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Abstract. In this paper we consider (hierarchical, Lagrange) reduced basis approxi-
mation and a posteriori error estimation for potential flows in affinely parametrized
geometries. We review the essential ingredients: i) a Galerkin projection onto a low-
dimensional space associated with a smooth “parametric manifold” in order to get a
dimension reduction; ii) an efficient and effective greedy sampling method for identifi-
cation of optimal and numerically stable approximations to have a rapid convergence;
iii) an a posteriori error estimation procedure: rigorous and sharp bounds for the linear-
functional outputs of interest and over the potential solution or related quantities of
interest like velocity and/or pressure; iv) an Offline-Online computational decompo-
sition strategies to achieve a minimum marginal computational cost for high performance
in the real-time and many-query (e.g., design and optimization) contexts. We present
three illustrative results for inviscid potential flows in parametrized geometries repre-
senting a Venturi channel, a circular bend and an added mass problem.
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1 Introduction and motivation

A great number of engineering problems require the solution of partial differential equa-
tions (PDEs) for many different configurations of the system. Even the computational
costs for the solution of relatively simple parametrized problems may be very high and
may remain unaffordable — although the computational power has increased consider-
ably in the past few years. This makes necessary to develop techniques which are able
to reduce the complexity of the system without a loss of information or accuracy of the
results. The reduced basis method is a promising approach to fill this gap as it allows not
only a rapid and efficient, but also a reliable solution of partial differential equations.

1.1 The input-output relation

In many applications, the main goal is not only the solution of the PDEs for the field vari-
ables, but the evaluation of input-output relationships. Here, the output is expressed as a
functional of the field variables and can be for example an average quantity in the do-
main, an added mass or even a pointwise velocity and/or pressure. The input-parameter
vector identifies a particular configuration of the system. Usually, this includes geomet-
ric variations, but also physical properties as well as boundary/initial conditions and
sources. The field variable (as solution of the PDEs) connects the input parameters and the
outputs of interest.

1.2 The many-query and real-time contexts

The reduced basis method allows us to reduce the online computational time (both of
the field solution and of the outputs of interest) notably. This advantage is gained by
additional offline effort. Therefore, the methodology presented in this work is suited par-
ticularly for problems arising in the real-time context or in the many-query context. For both
these problem classes, the online performance is extremely important while increased
offline effort is less critical and both are very challenging to the conventional solution
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methods. The real-time context arises e.g. for control engineering and in parameter esti-
mation problems in a wide range of applications. Examples for the many-query context
are the multi-model/multi-scale simulation or design optimization. Here the online per-
formance is critical because the solution of a huge number of problems — up to the tens
of thousands input-output relations — is necessary, making the additional offline effort
affordable.

It is important to note that the reduced basis (RB) method can not replace “classical”
numerical techniques such as the finite element (FE) method. This is due to two reasons.
First, the application of the RB method to problems which require the solution only for
one or a few configurations would be inefficient. The reduced online complexity would
not balance the offline effort needed for the application of the RB method compared to the
FE method (or other solution methods). In addition, the RB method is not an independent
method, since it has to be built upon another method for the solution of the particular
problem. In fact, the RB method tries to approximate the solution of the system that
would be obtained by applying the given underlying solution method to the problem,
and not the exact solution. In this work, we will consider a finite element discretization
as underlying solution method but also other methods (e.g. finite volume or spectral
methods) would be possible. See for example [11, 19], applying RB method upon finite
volume and spectral methods, respectively.

1.3 Reduced basis background

A brief introduction to the RB background and the most recent developments of the re-
duced basis method shall be given here. For a more detailed presentation see [49].

The reduced basis method for single parameter problems was first introduced in the
late 1970s by Almroth, Stern and Brogan in the domain of nonlinear structural analy-
sis [1]. The method has been developed further by Noor in the following years [27–34]
and extended to multiparameter problems. A first a priori error analysis for single pa-
rameter problems has been carried out by Fink and Rheinboldt [8, 9]. Further work fo-
cused on a priori error analysis and on different approximation spaces has been done by
Porsching [39]. In the 1990s, this topic has been investigated again by Rheinbolt [45]
and by Barrett and Reddien [4]. At that time the RB method has been applied to dif-
ferent classes of problems: viscous fluid flow and Navier Stokes equations [38], fluid
control problems [14–17], ordinary differential equations [40] and differential algebraic
equations [18]. These early methods were typically rather local and low-dimensional in
parameter. In [3], Balmes first applied RB methods to general multi-parameter problems.

Only recently, the need for reliable a posteriori error estimators has led to a number
of works on this topic [20–22, 41, 46, 52, 54]. Much effort is devoted to effective sampling
strategies for global approximation spaces also for higher dimensional parameter do-
mains [6,26,47]. In the past few years, this methodology has been applied to a wide range
of problems including elliptic as well as parabolic and simple hyperbolic problems. Prob-
lems came from the field of elasticity, quantum mechanics/chemistry, acoustics, fracture
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problems, homogenization, Boltzmann models, environmental engineering and inverse
problems (for actual works on these topics refer to [2]). Other applications are in fluid
flows (e.g. [48, 50, 53]) and in optimization and optimal control (e.g. [10, 35, 42, 48]). Two
recent publications give a very comprehensive summary of the methodology developed
so far for coercive elliptic PDEs with affine parameter dependence [37, 49].

1.4 Reduced basis method for potential flows

In this paper we will introduce the theory of the reduced basis (RB) method for potential
flows in parametrized domains with special error bounds on velocity and pressure. After
a short summary of the historical background and recent developments related with the
RB method, we will review in Sections 2-3 the relevant steps for the generation of the
rapidly convergent global RB approximation spaces and the approximation of the solu-
tion for parametrized coercive elliptic PDEs with affine parameter dependence, which
enables an efficient offline-online decomposition. A posteriori error estimators and lower
bounds for the coercivity constant will play an important role in this process (Sections
4-5). Finally, the geometric parametrizations used in this work (Sections 6-8) and their
application in the RB context will be presented by three potential flow examples (Sec-
tions 10-12).

2 Problem definition

In this section, we will review the abstract formulation for coercive elliptic PDEs with
affine parameter dependence. The methodology of the RB method for potential flows
described further in this work will apply to this wide class of problems.

2.1 Exact statement

We consider a suitably regular (smooth) domain Ω⊂R
2 with Lipschitz-continuous bound-

ary ∂Ω. Xe is an associated (infinite dimensional) Hilbert space satisfying (H1
0(Ω))ν⊂

Xe⊂(H1(Ω))ν, where ν is the dimension of the problem (scalar if ν=1, vectorial if ν>1).
Here,

H1(Ω)={v∈L2(Ω)|∇v∈ (L2(Ω))d}, H1
0(Ω)={v∈H1(Ω)|v|∂Ω =0},

and L2(Ω)= {v measurable |
∫

Ω
v2 finite}. The inner product and norm associated with

Xe are given by (·,·)Xe and ‖·‖Xe =(·,·)1/2
Xe , respectively. Additionally, we define an input

parameter domainD⊂R
P. The superscript e refers to “exact”, where the “exact” problem

is: for any given parameter µ∈D⊂R
P, evaluate the scalar output of interest

se(µ)= l(ue(µ)),
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where the field variable ue(µ)∈Xe satisfies

a(ue(µ),v;µ)= f (v), ∀v∈Xe. (2.1)

We assume that the form a(·,·;µ) : Xe×Xe→R is bilinear, coercive and continuous, and
l(·):Xe→R is a bounded linear functional. If l= f , we say that our problem is “compliant”.

2.2 “Truth” finite element approximation

We proceed now to the finite element approximation of (2.1) (see e.g. [7, 43]). We replace
Xe with XNt⊂Xe which is a sequence of (conforming) “truth” finite element approxima-
tion spaces of finite but large dimension Nt. The “truth” finite element approximation is:
for any given parameter µ∈D⊂R

P, evaluate

sNt(µ)= l(uNt(µ)),

where uNt(µ) satisfies

a(uNt(µ),v;µ)= f (v), ∀v∈XNt . (2.2)

Our “truth” FE approximation uNt(µ)∈XNt to ue(µ) is thus defined as the Galerkin pro-
jection of ue(µ) onto XNt . The finite element discretization shall be assumed to be suffi-
ciently rich such that uNt(µ) and sNt(µ) are sufficiently close to ue(µ) resp. se(µ) — this
is the reason why we call it “truth” approximation. The RB field solution and RB output
shall approximate this “truth” finite element field solution uNt(µ) and output sNt(µ) and
not the “exact” solutions ue(µ) and se(µ). The reduced basis error will thus be evaluated
with respect to the “truth” finite element solutions. Our method remains computation-
ally stable and efficient as Nt→∞. We will define two different inner products and norms
for members of XNt , inherited from Xe. First, an energy inner product and energy norm
defined respectively as (w,v)µ≡ a(w,v;µ), ∀w,v∈Xe and ‖w‖µ≡ (w,w)1/2

µ , ∀w∈Xe.

Second, the XNt (resp. Xe ) inner product and norm, are defined as follows: for given
µ∈D and (non-negative) real τ,

(w,v)X≡ (w,v)µ+τ(w,v)L2(Ω), ∀w,v∈Xe

and ‖w‖X≡ (w,w)1/2
X , ∀w∈Xe. The L2-norm is defined as (w,v)L2(Ω)≡

∫
Ω

wv.

