHAPIRO

other than the expectation, defined on a space of random variables, and, hence, considering the
corresponding risk averse problem (see, e.g. [8, Chapter 6])

min
x∈X

{g(x) := ρ(Gx)}. (1.1)

In order to formalize the concept of risk functionals, we proceed as follows. Suppose
that the random vector ξ = ξ(ω) is defined on a probability space (�, F , P). Let Z :=
Lp(�, F , P), p ∈ [1, ∞), be the space of random variables Z : � → R having finite pth-order
moments, and let ρ : Z → R be a (real-valued) functional referred to as a risk measure. Assume
that the random variable Gx(ξ(ω)) belongs to the space Z for all x ∈ X; hence, ρ(Gx) is well
defined.

In applications the functional ρ is often constructed in such a way as to provide a compromise
between optimization on average and controlling the involved risk. Therefore, something like
‘mean risk’could be a better term for ρ. However, the terminology of risk measures has become
somewhat standard, so we will follow it here. In the influential paper of Artzner et al. [2] it was
suggested that a ‘good’ risk measure should satisfy the following conditions (axioms).

(A1) Monotonicity. If Z, Z′ ∈ Z and Z � Z′, then ρ(Z) ≥ ρ(Z′).

(A2) Convexity.
ρ(tZ + (1 − t)Z′) ≤ tρ(Z) + (1 − t)ρ(Z′)

for all Z, Z′ ∈ Z and all t ∈ [0, 1].
(A3) Translation equivariance. If a ∈ R and Z ∈ Z, then ρ(Z + a) = ρ(Z) + a.

(A4) Positive homogeneity. If t ≥ 0 and Z ∈ Z, then ρ(tZ) = tρ(Z).

The notation Z � Z′ means that Z(ω) ≥ Z′(ω) for almost every (a.e.) ω ∈ �. Risk measures
ρ satisfying axioms (A1)–(A4) were called coherent in [2]. If a risk measure satisfies axioms
(A1)–(A3), but not necessarily (A4), it is called convex (cf. [5]). It is said that ρ is law
invariant if ρ(Z) depends only on the distribution of Z, i.e. if Z, Z′ ∈ Z have the same
cumulative distribution function then ρ(Z) = ρ(Z′). Throughout the paper, we denote by
F(z) := P(Z ≤ z) the cumulative distribution function (CDF) of a considered random variable
Z ∈ Z.

An important example of risk measures is the average value-at-risk (also called the
conditional value-at-risk) measure

AVaRα(Z) := inf
t∈R

{t + (1 − α)−1
E[Z − t]+}, (1.2)

where α ∈ [0, 1). Defined on Z := L1(�, F , P), this is a (real-valued) law invariant coherent
risk measure. Given a sample Z1, . . . , ZN of random variable Z, the corresponding empirical
CDF is F̂N (z) = N−1 ∑N

i=1 1{Zi≤z} . Consequently, AVaRα(Z) can be estimated by replacing
the CDF F of Z with its empirical estimate F̂N , that is, by replacing the expectation E[Z − t]+
in (1.2) with its sample average estimate N−1 ∑N

i=1[Zi − t]+. We assume throughout this
paper that the sample Z1, . . . , ZN is independent and identically distributed (i.i.d.). Since a
law invariant risk measure ρ can be considered as a function of the CDF F(z) = P(Z ≤ z),
we also write ρ(F ) to denote the corresponding value ρ(Z). By replacing F with its empirical
estimate F̂N , we obtain the estimate ρ(F̂N) to which we refer as the sample or empirical estimate
of ρ(F ).

In a similar way the ‘true’ risk averse optimization problem (1.1) can be approximated by
its empirical estimate. That is, let ξi = ξi(ω), i = 1, . . . , N , be an i.i.d. sample of the random
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Consistency of sample estimates 535

vector ξ = ξ(ω), defined on the same probability space. For x ∈ R
n, consider the sample

estimate ĝN (x) given by ρ(F̂N), with F̂N being the empirical CDF associated with the sample
G(x, ξ1), . . . , G(x, ξN). Consequently, we obtain the following approximation of problem
(1.1):

Min
x∈X

ĝN (x). (1.3)

Note that ĝN (x) = ĝN (x, ω) is a random function—we sometimes suppress the dependence
on ω in the notation.

The goal of this paper is to investigate convergence properties of the sample estimates of
law invariant convex risk measures and the corresponding optimization problems of the form
(1.3). A need for such statistical inference appears in two somewhat different situations. It
could be that the random sample represents given (collected) data while the ‘true’distribution is
not known. On the other hand, in some cases the random sample is generated by Monte Carlo
techniques for the purpose of numerical integration. In the context of solving the optimization
problem (1.3) this is the approach of the so-called sample average approximation (SAA) method
(see, e.g. [8, Chapter 5]). Although conceptually different these two applications involve the
same statistical inference.

Let us recall the following basic duality result associated with convex risk measures. Recall
that the space Z = Lp(�, F , P), p ∈ [1, ∞), equipped with the norm ‖Z‖p =
(
∫
�

|Z(ω)|p dP(ω))1/p, becomes a Banach space, and its dual space is Z∗ = Lq(�, F , P),
where q ∈ (1, ∞] is such that 1/p+1/q = 1. A (real-valued) convex risk measure ρ : Z → R

is continuous (in the norm topology of Z) and there exists a convex set A ⊂ Z∗ of probability
density functions such that

ρ(Z) = sup
ζ∈A

∫
�

Z(ω)ζ(ω) dP(ω) − ρ∗(ζ ) for all Z ∈ Z, (1.4)

where ρ∗ : Z∗ → R̄ is the conjugate of the functional ρ and A = dom(ρ∗). The dual
representation (1.4) follows from the classical Fenchel–Moreau theorem. Originally, it was
derived in [2], and the follow-up literature (cf. [5]), for the space Z = L∞(�, F , P). For
spaces Z = Lp(�, F , P), p ∈ [1, ∞), this representation was derived in [7] and it was
shown there that monotonicity (axiom (A1)) and convexity (axiom (A2)) imply continuity of
the (real-valued) risk measure ρ in the norm topology of the space Lp(�, F , P).

We assume throughout this paper that the probability space (�, F , P) is atomless and
complete. Then we can set � := [0, 1] equipped with its Lebesgue sigma-algebra F (cf. [3,
p. 25]), and uniform probability distribution (measure) P. For a CDF F , we denote by
F−1(ω) = inf{z : F(z) ≥ ω} its left-side quantile. Note that Z(·) := F−1(·) is a real-valued,
monotonically nondecreasing, left-side continuous function on the interval (0,1), and (in the
case where � = [0, 1]) can be considered as an element of the space Lp(�, F , P), provided
that

∫ 1
0 |Z(ω)|p dω is finite.

2. Law of large numbers for sample estimates of convex risk measures

In this section we investigate convergence with probability 1 (w.p. 1) of sample estimates of
convex risk measures.

Theorem 2.1. Let Z := Lp(�, F , P), p ∈ [1, ∞), and ρ : Z → R be a (real-valued) law
invariant convex risk measure. Then ρ(F̂N) converges to ρ(F ) w.p. 1 as N → ∞.
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Proof. Recall that, since the space (�, F , P) is assumed to be atomless and complete,
we can work with � = [0, 1] equipped with its Lebesgue sigma-algebra F and uniform
probability distribution P. Consider Z(·) := F−1(·). We can view Z as an element of the
space Z = Lp(�, F , P). Consider ẐN := F̂−1

N to be the left-side quantile of the empirical

CDF F̂N (based on i.i.d. sample Z1, . . . , ZN ). Recall that ρ(Z) = ρ(F ) and ρ(ẐN) = ρ(F̂N).
Note that the function ẐN (·) is piecewise constant and, hence, ẐN ∈ Z as well. Consider the
set C ⊂ [0, 1] of points where the function Z(·) is discontinuous. Since Z(·) is monotonically
nondecreasing, the set C is countable and, hence, has Lebesgue measure 0. By the Glivenko–
Cantelli theorem, w.p. 1, F̂N converges to F uniformly on R. It follows that, w.p. 1, ẐN

converges pointwise to Z on the set [0, 1] \ C, and, hence, w.p. 1,

lim
N→∞

∫ 1

0
|Z(ω) − ẐN (ω)|p dω =

∫ 1

0
lim

N→∞ |Z(ω) − ẐN (ω)|p dω = 0, (2.1)

where the interchangeability of the limit and integral operators is justified provided that, w.p. 1,
the sequence |Z(·) − ẐN (·)|p is uniformly integrable (see, e.g. [3, p. 217]).