2.3 Well posedness

We define our exact and FE coercivity constants as

αe(µ)= inf
w∈Xe

a(w,w;µ)

‖w‖2
X

, αNt(µ)= inf
w∈XNt

a(w,w;µ)

‖w‖2
X

. (2.3)
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As we assumed that our bilinear form is coercive and our FE approximation spaces are
conforming, it follows that αNt(µ)≥ αe(µ)≥ α0 > 0,∀µ∈D. The continuity constants are
defined similarly as

γe(µ)= sup
w∈Xe

sup
v∈Xe

a(w,v;µ)

‖w‖X‖v‖X
, γNt(µ)= sup

w∈XNt

sup
v∈XNt

a(w,v;µ)

‖w‖X‖v‖X
. (2.4)

It is clear from our continuity and conforming hypotheses that γNt(µ)≤γe(µ)≤γ0 < ∞,
∀µ∈D. If the bilinear form a fulfills these requirements of coercivity and continuity and
if the linear form f is bounded, the system (2.1) has a unique solution.

2.4 Affine parameter dependence

We also make an important assumption on the nature of the parametric dependence of
the problem. In particular, we suppose that the parametric bilinear form a is “affine” in
the parameter µ; this means that it can be expressed as

a(w,v;µ)=
Qa

∑
q=1

Θ
q
a(µ)aq(w,v), ∀w,v∈XNt ,∀µ∈D, (2.5)

where Qa should be a finite and preferably small integer. The functions Θ
q
a(µ) :D→R

depend on µ and are typically very smooth, while the bilinear forms aq(·,·) : Xe×Xe→R

are µ-independent Xe-continuous bilinear forms. The linear form f may also depend
affinely on the parameter and can in this case be expressed as a sum of Q f produces of
parameter-dependent functions and parameter-independent Xe-bounded linear forms.

The assumption of affine parameter dependence is crucial for the computational per-
formance of our method as it allows an efficient offline-online decomposition of the rel-
evant computational procedures. In fact, this assumption is not too restrictive as there
exist many applications with both geometric and property variations which exhibit an
affine dependence on the parameter. Some examples are shown with numerical results.

3 Reduced basis approximation

Sections 3-5 contain a review on RB methodology recalling the main features at the state
of the art (a priori convergence, a posteriori error bounds and adaptive procedures for
basis assembling). The expert reader may go directly to Section 6 for more details on ge-
ometrical parametrizations or to Sections 7-8 for original elements dealing with potential
flows and their applications.

The parametric real-time and many-query settings introduced before represent two
different computational opportunities. The first opportunity is the fact that in the para-
metric setting our attention can be restricted to a typically smooth and rather low-dimen-
sional parametrically induced manifold, which is much smaller than the unnecessarily
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rich generic approximation spaces of e.g. the FE method. The second opportunity is —
as mentioned before — that an increased offline time can be accepted in these contexts
if the online evaluation time of the input-output relation is reduced considerably in ex-
change. In the following, we will describe the main steps of the reduced basis method
with a special attention to these two opportunities.

3.1 Manifold of solutions

As noted above, the field variable ue(µ) is not an arbitrary member of the infinite-dimen-
sional solution space Xe associated with the underlying partial differential equation.
In fact, it resides on a much lower-dimensional and typically smooth manifold M ≡
{ue(µ)|µ ∈ D} induced by the parametric dependence. For example, in the case of a
single parameter µ∈D⊂R

P=1, ue(µ) describes a one-dimensional filament that winds
through Xe. This situation is depicted in Fig. 1. Thus, the possible solutions ue(µ) do not
cover the entire space Xe, which means that this space is too general as it can represent a
much wider range of functions.

(a) (b)

Figure 1: (a) Low-dimensional manifold on which the field variable resides and (b) approximation of a new

solution at µnew with the “snapshots” uNt(µn),1≤n≤N.

The “truth” finite element approximation space XNt is constructed to approximate
all members of Xe. It is therefore still much too general as it includes many functions
which do not reside on the manifold of interest M. To approximate uNt(µ) by an adjusted
method, it is sufficient to be able to approximate all functions which lie on M while it
is not necessary to represent every single function in XNt . If we exploit this observation
and restrict our attention and adjusted approximation space to the parameter-induced
low-dimensional solution manifold, we can effect substantial dimension reduction and
considerable computational economies.

The basic idea is to construct a special approximation space for the manifold M by
using the pre-computed solutions uNt(µn) at N≪Nt selected points µn along M, as shown
in Fig. 1. The solution uN(µnew) at a newly chosen point µnew can then be approximated
by taking an appropriate linear combination of the sample points uNt(µn), 1≤ n≤ N,
which means by a projection onto the adjusted approximation space.
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3.2 RB spaces

The starting point is the FE approximation space of dimension Nt, XNt . We then want
to construct an associated sequence of hierarchical approximation spaces with maximum

dimension Nmax, XNt
N , N=1,··· ,Nmax. Each of these spaces is an N-dimensional subspace

of XNt . Hierarchical means that the spaces are such that XNt
1 ⊂XNt

2 ⊂···⊂XNt
Nmax
⊂XNt ; this

quality will play an important role for computational and memory efficiency.
In this work, we will only use Lagrange reduced basis spaces [39]. It is possible to

work with Taylor [31, 39] and Hermite [15] spaces as well and much of the methodology
does not change for these spaces. We first introduce — for given N ∈{1,··· ,Nmax} — a
set of nested samples in parameter space,

SN ={µ1∈D,··· ,µN∈D}, 1≤N≤Nmax, (3.1)

such that S1⊂···⊂SN⊂SNmax (the parameter samples are nested). The associated Lagrange
RB approximation spaces are then given as

WNt
N =span{uNt(µn), 1≤n≤N}, 1≤N≤Nmax, (3.2)

where uNt(µn)∈XNt is the solution to (2.2) for µ=µn. By construction, the Langrange RB
spaces are hierarchical:

WNt
1 ⊂WNt

2 ⊂···⊂WNt
Nmax
⊂XNt .

The uNt
n =uNt(µn), 1≤n≤Nmax are often called “snapshots” or, more precisely, “retained

snapshots” of the parametric manifold M. The next question we have to address is how
we can choose a good combination of the retained snapshots to approximate the solution
for a new parameter value and how we can build a stable RB basis out of the retained
snapshots.

3.3 Galerkin projection

Given our hypotheses on a and f , a Galerkin projection gives the reduced basis approxi-

mation uNt
N (µ): for any µ∈D, uNt

N (µ)∈WNt
N satisfies

a(uNt
N (µ),v;µ)= f (v), ∀v∈XNt

N . (3.3)

We then evaluate
sNt

N (µ)= l(uNt
N (µ)). (3.4)

In theory, we can choose as Lagrange sample points (3.1) any set of parameter values that
induce a linearly independent set of retained snapshots (3.2). However, the snapshots
will become more and more colinear as N increases because of the rapid convergence of

the Lagrange space: if WNt
N is already able to approximate well any member of M, then the

next snapshot uNt
N+1(µ) will be “almost” linearly dependent of the members of the “old”
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space WNt
N . The direct choice of the retained snapshots as basis functions would therefore

lead to a very poorly conditioned equation system for the solution of (3.3). To create a
well-conditioned set of basis functions, we will therefore apply the Gram-Schmidt pro-

cess in the (·,·)X inner product to our set of snapshots uNt
N (µn), 1≤n≤Nmax. This process

will return a mutually orthogonal set of basis functions ζNt
n , 1≤ n≤Nmax which we can

choose as our bases for WNt
N (resp. XNt

N ). These basis functions will fulfill the orthonor-
mality condition

(ζNt
n ,ζNt

m )X =δn,m, 1≤n,m≤Nmax, (3.5)

where δn,m is the Kronecker-delta symbol. This orthogonality condition is necessary to
ensure a well-conditioned reduced basis algebraic system. The orthonormalization pro-
cess is given as follows [37]:

ζNt
1 =uNt

1 /‖uNt
1 ‖X;

for n=2 : Nmax

zNt
n =uNt

n −
n−1

∑
m=1

(uNt
n ,ζNt

m )XζNt
m ;

ζNt
n = zNt

n /‖zNt
n ‖X ;

end.

(3.6)

The discrete equations associated to the Galerkin system (3.3) are then constructed by

inserting the expansion of uNt
N (µ) in the basis functions

uNt
N (µ)=

N

∑
m=1

uNt
N m(µ)ζNt

m (3.7)

and v = ζNt
n , 1≤ n≤ N into (3.3). The equation obtained is the reduced basis stiffness

equation for the reduced basis coefficients uNt
N m(µ), 1≤m≤N:

N

∑
m=1

a(ζNt
m ,ζNt

n ;µ)uNt
N m(µ)= f (ζNt

n ), 1≤n≤N. (3.8)

The reduced basis output prediction can then be evaluated as

sNt
N (µ)=

N

∑
m=1

uNt
N m(µ)l(ζNt

m ). (3.9)

As shown in [37], the condition number of the matrix a(ζNt
m ,ζNt

n ;µ), 1≤n,m≤N, is inde-
pendent of N and Nt and bounded by γe(µ)/αe(µ).
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3.4 Offline-online procedure

System (3.8) has normally a very small size (and a full structure) compared to the sys-
tem that arises from standard FE discretization of (2.2), since it consists of a set of N
linear algebraic equations in N unknowns, while the FE discretization would lead to a

set of Nt≫ N equations in Nt≫ N unknowns. Nevertheless, the elements of WNt
N , the

basis functions ζNt
n , 1≤n≤N, are associated with the underlying FE space and thus Nt-

dependent. This makes the formation of the stiffness matrix and the load vector for our
RB system (3.8), for every new value of µ Nt-dependent, even though the solution of this
system is not. To eliminate this Nt-dependency, which would lead to a very poor online
performance, we construct a very efficient offline-online procedure. This procedure is
based on the affine parameter dependence, as we now discuss. Equation (2.5) allows us
to express our system (3.8) as

N

∑
m=1

(
Qa

∑
q=1

Θq(µ)aq(ζNt
m ,ζNt

n )

)
uNt

N m(µ)= f (ζNt
n ), 1≤n≤N. (3.10)

If f is also affinely dependent on the parameter µ, the right hand side of this equation
can be expanded in a similar sum of Q f affine terms, but in the following discussion we

will assume that f does not depend on µ. We see that the terms dependent on the ζNt
n are

now separated of those dependent on the parameter. Therefore we can precompute all
terms independent of the parameter in the offline stage and thus the operation count for
the online computations is independent of Nt.

In the offline stage — performed only once — we first compute the uNt(µn), 1≤n≤Nmax

and form the ζNt
n , 1≤n≤Nmax. After that,

f (ζNt
n ), 1≤n≤Nmax (3.11)

and

aq(ζNt
m ,ζNt

n ), 1≤n,m≤Nmax, 1≤q≤Qa (3.12)

can be computed and stored. This requires O(QaN2
maxNt) operations and O(QaN2

max)
storage. In the online stage — performed many times, for each new value of µ — we use
the precomputed matrices (3.12) to assemble the (full) N×N stiffness matrix

Qa

∑
q=1

Θq(µ)aq(ζNt
m ,ζNt

n ), 1≤n,m≤N. (3.13)

We then solve the resulting system (3.10) to obtain the uNt
Nm(µ), 1≤m≤N and evaluate the

output approximation (3.9). The operation count for the online stage is thenO(QaN2) to
assemble (3.12), O(N3) to invert the full stiffness matrix and O(N) to evaluate the in-
ner product for the output computation. Thanks to the hierarchical condition, the online
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storage is only O(QaN2
max)+O(Nmax), as for any given N the necessary RB N×N matri-

ces may be extracted of the corresponding “maximum” Nmax×Nmax system. The crucial
point is that our online computational costs are dependent on Qa and N, but independent
of Nt. Since N≪Nt, we can expect significant (orders of magnitude) speedup in the online
stage compared to the pure FE approach. This implies also that we may choose Nt very
large in order to eliminate the error between the exact solution and the FE predictions
without affecting the reduced basis online efficiency. In fact, the bigger the underlying
FE system and thus Nt is chosen, the bigger the speedup by the use of the RB method in
the online stage will be. However, we should keep in mind that the offline phase is still
Nt-dependent.

3.5 Sampling strategy: A “greedy” algorithm

The question we deal with in this section is how to choose the sample points µn, 1≤n≤N
for a given N in an optimal way, such that the accuracy of the resulting RB approximation
is maximized. The key ingredient is a rigorous, sharp and inexpensive a posteriori error

bound ∆
Nt
N (µ) (defined later in (4.8)-(4.9)) such that

‖uNt(µ)−uNt
N (µ)‖X≤∆

Nt
N (µ) (3.14)

for all µ∈D and for all N. The properties of sharpness and rigor can be quantified by
introducing the effectivity

ηNt
N (µ)≡

∆
Nt
N (µ)

‖uNt(µ)−uNt
N (µ)‖X

. (3.15)

Rigor means that we require that ∆
Nt
N (µ) is never less than the true error. Sharpness

means that we require that ∆
Nt
N (µ) is not too much larger than the true error. To put this

into one equation, ∆
Nt
N (µ) must fulfill

1≤ηNt
N (µ)≤ηmax, UB, ∀µ∈D, 1≤N≤Nmax,

where ηmax, UB is finite (preferably close to 1) and independent of N. The computation

of the error bound is “inexpensive” if we can compute µ→∆
Nt
N (µ) extremely fast, which

implies that in the limit of many evaluations the marginal cost is independent of Nt. We
discuss the construction and properties of such an error estimate in detail in Section 4. We
will now proceed to the “greedy” procedure which makes use of this a posteriori error
estimate to construct hierarchical Lagrange RB approximation spaces.

We are given Nmax, which can be set either directly or through a prescribed error
tolerance ǫtol, and a training sample Ξtrain ⊂D (a discrete set representing a very fine
sample of ntrain = |Ξtrain| points in the parameter domain). This “training” sample shall
serve as surrogate for D in the subsequent generation of the reduced basis space and
the choice of ntrain and Ξtrain has therefore important offline and online computational
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implications. We then choose at random µ1∈Ξtrain, the first sample point to be added to
the Lagrange parameter samples S1 ={µ1}, and set

W
Nt Greedy
1 =span{uNt(µ1)}.

The algorithm proceeds as follows:

for N =2 : Nmax

µN =arg max
µ∈Ξtrain

∆
Nt
N−1(µ);

ǫN−1 =∆
Nt
N−1(µN);

if ǫN−1≤ǫtol

Nmax = N−1;

end;

SNt
N =SN−1∪µN ,

W
Nt Greedy
N =W

Nt Greedy
N−1 +span{uNt(µN)}

end.

(3.16)

Hence, the greedy algorithm chooses in each iteration N that particular candidate snap-
shot (over all candidate snapshots uNt(µ), µ∈Ξtrain) which is worst well approximated

by the projection on the “old” RB space W
Nt greedy
N−1 and appends it to the retained snap-

shots. The most crucial point of this strategy is that the error is not measured by the

(very expensive) “true” error ‖uNt(µ)−uNt
N (µ)‖X but by the inexpensive a posteriori er-

ror bound ∆
Nt
N (µ). In doing so we need to compute only the Nmax (typically very few)

FE retained snapshots.† This permits us to perform offline a very exhaustive search for
the best sample with ntrain very large and thus get most rapidly uniformly convergent

spaces W
Nt Greedy
N . Online, we can exploit the low marginal cost of the error estimate and

the hierarchical condition of the W
Nt Greedy
N , 1≤N≤Nmax to determine the smallest N (the

most efficient approximation) for which we rigorously achieve the desired accuracy.

3.6 Convergence analysis

We will now re-state some theoretical evidence that the reduced basis approximation in-
deed converges to the FE approximation, if a good low-dimensional approximation space
exists and consequently a good Lagrange RB approximation space can be constructed by
the greedy algorithm. In addition, results shall be presented that confirm the existence
of suited RB approximation spaces and provide upper bounds for convergence rates in
terms of the given data for the problem.

†This is contrary to the proper orthogonal decomposition (POD) approach, where we have to compute the FE

solutions for all members of Ξtrain as we measure the error by the true error ‖uNt(µ)−uNt
N (µ)‖X, see [37,49].
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3.6.1 Optimality

First, the classical Galerkin optimality result for the projection in the RB approximation
space shall demonstrated:

‖uNt(µ)−uNt
N (µ)‖µ = inf

wN∈X
Nt
N

‖uNt(µ)−wN(µ)‖µ, (3.17)

‖uNt(µ)−uNt
N (µ)‖X =

√
γe(µ)

αe(µ)
inf

wN∈X
Nt
N

‖uNt(µ)−wN(µ)‖X , (3.18)

and for the compliant case also

sNt(µ)−sNt
N (µ)=‖uNt(µ)−uNt

N (µ)‖2
µ = inf

wN∈X
Nt
N

‖uNt(µ)−wN(µ)‖2
µ, (3.19)

as well as
0< sNt(µ)−sNt

N (µ)≤γe(µ) inf
wN∈X

Nt
N

‖uNt(µ)−wN(µ)‖2
X . (3.20)

To prove (3.17), we first state, since our reduced basis space is conforming, XNt
N ⊂XNt ,

the Galerkin orthogonality: indicating as e(µ) :=uNt(µ)−uNt
N (µ)∈XNt , we have that

a(e(µ),v;µ)= a(uNt (µ)−uNt
N (µ),v;µ)=0, ∀v∈XNt

N . (3.21)

It then follows that for any wN =uNt
N +vN∈XNt

N (vN 6=0),

a(uNt(µ)−wN,uNt(µ)−wN ;µ)= a(uNt(µ)−uNt
N (µ)−vN ,uNt−uNt

N (µ)−vN ;µ)

= a(uNt(µ)−uNt
N (µ),uNt(µ)−uNt

N (µ);µ)−2a(uNt(µ)−uNt
N (µ),vN ;µ)+a(vN ,vN ;µ)

≥ a(uNt(µ)−uNt
N (µ),uNt(µ)−uNt

N (µ);µ) (3.22)

from (3.21), symmetry of a and coercivity (2.3). Inequality (3.17) in the energy norm
then follows directly. To obtain the result in the X-norm (3.18), we apply the energy-
norm bound (3.17) together with coercivity and continuity. The output result (3.19) is
found by invoking compliance and Galerkin orthogonality (considering a “compliant”

case, sNt(µ)−sNt
N (µ)= f (e(µ))= a(uNt (µ),e(µ);µ)= a(e(µ),e(µ);µ)) and then using again

the energy-norm bound (3.17). The result (3.20) follows from (3.19) and continuity.