Let us show that the uniform integrability indeed holds. We have (triangle inequality)
‖Z − ẐN‖p ≤ ‖Z‖p + ‖ẐN‖p, i.e.

(∫ 1

0
|Z(ω) − ẐN (ω)|p dω

)1/p

≤
(∫ 1

0
|Z(ω)|p dω

)1/p

+
(∫ 1

0
|ẐN (ω)|p dω

)1/p

. (2.2)

The first term on the right-hand side of (2.2) is constant; therefore, it is sufficient to verify
uniform integrability of |ẐN (·)|p. We have

∫ 1

0
|ẐN (ω)|p dω =

∫ ∞

0
|z|p dF̂N (z) = 1

N

N∑
i=1

|Zi |p,

and, by the law of large numbers, N−1 ∑N
i=1 |Zi |p converges w.p. 1 to E|Z|p. Since Z ∈

Lp(�, F , P), E|Z|p is finite. It follows that
∫ 1

0 |ẐN (ω)|p dω converges w.p. 1 to a finite limit,
which implies that, w.p. 1, |ẐN (·)|p is uniformly integrable.

By (2.1), this shows that ẐN converges to Z w.p. 1 in the norm topology of the space
Lp(�, F , P). It remains to recall that axioms (A1) and (A2) imply that the risk measure
ρ : Z → R is continuous in the norm topology of Z = Lp(�, F , P) (cf. [7]), and, hence,
ρ(ẐN) converges to ρ(Z) w.p. 1.

Convergence w.p. 1 of empirical estimates of law invariant coherent risk measures was
studied in [9] by employing techniques based on the Kusuoka representation of law invariant
coherent risk measures. The above proof is more direct and does not involve the growth
conditions used in [9, Theorem 3.4].

3. Convergence of statistical estimates of risk averse stochastic programs

We proceed now to the investigation of the uniform-type convergence of empirical estimates
of risk measures. Recall that a sequence of functions φk : R

n → R̄ is said to epiconverge to
a function φ, denoted by φk

e→ φ, if, for any point x̄ ∈ R
n, the following two conditions are

satisfied (see, e.g. [6, p. 241]):

(i) for any sequence xk converging to x̄, it holds that

lim inf
k→∞ φk(xk) ≥ φ(x̄),
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(ii) there exists a sequence xk converging to x̄ such that

lim sup
k→∞

φk(xk) ≤ φ(x̄).

Consider now the objective function g(x) = ρ(Gx) of the ‘true’ problem (1.1) and its
sample estimate ĝN (x) = ĝN (x, ω) based on the i.i.d. sample ξi = ξi(ω), i = 1, . . . , N . With
some abuse of notation, we write G(x, ω) for the function G(x, ξ(ω)). We now investigate the
epiconvergence w.p. 1 of ĝN to g. Consider the following conditions.

(C1) For every x ∈ R
n, the random variable Gx(ω) = G(x, ω) belongs to the space Z =

Lp(�, F , P), p ∈ [1, ∞).

(C2) The function G(x, ω) is random lower semicontinuous, i.e. the epigraphical multifunction
ω �→ epi G(·, ω) is closed valued and measurable.

(C3) For every x̄ ∈ R
n, there is a neighborhood Vx̄ of x̄ and a function h ∈ Z such that

G(x, ·) ≥ h(·) for all x ∈ Vx̄ .

Some remarks about the above regularity conditions are now in order. Condition (C1) means
that, for every x ∈ R

n, the corresponding random variable Gx has a finite pth-order moment.
For a thorough discussion of random lower-semicontinuous functions and related measurability
questions, we refer the reader to [6, Chapter 14]. (Random lower-semicontinuous functions are
called normal integrands in [6].) In particular, a set-valued mapping A : � ⇒ R

m is measurable
if, for every open set O ⊂ R

m, the set A−1(O) is F -measurable [6, Definition 14.1]. It could
be noted that closeness of the epigraph epi G(·, ω) means that the function G(·, ω) is lower
semicontinuous. A sufficient condition for G(x, ω) to be random lower semicontinuous is that
G(x, ω) is measurable in ω for every x and continuous in x for a.e. ω. Such functions are called
Carathéodory integrands in [6, Example 14.29].