The output approximation sNt
N (µ) thus converges to sNt(µ) as the square of the error

in the field variable uNt
N . We also note that sNt

N (µ) is a lower bound for sNt(µ).

3.6.2 A brief comment on a priori convergence theory

We briefly review some results about a priory convergence theory for problems with one
parameter (P=1), see for more details and proofs [23,24,37]. First, we define the param-
eter domain D=[µmin,µmax], and µr =µmax/µmin. We introduce then the non-hierarchical
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Lagrange equi-ln spaces WNt ln, 1≤N≤Nmax, given by WNt ln
N =span{uNt(µn

N), 1≤n≤N},
for the parameter points given by

µn
N =µminexp

(
n−1

N−1
lnµr

)
, 1≤n≤N≤Nmax. (3.23)

These spaces contain certain optimality properties as the a priori theory suggests. Denot-

ing by uNt ln
N the corresponding RB approximations, we obtain the following result: for

any N≥Ncrit and ∀µ∈D,

‖uNt(µ)−uNt ln
N (µ)‖µ

‖uNt(µ)‖µ
≤exp

(
−

N−1

Ncrit−1

)
, (3.24)

where Ncrit =1+[2elnµr]+. Here, [·]+ returns the smallest integer greater than or equal to
its real argument. This result leads to several important conclusions [37, 49].

First, the interpretation of RB approximation in a “parameter domain” analogue to FE
approximation in the “physical domain” has also a quantitative relevance. Second, while
FE convergence relies on spatial regularity, RB convergence is based on smoothness in
parameter and discontinuities in space may be allowed. Third, the RB convergence rate
upper bound (3.24) does not depend on Nt. The actual convergence rate however does
depend on the underlying FE approximation space, but this dependence vanishes as Nt

increases for any fixed N. The next conclusion is that the RB convergence rate depends
only relatively weakly on the extent of the parameter domain as the exponent in the
convergence rate decreases only logarithmically with µr. Last, we can confirm that the
RB approximation can converge very quickly (exponentially).

For higher parameter dimensions P > 1, there is unfortunately no any closed a pri-
ori convergence theory. Numerical examinations show however that there is a very
rapid convergence also in this case (the convergence rate with N appears to depend only
weakly on P) and that the RB method can in fact treat problems with “many” parameters.

4 A posteriori error estimation

In this section we deal with a posteriori error estimation in the reduced basis context for
affinely parametrized elliptic coercive PDEs by an offline-online procedure decomposi-
tion to guarantee an efficient and reliable computation. Concerning efficiency both the
offline and online computational procedure benefit from the application of error bounds.
As already mentioned before, the greedy algorithm can use a significantly larger training
sample with (at the same time) considerably decreased computational costs if a posteriori
error estimators are used instead of the real error. This leads to a better accuracy of the
reduced basis approximation which can be achieved with a smaller number N of basis
functions — this means that we have in turn computational savings in the online stage.
Another possibility to save online computational time is to use the error bounds directly
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in the online stage to find the smallest RB dimension N that allows us to achieve a cer-
tain prescribed accuracy. To sum up, the a posteriori error bounds are an essential tool to
control the error and hence to minimize the computational costs.

The second keyword — reliability — has a more direct connection to error bounds. As
the offline sampling procedures only work with a finite training set of parameter points,
the error for large parts of our parameter domainD remains uncharacterized. By the help
of an efficient a posteriori error bound, we can make up for this error quantification for
each new parameter value µ in the online stage and thus can make sure that constraints
are satisfied, feasibility (and safety/failure) conditions are verified and prognoses are
valid (in each case not only for the RB approximation but for the “truth” FE solution).
That means that we do not loose any confidence in the solution compared to the under-
lying FE solution while exploiting the rapid predictive power of the RB approximation.

In addition, the pre-asymptotic and essentially ad hoc or empirical nature of reduced
basis discretization together with the fact that the RB basis functions can not be directly
related to any spatial or temporal scales (which makes physical intuition of little value),
and the special needs of deployed real-time systems virtually demand rigorous a poste-
riori error bounds.

4.1 Preliminaries

We introduce two basic ingredients of our error bounds: the error residual relationship
and coercivity lower bounds. The residual r(v;µ)∈ (XNt )′ (the dual space to XNt) is de-
fined as

r(v;µ)≡ f (v;µ)−a(uNt
N (µ),v;µ), ∀v∈XNt . (4.1)

Together with

f (v;µ)= a(uNt ,v;µ), ∀v∈XNt , (4.2)

and the bilinearity of a, we can establish the error residual relationship for the error e(µ)=

uNt(µ)−uNt
N (µ)∈XNt :

a(e(µ),v;µ)= r(v;µ), ∀v∈XNt . (4.3)

We will also introduce the Riesz representation of r(v;µ): ê(µ)∈XNt [37] satisfies

(ê(µ),v)X = r(v;µ), ∀v∈XNt . (4.4)

This allows us to write (4.3) as

a(e(µ),v;µ)=(ê(µ),v)X , ∀v∈XNt , (4.5)

and it follows that the dual norm of the residual can be evaluated through the Riesz
representation:

‖r(·,µ)‖(XNt )′≡ sup
v∈XNt

r(v;µ)

‖v‖X
=‖ê(µ)‖X . (4.6)
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This shall prove to be important for the offline-online decomposition procedures. As a

second ingredient, we need a positive lower bound αNt
LB(µ) for αNt(µ):

0≤αNt
LB(µ)≤αNt(µ), ∀µ∈D, (4.7)

where the online computational time to evaluate µ→αNt
LB(µ) has to be independent of Nt

in order to fulfill the efficiency requirements on the error bounds articulated before.

4.2 Error bounds

We define our error estimator for the energy norm as:

∆en
N (µ)≡

‖ê(µ)‖X√
αNt

LB(µ)
. (4.8)

An equivalent estimator for the output error is defined as

∆s
N(µ)≡

‖ê(µ)‖2
X

αNt
LB(µ)

. (4.9)

We also introduce the effectivities associated to these error estimators in the energy norm,
analogue to (3.15), that help us to quantify rigor and sharpness and thus the quality of the
proposed estimator:

ηen
N (µ)≡

∆en
N

‖uNt(µ)−uNt
N (µ)‖µ

, (4.10)

and

ηs
N(µ)≡

∆s
N(µ)

sNt(µ)−sNt
N (µ)

. (4.11)

As already stated in (3.5), the effectivities should be as close as possible to unity for sharp-
ness, and ≥1 for rigor. We will now derive some results that state that the error bounds
introduced above indeed fulfill the requirements of rigor and sharpness [37]. If we choose
v = e(µ) in (4.5) it follows with the Cauchy-Schwarz inequality and the definition of the
coercivity constant (2.3) that

αNt(µ)‖e(µ)‖2
X≤ a(e(µ),e(µ);µ)≡‖e(µ)‖2

µ =(ê(µ),e(µ))X≤‖ê(µ)‖X‖e(µ)‖X . (4.12)

From inequalities in (4.12) together with the definition of the effectivity (4.8), we can con-
clude that ηen

N (µ)≥1, that means that our energy error bound is indeed a rigorous upper
bound for the error measured in the energy norm — feasibility and safety are guaran-
teed. A similar procedure, but now with v= ê(µ) in (4.5) gives us, with the definition of
the continuity constant (2.4) and again with the Cauchy-Schwarz inequality:

‖ê(µ)‖2
X≤‖ê(µ)‖µ‖e(µ)‖µ , ‖ê(µ)‖µ≤ (γe(µ))

1
2 ‖ê(µ)‖X . (4.13)
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Now the definition of the effectivity (4.10) together with the inequalities (4.13) lead to the
following result:

∆en
N (µ)=(αNt

LB(µ))−
1
2 ‖ê(µ)‖X≤ (γe(µ))

1
2 (αNt

LB(µ))−
1
2 ‖e(µ)‖µ

⇒ ηen
N (µ)≤

√
γe(µ)

αNt
LB(µ)

. (4.14)

This result states that the energy error bound overestimates the true error by at most√
(γe(µ)/αNt

LB(µ)), independent of N, and hence is stable with respect to RB refinement.

Stability with respect to FE refinements can be achieved if we can find a lower bound for

the coercivity constant αNt
LB(µ) which depends only on µ, or if αNt(µ)/αNt

LB(µ) is bounded
by a constant for most µ∈D. The effectivity is then bounded by [49]

ηen
N ≤

√
γe(µ)

αNt
LB(µ)

≤

√
αNt(µ)

αNt
LB(µ)

√
γe(µ)

αe(µ)
, ∀µ∈D. (4.15)

We will present the construction of such a lower bound for the coercivity constant in
Section 5. Similar results can be proven for the output error bound if we use equation

(3.19), which states that sNt(µ)−sNt
N (µ)=‖e(µ)‖2

µ and ∆s
N(µ)=(∆en

N (µ))2:

ηs
N(µ)=

(∆en
N (µ))2

‖e(µ)‖2
µ

=(ηen
N (µ))2. (4.16)

To sum up, for any N =1,··· ,Nmax, the effectivities satisfy

1≤ηen
N (µ)≤

√
γe(µ)

αNt
LB(µ)

, 1≤ηs
N(µ)≤

γe(µ)

αNt
LB(µ)

, ∀µ∈D. (4.17)

4.3 Offline-online procedure

The error bounds developed in the previous section are only useful if they allow for
an efficient offline-online computational procedure that leads to an online complexity
independent of Nt. The offline-online decomposition presented in the following is mainly

based on the dual norm of the residual. With the affine decomposition of uNt
N (µ) (2.5) and

the expansion of uNt
N (µ) in the N basis functions (3.7), the residual can be expressed as

r(v;µ)= f (v)−a(uNt
N (µ),v;µ)= f (v)−

N

∑
n=1

uNt
N n(µ)

Qa

∑
q=1

Θq(µ)aq(ζNt
n ,v). (4.18)

Together with (4.4) and linear superposition, this gives us

(ê(µ),v)X = f (v)−
Qa

∑
q=1

N

∑
n=1

Θq(µ)uNt
N n(µ)aq(ζNt

n ,v). (4.19)

https://doi.org/10.4208/cicp.100310.260710a Published online by Cambridge University Press

https://doi.org/10.4208/cicp.100310.260710a


18 G. Rozza / Commun. Comput. Phys., 9 (2011), pp. 1-48

It then follows that we may write ê(µ)∈XNt as

ê(µ)=F+
Qa

∑
q=1

N

∑
n=1

Θq(µ)uNt
N n(µ)A

q
n, (4.20)

where F ∈XNt and A
q
n∈XNt (called FE “pseudo”-solutions) satisfy

(F ,v)X = f (v), ∀v∈XNt , (4.21)

(A
q
n,v)X =−aq(ζNt

n ,v), ∀v∈XNt , 1≤n≤N, 1≤q≤Qa. (4.22)

We note that (4.21) and (4.22) are simple parameter-independent Poisson-like problems
and thus can be solved once in the offline stage. It then follows that:

‖ê(µ)‖2
X =

(
F+

Qa

∑
q=1

N

∑
n=1

Θq(µ)uNt
N n(µ)A

q
n,F+

Qa

∑
q′=1

N

∑
n′=1

Θq′(µ)uNt

N n′(µ)A
q′

n′

)

X

=(F ,F)X +
Qa

∑
q=1

N

∑
n=1

Θq(µ)uNt
N n(µ)

{
2(F ,A

q
n)X +

Qa

∑
q′=1

N

∑
n′=1

Θq′(µ)uNt

N n′(µ)(A
q
n,A

q′

n′)X

}
. (4.23)

This expression can be related to the requisite dual norm of the residual through (4.6).
It is the sum of products of parameter-dependent known functions and parameter inde-
pendent inner products, formed of more complicated but precomputable quantities. The
offline-online decomposition is thus clear.

In the offline stage we first solve (4.21), (4.22) for the parameter-independent FE
“pseudo”-solutions F and A

q
n, 1≤ n≤ Nmax, 1≤ q≤Qa and form/store the parameter-

independent inner products (F ,F)X , (F ,A
q
n)X, (A

q
n,A

q
n)X , 1≤n≤Nmax, 1≤ q≤Qa. The

offline operation count depends then on Nmax, Qa and Nt.
In the online stage — performed for each new value of µ — we simply evaluate the

sum (4.23) in terms of the Θq(µ), 1≤q≤Qa and uNt
N n(µ), 1≤n≤N (already computed for

the output evaluation) and the precalculated and stored (parameter-independent) (·,·)X

inner products. The online operation count, and hence the marginal and asymptotic
average cost, is onlyO(Q2

aN2), and thus the crucial point — the independence of Nt — is
again achieved. We further note that, unless Qa is quite large, the online cost associated
with the calculation of the residual dual norm and the online cost associated with the
calculation of sNt

N (µ) are comparable. Again, the hierarchical properties of our reduced
basis approximation spaces allow us to simply extract the necessary quantities for any
N∈{1,··· ,Nmax} from the corresponding quantities for N = Nmax.

4.4 Upper and lower bounds for the outputs

The output error estimators introduced in the previous sections for the compliant case

can serve us to compute reliable upper and lower bounds sNt +
N (µ) and sNt−

N (µ) for the
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“truth” output sNt(µ) for each new value for µ based on the RB output sNt
N (µ), such that

sNt +
N (µ)≥ sNt(µ)≥ sNt−

N (µ), ∀µ∈D, ∀N∈ [1,··· ,Nmax]. (4.24)

We establish these limits as

sNt−
N (µ)= sNt

N (µ), (4.25)

sNt+
N (µ)= sNt

N (µ)+∆s
N(µ). (4.26)

To demonstrate that equation (4.25) is indeed valid, we note that in the compliant case

sNt(µ)−sNt
N (µ)= f (uNt(µ)−uNt

N (µ))= a(uNt(µ),uNt(µ)−uNt
N (µ);µ)

= a(uNt(µ)−uNt
N (µ),uNt(µ)−uNt

N (µ);µ)≥0.
(4.27)

This results of the definition of the symmetry of a, Galerkin orthogonality (3.21) and
coercivity. This important result (which has also been stated in Section 3.6.1) confirms
that our reduced basis approximation is a lower bound for the FE solution. The validity
of the upper bound (4.26) results directly from (4.17):

ηs
N(µ)≥1 ⇒ ∆s

N(µ)≥ sNt(µ)−sNt
N (µ) ⇒ sNt+

N (µ)= sNt
N (µ)+∆s

N(µ)≥ sNt(µ).

These upper and lower bounds for the underlying “truth” FE output play an important
role for example in optimization problems. They assure that possible constraints are not
only met for the reduced basis output, but also for the “truth” output. In many other
applications this property has a great importance.

5 Coercivity lower bounds

We review the efficient computation of lower bounds for the coercivity constant (2.3)
whose discrete version is a generalized eigenvalue problem. We will recall here the Suc-
cessive Constraint Method (SCM) described in [13, 49]. This algorithm has been devel-
oped for the special requirements of the reduced basis method and thus features an effi-
cient offline-online strategy which makes the online calculation complexity independent
of Nt — a fundamental requisite.

5.1 Coercive problems: The successive constraint method

Even if we still consider a symmetric, continuous and coercive bilinear form a, which is
affine in the parameter, the following results can be readily extended to non-symmetric
operators [49] and general non-coercive operators [37]. We introduce an objective func-
tion Jobj :D×R

Qa→R given by

Jobj(µ;y)=
Qa

∑
q=1

Θq(µ)yq, with y=(y1,··· ,yQa). (5.1)
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Next, the set Y∈R
Qa is defined by

Y =

{
y∈R

Qa

∣∣∣∃ wy∈XNt s.t. yq =
aq(wy,wy)

‖wy‖2
X

, 1≤q≤Qa

}
. (5.2)

The affine parameter decomposition (2.5) allows us now to express our FE coercivity
constant (defined in 2.3) as

αNt(µ)= inf
y∈Y

Jobj(µ;y). (5.3)

The next step is to introduce a “continuity constraint” box

B=
Qa

∏
q=1

[
inf

w∈XNt

aq(w,w)

‖w‖2
X

, sup
w∈XNt

aq(w,w)

‖w‖2
X

]
(5.4)

which, from our continuity hypothesis, is bounded. The last ingredient is a “coercivity

constraint” sample, CJ ={µ1
SCM∈D,··· ,µJ

SCM∈D}; C
M,µ
J denotes the subset of CJ with the

M(≥1) points closest (in the Euclidian norm) to a given µ∈D. We make the convention

C
M,µ
J =CJ if M> J.

5.1.1 Lower bound

Our strategy is to define a set YLB(µ;CJ ,M) which is relatively easy/cheap to compute
and which can be used as surrogate for Y in (5.3). For given CJ ∈D and M∈N, this set
must contain the original set Y, that means

Y⊂YLB(µ;CJ ,M), ∀µ∈D. (5.5)

If we choose

YLB(µ;CJ,M)≡

{
y∈R

Qa

∣∣∣y∈B,
Qa

∑
q=1

Θq(µ′)yq≥αNt(µ′), ∀µ′∈C
M,µ
J

}
(5.6)

as our “surrogate set”, we can prove that (5.5) is indeed fulfilled. In fact, from the defini-
tion of Y (5.2) it follows that for any y∈Y, ∃ wy∈XNt such that

yq =
aq(wy,wy)

‖wy‖2
X

, 1≤q≤Qa.

Then, since

inf
w∈XNt

aq(w,w)

‖w‖2
X

≤
aq(wy,wy)

‖wy‖2
X

≤ sup
w∈XNt

aq(w,w)

‖w‖2
X

, (5.7)

and also
Qa

∑
q=1

Θq(µ)
aq(wy,wy)

‖wy‖2
X

=
a(wy,wy;µ)

‖wy‖2
X

≥αNt(µ), ∀µ∈D, (5.8)
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we can deduce that every member y of Y is also a member of YNt
LB(µ;CJ ,M), which con-

cludes the proof. We can now define our lower bound as

αNt
LB(µ;CJ,M)= min

y∈YLB(µ;CJ,M)
Jobj(µ;y). (5.9)

This definition is indeed a correct choice, as we can show with (5.5), that for given CJ⊂D
and M∈N

αNt
LB(µ)= min

y∈YLB(µ;CJ,M)

Jobj(µ;y)≤min
y∈Y

Jobj(µ;y)=αNt
LB(µ), ∀µ∈D.