Theorem 3.1. Let ρ : Z → R be a law invariant convex risk measure, and let g(x) := ρ(Gx).
Suppose that conditions (C1)–(C3) hold. Then the function g(·) is lower semicontinuous and
ĝN

e→ g w.p. 1.

3.1. Proof of Theorem 3.1

Note that, since the risk measure ρ(·) is real valued, it follows from (C1) that the function
g(·) is real valued.

Since the risk measure ρ is convex, it has the dual representation (1.4). Consider a point
x̄ ∈ R

n. By condition (C3) we have, for any ζ ∈ A and x ∈ Vx̄ , ζ(·)G(x, ·) ≥ ζ(·)h(·).
Moreover, since h ∈ Z and ζ ∈ Z∗, then

∫
�

ζ(w)h(ω) dP(ω) is finite. Hence, by Fatou’s
lemma, it follows that, for a sequence xk → x̄,

lim inf
k→∞

∫
�

ζ(ω)G(xk, ω) dP(ω) ≥
∫

�

lim inf
k→∞ ζ(ω)G(xk, ω) dP(ω) ≥

∫
�

ζ(ω)G(x̄, ω) dP(ω),

where the last inequality follows by lower semicontinuity of G(·, ω) (condition (C2)). That is,
the function x �→ ∫

�
ζ(ω)G(x, ω) dP(ω) − ρ∗(ζ ) is lower semicontinuous. Since, by (1.4),

g(x) = ρ(Gx) is given by a maximum of such functions, it follows that g(x) is also lower
semicontinuous.

In order to show that ĝN
e→ g w.p. 1, we need to verify conditions (i) and (ii). That is, to

verify condition (i), we have to show that there exists a set 	 ⊂ � of measure 0 such that, for
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any point x̄ ∈ R
n and any sequence xN converging to x̄, it holds that

lim inf
N→∞ ĝN (xN , ω) ≥ g(x̄) for all ω ∈ � \ 	. (3.1)

Note that the set 	 should not depend on x̄. Similarly for condition (ii).
To verify condition (i), we proceed as follows. For some sequence γk ↓ 0 of positive

numbers, consider Vk := {x ∈ R
n : ‖x − x̄‖ < γk}, and let

Gk(ω) := inf
x∈Vk

G(x, ω), k ∈ N.

Since G(x, ω) is random lower semicontinuous (condition (C2)), then Gk(ω) is measurable
(cf. [6]). By (C3) we have Gk(·) ≥ h(·) for all large enough k (such that Vk ⊂ Vx̄). Of course,
we also have G(x, ·) ≥ Gk(·) for any x ∈ Vk . It follows that Gk ∈ Z. Consider the dual
representation (1.4) of ρ, and let

ζ̄ ∈ arg max
ζ∈A

{E[ζ(ω)G(x̄, ω)] − ρ∗(ζ )}

(note that such a maximizer exists [7]). That is, ζ̄ ∈ A and

g(x̄) = E[ζ̄ (ω)G(x̄, ω)] − ρ∗(ζ̄ ).

Since Gk ∈ Z, we have, by (1.4),

ρ(Gk) ≥ E[ζ̄ (ω)Gk(ω)] − ρ∗(ζ̄ ).

By condition (C3), ζ̄ (·)Gk(·) is bounded from below, on a neighborhood of x̄, by the integrable
function ζ̄ (·)h(·), and, hence, applying Fatou’s lemma we have

lim inf
k→∞ E[ζ̄ (ω)Gk(ω)] ≥ E

[
lim inf
k→∞ ζ̄ (ω)Gk(ω)

]
,

and, by the lower semicontinuity of G(·, ω),

E

[
lim inf
k→∞ ζ̄ (ω)Gk(ω)

]
− ρ∗(ζ̄ ) ≥ E[ζ̄ (ω)G(x̄, ω)] − ρ∗(ζ̄ ) = g(x̄).