This means that the necessary requirement for a lower bound, αNt
LB(µ)≤ αNt(µ), ∀µ∈D,

is fulfilled. The computation of our lower bound (5.9) is in fact a linear optimization
problem (or Linear Program (LP)) [49]. It contains Qa design variables and 2Qa+M in-
equality constraints. It is important to note that again, this approach allows us to evaluate

µ→αNt
LB(µ) with a computational cost independent of Nt, if B and the set {αNt(µ′)|µ′∈CJ}

are given. The (offline) computation of these quantities however is Nt-dependent. We
will discuss the offline-online decomposition and computational costs in more detail in
Section 5.1.4.

5.1.2 Upper bound

Although it is not directly necessary for our error bounds, we may also compute an upper
bound for the coercivity constant. This will serve us for the efficient construction of a
good coercivity constraint sample CJ . Similar to the approach for the lower bound, we
introduce an “upper bound” set YUB(µ;CJ ,M)∈R

Qa as

YLB(µ;CJ,M)=
{

y∗(µ′) | µ′∈C
M,µ
J

}
, (5.10)

where y∗(µ)=arginfy∈Y Jobj(µ;y). Our upper bound is then defined by

αNt
UB(µ;CJ,M)= min

y∈YLB(µ;CJ ,M)
Jobj(µ;y).

As we can see directly from (5.10), YUB(µ;CJ ,M)⊂Y. It then follows that, for given CJ ,

M∈N :, αNt
UB(µ;CJ,M)≥αNt(µ),∀µ∈D. That means our choice for αNt

UB(µ) is indeed suited
as upper bound for the coercivity constant. Again we can state that the operation count

for the online evaluation µ→ αNt
UB(µ) is independent of Nt (if the set {y∗(µ′)|µ′ ∈CJ} is

already given).

5.1.3 Selection of CJ

The selection process for CJ will be based on a greedy algorithm somewhat similar to
the greedy selection process for the basis functions described in Section 3.5. We shall
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again introduce a “train” sample Ξtrain,SCM = {µ1
train,SCM,··· ,µ

ntrain,SCM

train,SCM} ⊂ D of ntrain,SCM

parameter points and a tolerance ǫSCM∈ [0,1] for the error in the lower bound prediction.
We start with J=1 and C1={µSCM} chosen arbitrary. The greedy algorithm is then given
by

While αJ
tol = max

µ∈Ξtrain,SCM

[
αNt

UB(µ;CJ ,M)−αNt
LB(µ;CJ ,M)

αNt
UB(µ;CJ,M)

]
>ǫSCM :

µJ+1
SCM =arg max

µ∈Ξtrain,SCM

[
αNt

UB(µ;CJ ,M)−αNt
LB(µ;CJ ,M)

αNt
UB(µ;CJ,M)

]
;

CJ+1 =CJ∪µJ+1
SCM; J← J+1;

end.

Set Jmax = J.

(5.11)

We choose αUB(µ;CJ ,M) in the denominator of αJ
tol, as this value is strictly positive, con-

trary to αLB(µ;CJ,M) which may be negative or zero.

Indeed, the strategy is basically the same as in the greedy algorithm in Section 3.5.
In each iteration of the greedy procedure, we add to our “coercivity constraint” sample
that point in D for which the current lower bound approximation is least accurate. The
true error is thereby replaced by a (computationally cheaper) surrogate which makes
it possible to perform a more efficient and more exhaustive search. Furthermore, it is
important to note that our choice of stopping criterion allows us to bound

αNt(µ)

αNt
LB(µ;CJmax ,M)

=
αNt(µ)

αNt
UB(µ;CJmax ,M)

·
αNt

UB(µ;CJmax ,M)

αNt
LB(µ;CJmax ,M)

≤
αNt(µ)

αNt
UB(µ;CJmax)

1

1−ǫSCM
≤

1

1−ǫSCM
, ∀µ∈Ξtrain,SCM.

This result can be inserted in (4.15) to obtain the upper bounds for the effectivities which
are now independent of N and Nt. Usually, we set ǫSCM = 0.75, which is rather crude.
Nevertheless this choice has relatively little detrimental effect on our error bounds.

5.1.4 Offline-online procedure

Finally, we precise the offline-online decomposition for the computation of the coercivity
lower bounds and give an overview of the operation counts involved.

In the offline stage, we first have to build B and the set {αNt(µ′)|µ′ ∈CJmax}. This re-
sults in 2Qa resp. Jmax eigenproblems over XNt . Second, we have to subsequently form
the set {y∗(µ′)|µ′∈CJmax} (JmaxQa inner products over XNt). The last offline step is the so-
lution of the ntrain,SCM Jmax linear optimization problems of “size” 2Qa+M to perform the
“arg max”. The offline computational cost thus roughly scales as O(Nt ·(2Qa+ Jmax))+
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O(NtQa Jmax)+O(ntrain,SCM JmaxQaM). As already mentioned before, the offline compu-
tational costs of course depend on Nt, but Nt and ntrain,SCM do not occur as a product in
any of the terms — there is no term O(Ntntrain,SCM). This means that we can choose both
Nt and ntrain,SCM very large.

For each evaluation µ→ αNt
LB(µ;CJ,M) in the online stage, we first perform a sort of

the Jmax points in CJmax to determine the set C
M,µ
Jmax

. The operation count here is at most

O(MJmax). Then we must perform the (M+1)Qa evaluations µ′→ θq(µ′), 1≤ q≤ Qa,
which results in an operation count of O((M+1)Qa). The last step is the extraction of
the selected M members of the pre-computed set {αNt(µ′)|µ′∈CJ} and the solution of the

resulting linear optimization problem to obtain αNt
LB(µ;CJ ,M). The fundamental point is

again that the online evaluation count is independent of Nt and the rapid evaluation of
the error bounds is supported by the SCM procedure.

6 Affine geometric parametric variations

In the following, the fundamentals for affine geometric variations in the reduced basis
context in two-dimensional domain will be presented. A more detailed introduction with
many examples for different kinds of geometries can be found in [49].

6.1 Some preconditions

The RB recipe requires a parameter independent domain Ω as the snapshots we use for
the construction of our basis functions have to be defined relative to the same spatial con-
figuration. This difficulty can be resolved by interpreting Ω as parameter independent
reference domain which is related to the parameter-dependent “actual” or “original” do-
main of interest Ωo(µ) via an affine mapping Taff(x;µ). We can then introduce a domain
decomposition of Ωo(µ),

Ωo(µ)=
Kdom⋃

k=1

Ωk
o(µ), (6.1)

which consists of mutually nonoverlapping open subdomains Ωk
o(µ), 1≤k≤Kdom, Ωk

o(µ)∩
Ωk′

o (µ)=∅, 1≤k<k′≤Kdom. Our reference domain is then simply defined for a reference
parameter value µref∈D as Ω≡Ωo(µref); in the following we will identify Ωk =Ωk

o(µref),
1≤k≤Kdom for brevity. The “Kdom” domain decomposition of Ω shall be denoted our “RB
triangulation”; it will play an important role in the generation of our affine representation
(2.5). The very fine Nt FE mesh will be a subtriangulation of the RB triangulation. Both
the FE and RB approximations are defined over the reference domain. The choice of µref

has an influence on the accuracy of the underlying FE approximation as it controls the
distortion of the mesh for the actual domains. As mentioned before, the original domain
(resp. the original subdomains) and the reference domain (resp. the reference subdo-
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mains) must be connectable via an affine mapping Taff(·;µ) : Ωk→Ωk
o(µ), 1≤ k≤Kdom:

Ωk
o(µ)=Taff,k(Ωk;µ), 1≤ k≤Kdom; (6.2)

the affine mappings must be individually bijective and collectively continuous, that means
they have to fulfill the following interface condition:

Taff,k(x;µ)=Taff,k′(x;µ), ∀x∈Ωk∩Ωk′ , 1≤ k< k′≤Kdom. (6.3)

For reasons of computational efficiency it is important to note that Kdom is defined with
respect to the exact problem and therefore does not depend on Nt. The concrete affine
transformations are then given for 1≤ k≤Kdom, for any µ∈D and for any x∈Ωk as

Taff,k
i (x,µ)=Caff,i

i (µ)+
d

∑
j=1

Gaff,k
ij (µ)xj, 1≤ i≤d, (6.4)

for given translation vectors Caff,k :D→R
d and linear transformation matrices Gaff,i :D→

R
d×d. The linear transformation matrices can effect rotation, scaling and/or shear and

have to be invertible. The associated Jacobians can be defined as Jaff,k(µ)=|det(Gaff,k(µ))|,
1≤ k≤Kdom; for invertible mappings they are strictly positive. We note that the interface
condition (6.3) allows us to interpret the set of local mappings as a global bijective piece-
wise affine transformation Taff(·;µ) : Ω→Ωo(µ). This global mapping is then given for
any µ∈D by

Taff(x;µ)=Taff,k(x;µ), k= min
k′∈{1,···,Kdom}|x∈Ωk′

k′. (6.5)

6.2 Affine mappings for a single subdomain

Let us focus on the technology to define our affine mappings and present the basic build-
ing blocks of our RB triangulation that allow well-defined affine transformations. As
for these purposes it is sufficient to concentrate on a single subdomain, we shall sup-
press the subdomain superscript for clarity of exposition. The matrices Caff(µ)∈R

d and
Gaff(µ)∈R

d×d in (6.4) are now called “mapping coefficients”.
We will now recall some of the properties of affine transformations in two dimensions.

First, straight lines are mapped to straight lines, parallelism is preserved and parallel
lines of equal length are also mapped on parallel lines of equal length. Consequently, a
parallelogram is mapped to a parallelogram and hence a triangle maps to a triangle. Sec-
ond, an affine transformation maps ellipses to ellipses. These features will be exploited
in the following for the development of a domain decomposition technique that is suit-
able for the RB context. The affine mapping contains in the two-dimensional (d=2) case
d(d+1)=6 degrees of freedom, the mapping coefficients. It is therefore sufficient, for any
given µ∈D, to consider the relationship between three non-colinear pre-image points in
Ω, (z1,z2,z3) and three parametrized image nodes in Ωo(µ), (z1

o(µ),z2
o(µ),z3

o(µ)). Note
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that every point consists of two components (zi
1,zi

2), 1≤ i≤3, resp. (zi
o1,zi

o2), 1≤ i≤3, and
therefore the application of (6.4) to these points constitutes a system of six independent
equations to determine the six mapping coefficients:

zm
oi(µ)=Caff

i (µ)+
2

∑
j=1

Gaff
ij (µ)zm

j , 1≤ i≤2, 1≤m≤3; (6.6)

The assumption that the affine transformation is bijective thereby ensures that the image
nodes are perforce also non-colinear (if the pre-image nodes are non-colinear) and hence
the equations are perforce linear independent.

Our RB triangulation shall be built on (standard) triangles, elliptical triangles and
general “curvy” triangles. They admit symbolic and numerical automation and are there-
fore the building blocks of choice in the rbMIT software package [44] that we use for the
reduced basis computations in this work. This software, the techniques applied and its
usage are briefly presented in Section 9. The three basic building block types are dis-
cussed in detail below, with a special emphasis on elliptical triangles.

6.2.1 Standard triangles

In the case of a standard triangle subdomain the three vertices of the triangle in the refer-
ence domain shall serve as pre-image nodes while the three vertices of the triangle in the
actual (µ-dependent) domain shall serve as image nodes. In this case, our three points
uniquely define not only the transformation but also the reference domain and parame-
trized domains. We recall that the pre-image nodes are obtained as the image nodes for
a particular value of the parameter µref. We can then readily establish the system of six
linear equations to determine the six unknown mapping coefficients. In this way, we
can construct an affine transformation from any reference triangle in R

2 onto any desired
triangle in R

2. We note that it is not mandatory to choose the vertices of the triangles
as our nodes defining the transformation, other characteristic points e.g. the barycentric
coordinates of the FE context are also possible.

6.2.2 Elliptical triangles

The class of elliptical triangles covers a much greater range of possible geometries and
their formulation is also necessary for the more general case dealing with curvy triangles.
We can distinguish two different kinds of elliptic triangles: “inwards” and “outwards”
triangles. Both types are depicted in Fig. 2. In both cases, the elliptical triangle Ωo(µ)

is defined by the three vertices z1
o(µ), z2

o(µ), z3
o(µ), the two straight lines z1

o(µ)z2
o(µ) and

z1
o(µ)z3

o(µ) as well as the elliptical arc z2
o(µ)z3

o(µ)
arc

.

We shall now precise the definition and description of the elliptical arc and explain the
constraints that must be met by the location of the third point z1

o(µ) to ensure “proper”
triangles and a continuous and well-defined global mapping in the multidomain context.
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Figure 2: (a) “Inwards” elliptical triangle and (b) “outwards” elliptical triangle.

O(µ) +Qrot(µ)S(µ)

(

cos t
sin t

)

ρ2
(µ)

ρ1
(µ)

φ(µ)O(µ)

xo2

xo1

Figure 3: Definition of a point on a prescribed parametrized ellipse.

First, the description of the elliptical arc shall be derived from the definition of a pa-
rametrized ellipse as depicted in Fig. 3. The ellipse is described implicitly by

(xo−O(µ))TQrot(µ)S−2(µ)Qrot(µ)T(xo−O(µ))=1. (6.7)

A particular point on this ellipse is then given by

xo≡

(
xo1

xo2

)
=O(µ)+Qrot(µ)S(µ)

(
cost
sint

)
(6.8)

for given t∈R. As we can see in Fig. 3, O(µ) : D→R
2 is the center of the ellipse, ρ1(µ) :

D→R+ and ρ2 : D→R+ define the length of the semi-axes of the ellipse and φ(µ) : D→R

is the angle of inclination. With these quantities, the scaling matrix S(µ) and the rotation
matrix Qrot(µ) can be defined:

S(µ)≡

(
ρ1(µ) 0

0 ρ2(µ)

)
, Qrot(µ)=

(
cosφ(µ) −sinφ(µ)
sinφ(µ) cosφ(µ)

)
.

The description of the elliptical arc with these means is then as follows:

z2
o(µ)z3

o(µ)
arc

=

{
O(µ)+Qrot(µ)S(µ)

(
cost
sint

)∣∣∣∣t2≤ t≤ t3

}
. (6.9)
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with t2∈R and t3∈R chosen such that the points z2
o(µ) and z3

o(µ) are given as the end-
points of the elliptical arc for t= t2 and t= t3:

zm
o (µ)=O(µ)+Qrot(µ)S(µ)

(
costm

sintm

)
, m=2,3. (6.10)

In addition, we have to make sure that 0≤ t3−t2 <π. It remains to specify the location of
the third point z1

o(µ). For elliptical triangles, this location has to be chosen in a way that
ensures that the affine transformation generates the desired elliptical arc (6.9). First, this
ensures a continuous global mapping; second, to obtain well-defined elliptical triangles
and consequently a well defined domain in the multidomain context, several internal
angle conditions have to be met by the choice for z1

o(µ): 0 < θ∗< π, ∀θ∗ ∈ {θ12,θ23,θ31}.
The first requirement can be fulfilled by the expression of the three corner points as

zm
o (µ)=O(µ)+ωmQrot(µ)S(µ)

(
costm

sintm

)
, 1≤m≤3, (6.11)

for given ω1 =ω∈R, ω2 =ω3 =1 and t1∈ [t2,t3]. Consequently, the pre-image points are
given as

zm
o (µref)=O(µref)+ωmQrot(µref)S(µref)

(
costm

sintm

)
, 1≤m≤3. (6.12)

From these representations we can identify our affine mapping as

zm
o (µ)=Caff(µ)+Gaff(µ)zm

=(O(µ)−Qrot(µ)S(µ)S(µref)
−1Qrot(µref)

TO(µref))

+(Qrot(µ)S(µ)S(µref)
−1Qrot(µref)

T)zm. (6.13)

The second requirement — the internal angle conditions — is illustrated in Fig. 4 [49].
In the inwards case, a necessary and sufficient condition to ensure the internal angle
conditions 0< θ∗ < π, ∀ θ∗∈{θ12, θ23, θ31} is given for an inwards elliptical triangle by
z1

o(µ)∈Rin(µ), where

Rin(µ)=
{

z1
o(µ)∈R

2
∣∣(z1

o(µ)−z2
o(µ))Tn2(µ)<0,

(z1
o(µ)−z3

o(µ)))Tn3(µ)<0,(z1
o(µ)−z2,3

o (µ))Tn2,3(µ)<0
}

, (6.14)

and for the outwards elliptical triangle by z1
o(µ)∈Rout(µ), where

Rout(µ)=
{

z1
o(µ)∈R

2
∣∣(z1

o(µ)−z2
o(µ))Tn2(µ)>0,(z1

o(µ)−z3
o(µ))Tn3(µ)>0

}
. (6.15)

Here n2(µ) and n3(µ) are the outwards-facing normals to the ellipse at z2(µ) and z3(µ)
respectively, z2,3

o (µ)= 1
2(z2

o(µ)+z3
o(µ)) and n2,3(µ) is the “outwards-facing” normal to the

line segment z2
o(µ)z3

o(µ) at z2,3
o (µ).
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Figure 4: Regions in which z1
o(µ) must reside for an elliptical triangle in the inwards case (Rin(µ)) and the

outwards case (Rout(µ)).

We note here that for elliptical triangles it is possible to derive explicit conditions on
ω such that the internal angle conditions (6.14) and (6.15) are satisfied, for details see [49].
These conditions are independent of µ. An important feature of the elliptical triangles is
that they are consistent under refinement, that means that if we split an elliptical triangle
for which the internal angle conditions (6.14) and (6.15) are fulfilled, the resulting two
elliptical triangles also satisfy the internal angle conditions. To enlarge the possible range
of geometries even more, the elliptical triangles are extended to “curvy” triangles. This
is done by replacing (cost, sint)T in (6.9) with a general parametrization (g1(t), g2(t))T.

6.2.3 Piecewise-affine mappings for multiple subdomains

To treat more complex geometries, it is necessary to allow our domain to be built of
several (standard, elliptical or curvy) triangles, dealing with a piecewise affine mapping
based on this domain decomposition. We can thus consider geometrical domains and re-
gions for which the boundary and internal interfaces can be represented either by straight
edges or by elliptical triangles as presented in the numerical tests.