We obtain
lim inf
k→∞ ρ(Gk) ≥ g(x̄). (3.2)

Now let us choose ε > 0. By (3.2), there exists k̄ = k̄(ε) such that

ρ(Gk̄) ≥ g(x̄) − ε. (3.3)

Let ρ̂N (Gk̄) be the empirical estimate of ρ(Gk̄) based on the same sample as the sample used
for the estimate ĝN (·), i.e. ρ̂N (Gk̄) = ρ(ĤN), where ĤN is the empirical CDF of the sample
Yi = infx∈Vk̄

Ḡ(x, ξi), i = 1, . . . , N . By Theorem 2.1 we have ρ̂N (Gk̄) → ρ(Gk̄) w.p. 1 as
N → ∞. Hence, for a.e. ω ∈ �, there exists N̄x̄(ω) such that ρ̂N (Gk̄) ≥ ρ(Gk̄) − ε for all
N ≥ N̄x̄(ω). Together with (3.3) this implies that

ρ̂N (Gk̄) ≥ g(x̄) − 2ε (3.4)

for a.e. ω ∈ � and N ≥ N̄x̄(ω).
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For any x ∈ Vk̄ , we have (for the same random sample) that the empirical CDF of G(x, ·)
dominates the empirical CDF of Gk̄(·), and, hence (cf. [8, Theorem 6.28]),

ĝN (x) = ρ̂N (Gx) ≥ ρ̂N (Gk̄).

By (3.4), it follows that
inf

x∈Vk̄

ĝN (x) ≥ g(x̄) − 2ε

for a.e. ω ∈ � and N ≥ N̄x̄(ω). That is, there exist N̄(ω), a set ϒ ⊂ � of measure 0, and a
neighborhood V (both depending on x̄ and ε) such that

ĝN (x) ≥ g(x̄) − 2ε (3.5)

for all N ≥ N̄(ω), x ∈ V , and ω ∈ � \ ϒ . It follows that there exists a countable number of
points x1, . . . in R

n, with corresponding neighborhoods V1, . . . covering R
n. Let ϒ1, . . . be the

corresponding sets of measure 0, and let ϒ̄ := ⋃∞
i=1 ϒi . Note that the set ϒ̄ has measure 0,

and that ϒ̄ depends on ε, but not on a particular point of R
n. It follows that, for any x̄ ∈ R

n,
there is a neighborhood W and N∗(ω) such that (3.5) holds for all x ∈ W , N ≥ N∗(ω), and
ω ∈ � \ ϒ̄ .

Consequently, for any point x̄ and a sequence xN converging to x̄, we have

lim inf
N→∞ ĝN (xN , ω) ≥ g(x̄) − 2ε (3.6)

for all ω ∈ � \ ϒ̄ . Now choose a sequence of positive numbers εi ↓ 0 and let ϒ̄i be the
corresponding sets of measure 0. Set 	 := ⋃∞

i=1 ϒ̄i . Then (3.6) implies that (3.1) holds for
any x̄ ∈ R

n and any sequence xN converging to x̄. This proves that condition (i) holds for
a.e. ω ∈ �.

In order to verify condition (ii), we need the following result.

Lemma 3.1. There exists a countable set D ⊂ R
n such that, for any point x̄ ∈ R

n, there exists
a sequence xk ∈ D converging to x̄ and

lim sup
k→∞

g(xk) ≤ g(x̄). (3.7)

Proof. Such a set D can be constructed as follows. Let A ⊂ R be a countable and dense
subset of R. Consider level sets La := {x ∈ R

n : g(x) ≤ a}, and let Da, a ∈ A, be a
countable and dense subset of La . (Of course, some of the sets La and Da can be empty.)
Define D := ⋃

a∈A Da . Clearly, the set D is countable. Condition (3.7) also holds. Indeed,
let ak ∈ A be a monotonically decreasing sequence converging to g(x̄). Note that x̄ ∈ Lak

for all k. Therefore, there exists a point xk ∈ Dak
such that ‖xk − x̄‖ ≤ 1/k. We have then

xk → x̄ and g(xk) ≤ ak , and, hence, (3.7) follows, completing the proof of the lemma.

Let D be a set specified in Lemma 3.1. Consider a point x̄ ∈ R
n, and let xk ∈ D be a

sequence of points converging to x̄ such that (3.7) holds. For a given x ∈ R
n, it follows by

Theorem 2.1 that ĝN (x) converges to g(x) w.p. 1. That is, there exists a set ϒx of measure 0
such that ĝN (x, ω) converges to g(x) for every ω ∈ � \ ϒx . Consider the set ϒ̃ := ⋃

x∈D ϒx .
Since the set D is countable, the set ϒ̃ has measure 0. The function ĝN (x, ω) converges to
g(x) for every x ∈ D and ω ∈ � \ ϒ̃ . Hence, there is a sequence Nk = Nk(ω) of positive
integers such that, for all k,

|ĝNk
(xk, ω) − g(xk)| <

1

k
for all ω ∈ � \ ϒ̃. (3.8)
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Now let x′
N be a sequence of points such that x′

Nk
= xk for all k. We then have x′

Nk
→ x̄ and,

by (3.7) and (3.8),

lim sup
k→∞

ĝNk
(x′

Nk
, ω) ≤ g(x̄) for all ω ∈ � \ ϒ̃.

This shows that condition (ii) holds w.p. 1, completing the proof of Theorem 3.1.

For the expectation operator, i.e. when ρ(·) = E(·), the epiconvergence result of Theorem 3.1
was proved in [1].

Suppose now that, for a.e. ω, the function G(·, ω) is convex and let ρ : Z → R be a law
invariant convex risk measure. Then the functions g(x) = ρ(Gx) and ĝN (x) are also convex.
It is known that if φk : R

n → R̄ is a sequence of convex functions and φ : R
n → R̄ is a

convex lower-semicontinuous function such that its domain has a nonempty interior, then the
following conditions are equivalent: (a) φk

e→ φ, (b) there exists a dense subset D of R
n such

that φk(x) → φ(x) for all x ∈ D , (c) φk(·) converges uniformly to φ(·) on every compact
set C ⊂ R

n that does not contain boundary points of dom(φ) (cf. [6, Theorem 7.17]). These
together with Theorem 2.1 imply the following result in a straightforward way. Recall that, by
condition (C1), the function g(x) is real valued and, hence, dom(g) = R

n.

Theorem 3.2. Let ρ : Z → R be a law invariant convex risk measure, and let g(x) := ρ(Gx).
Suppose that condition (C1) holds, and, for a.e. ω, the function G(·, ω) is convex. Then the
functions g(·) and ĝN (·) are convex and ĝN (·) converges w.p. 1 uniformly to g(·) on every
compact set.

The results of Theorem 3.1 can be applied in a straightforward way to investigate the
consistency of the sample approximation (1.3) of the ‘true’ problem (1.1).

Theorem 3.3. Let ρ : Z → R be a law invariant convex risk measure. Suppose that conditions
(C1)–(C3) hold and that the set X is nonempty and compact. Then the optimal value of the SAA
problem (1.3) converges w.p. 1 to the optimal value of the ‘true’problem (1.1), and the distance
from an optimal solution of (1.3) to the set of optimal solutions of (1.1) converges w.p. 1 to 0
as N → ∞

Proof. Since the function g(x) is lower semicontinuous and the set X is compact, problem
(1.1) has a nonempty set S of optimal solutions and its optimal value ϑ∗ is finite. Since ĝN

e→ g

w.p. 1, it follows that the optimal value ϑ̂N of problem (1.3) converges w.p. 1 to ϑ∗, and the
distance from an optimal solution of (1.3) to the set S converges w.p. 1 to 0 as N → ∞ (cf. [6,
Chapter 7]).

The assumption of compactness of the set X in Theorem 3.3 is needed in order to ensure
existence of optimal solutions of the true and SAA optimization problems, and that optimal
solutions of the SAA problems stay w.p. 1 in a bounded set. In some problems this can be
verified by ad-hoc methods.

For risk neutral stochastic programming problems, the epiconvergence approach was used
in [4] to study asymptotic consistency of the corresponding statistical estimators.
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[8] Shapiro, A., Dentcheva, D. and Ruszczyński, A. (2009). Lectures on Stochastic Programming: Modeling

and Theory. SIAM, Philadelphia.
[9] Wozabal, D. and Wozabal, N. (2009). Asymptotic consistency of risk functionals. J. Nonparametric Statist.

21, 977–990.

https://doi.org/10.1239/jap/1371648959 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1371648959

	1 Introduction
	2 Law of large numbers for sample estimates of convex risk measures
	3 Convergence of statistical estimates of risk averse stochastic programs
	3.1 Proof of Theorem 3.1

	Acknowledgements
	References