The multi-domain mapping process is then performed in three steps. First, the RB
triangulation is generated on the reference domain Ω together with the associated refer-
ence subdomains. The RB triangulation has to be compatible with the mapping continu-
ity condition (6.3) and all elliptical and curvy subtriangles have to be well-defined and to
fulfill the internal angle conditions (6.14) and (6.15). The procedure applied to generate
this RB triangulation is implemented in the rbMIT software package [44]. In the second
step, the necessary parameter-dependent affine mappings for each subdomain are con-
structed, as described in the previous section. In the last step we have to translate the
parametric mappings obtained for each subdomain into PDE coefficients.
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6.3 Bilinear forms for affine geometric parametric variations

In this section we deal with the use of the affine mappings derived in the previous
sections to get an affine representation (2.5) of the problem (which has a parameter-
dependent geometry) on a parameter-independent reference geometry. We will first ad-
dress the transformation of the formulation on the original domain to the formulation on
the reference domain and then explain how the affine representation can be derived.

If we consider a problem analogue to (2.1) with a parameter-dependent domain Ωo(µ)
which realizes the affine geometry precondition as described in the previous section, this
problem can be written in general form as: given µ∈D, evaluate

se
o(µ)= lo(ue

o(µ)), (6.16)

where ue
o(µ)∈Xe

o(µ) satisfies

ao(ue
o(µ),v;µ)= fo(v), ∀v∈Xe

o(µ). (6.17)

For simplicity we assume that we have homogeneous Dirichlet boundary conditions over
the entire boundary, which corresponds to Xe

o(µ)= H1
0(Ωo(µ)). A sufficient condition on

ao(·,·;µ) : H1(Ωo(µ))×H1(Ωo(µ))→R that ensures an affine expansion of the bilinear
form (if the affine geometry precondition is fulfilled) is fulfilled if we have

ao(w,v;µ)=
Kdom

∑
k=1

∫

Ωk
o(µ)

[
∂w

∂xo1

∂w
∂xo2

]
Ko,k(µ)

[
∂v

∂xo1
∂v

∂xo2

]
. (6.18)

The matrices Ko,k :D→R
2×2, 1≤ k≤Kdom are in the symmetric case symmetric positive

definite matrices. A similar requirement may be posed on fo(·;µ) : H1(Ωo(µ))→R: we
require that it can be expressed as

fo(v;µ)=
Kdom

∑
k=1

∫

Ωk
o(µ)

Fo,k(µ)v, (6.19)

with Fo,k :D→R, 1≤ k≤Kdom. To transform this formulation on the reference domain
to recover (2.1), we first identify se(µ)= se

o(µ)◦Taff(·;µ) and ue(µ)= ue
o(µ)◦Taff(·;µ). We

then recall that

∂

∂xoi
=

∂xj

∂xoi

∂

∂xj
=(Gaff,k(µ))−1

1i

∂

∂x1
+(Gaff,k(µ))−1

2i

∂

∂x2
, i=1,2, (6.20)

in Ωk
o(µ) and dΩk

o(µ) = Jaff,k(µ)dΩ. It then follows that the transformed bilinear form a
can be expressed as

a(w,v;µ)=
Kdom

∑
k=1

∫

Ωk

[
∂w
∂x1

∂w
∂x2

]
Kk(µ)

[
∂v
∂x1
∂v
∂x2

]
. (6.21)
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The Kk :D→R
2×2 are given by

Kk(µ)= Jaff,k(µ)Gk(µ)Ko,k(µ)(Gk(µ))T, 1≤ k≤Kdom, (6.22)

while the Gk :D→R
2×2 are given by

Gk(µ)=Gaff,k(µ)−1, 1≤ k≤Kdom.

The transformed linear form can be expressed similarly as

f (v;µ)=
Kdom

∑
k=1

∫

Ωk

Fk(µ)v,

where the Fk :D→R are given by

Fk(µ)= Jaff,k(µ)Fo,k(µ), 1≤ k≤Kdom.

In general, the Kk(µ) and Fk(µ) will be different for each subdomain Ωk. The affine
formulation (6.21) can then be derived by simply expanding this expression (in terms of
the subdomains Ωk and the different entries of Kk

ij, 1≤ i, j≤2,1≤k≤Kdom). This results in

a(w,v;µ)=K1
11(µ)

∫

Ω1

∂w

∂x1

∂v

∂x1
+K1

12(µ)
∫

Ω1

∂w

∂x1

∂v

∂x2
+··· . (6.23)

The affine representation is now clear: for each term in (6.23) the (parameter-independent)
integral represents aq(w,v), while the (parameter-dependent) prefactor represents Θq(µ).
The linear form f admits a similar treatment. The affine representation obtained by this
process contains at most Qa =3Kdom terms. In some special cases the number of nonzero
terms in (6.23) is even reduced to Qa =2Kdom, like dealing with potential flows (without
mixed derivatives in the Laplacian). In other situations, many terms can be economized if
linear dependent entries are assembled together. Another possibility to reduce the num-
ber of terms Qa is an intelligent choice of user-provided initial control points and edges
for the RB triangulation. This can help to exploit symmetry effects and isolate geometric
variation. We will come back to this issue in the practical part of this work.

7 Potential flows

We now consider the RB approximation and error bounds together with the affine ge-
ometry decomposition applied to potential flows which can be considered as one of the
simplest two- or three-dimensional flow models describing laminar non-viscous and ir-
rotational flows [5, 36, 51]. This case is of interest in the RB methodology development
because we are going to consider outputs and error bounds related with the gradient of
the state solution and not just related with the solution itself.
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We will first precise the definition and properties of potential flows. We will then
reformulate the necessary equations in order to obtain a problem equivalent to (2.1). As
the special structure of potential flows allows us to solve a scalar equation for the so-
called potential function φ: instead of a vectorial system for the velocity components and
the pressure, we also develop a new set of special a posteriori error bounds for velocity
and pressure based on the original error bounds for the scalar variable whose gradient
gives the irrotational velocity fields:

u=−∇φ,

where u = (u1,u2)T is the velocity and its components in x1 and x2 direction. Together
with the continuity equation ∇·u =0, we obtain the governing Laplace equation for the
potential:

−∆φ=0, in Ωo(µ). (7.1)

The pressure p at an arbitrary point in the domain Ωo(µ) can then subsequently be ob-
tained by Bernoulli’s equation:

p+
1

2
ρ|u|2 = pin+

1

2
ρ|uin|

2, in Ωo(µ),

and the pressure coefficient cp can be defined as

cp =
p−pin

1
2 ρ|uin|2

=1−

(
|u|2

|uin|2

)
,

where pin is the pressure of the undisturbed flow on the inflow boundary and uin is the
velocity vector of the undisturbed flow on the inflow boundary. Gravity effects are not
included in this formulation, but could easily be added to the equation. Furthermore, a
time dependency could be introduced in the pressure calculation by using a time depen-
dent formulation of Bernoulli’s equation, see e.g. [51]. Boundary conditions are given by
homogeneous Neumann conditions

∂φ

∂n
=0, on Γw(µ) (7.2)

to describe non-penetration on walls Γw(µ), inhomogeneous Neumann conditions

∂φ

∂n
=φin, on Γin(µ) (7.3)

where φin =uin ·n in order to impose the velocity uin on the inflow boundary Γin(µ) and
by (homogeneous or inhomogeneous) Dirichlet conditions

φ=φref, on Γout(µ) (7.4)

to prescribe the level of the potential, for example on the outflow boundary Γout(µ).
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The weak formulation of the governing equations on the original domain Ωo(µ) can
be found by standard integration by parts and reads as follows: find φ∈Xe≡H1

0,Γout
s.t.

a(φ,v;µ)= f (v;µ), ∀v∈Xe, (7.5)

with

a(φ,v;µ)=
∫

Ωo(µ)
∇φ·∇v, f (v;µ)=

∫

Γin(µ)
φinv−

∫

Ωo(µ)
∇Rφref ·∇v, (7.6)

where Rφref ∈ H1(Ω) is a lift function s.t. Rφref|Γout = φref. From the formulation (7.5)
on the parameter dependent domain Ωo(µ), the formulation on the reference domain Ω

can be derived with the methods introduced in Section 6. The main steps are the affine
decomposition of the original domain, the identification of the affine mappings and in
the end the “translation” of the affine mapping coefficients to the formulation on the
reference domain (2.1).

8 Error bounds for velocity and pressure

The a posteriori error bounds developed in Section 4 can be used to bound the error in
the solution for the scalar potential function. To get an error bound for the error in ve-
locity and pressure, we introduce some new considerations. This development allows to
consider error bounds depending directly on the gradient of the state solution, enriching
the variety of certified outputs we may consider.

We start with a given finite element triangulation of the domain (TNt) with triangles
TNt . The kinetic energy computed on a triangle TNt can then be represented by

K
TNt
Nt

=
1

TNt

∫

TNt

|∇φNt |2, in TNt ;

the potential function φ can be expected to be smooth enough to give ∇φ∈C0(Ω) and
∇φ can be interpreted pointwise; we may assume that φ∈C1(Ω), while φNt ∈XNt is the

field solution of the FE “truth” approximation (2.2). The RB solution φNt
N ∈WNt

N ⊂ XNt

then fulfills a(φNt
N ,v) = l(v), ∀v∈WNt

N . For simplicity, we omit the µ-dependency of the
bilinear/linear forms and the error bounds in this section. Recall that the error between
the reduced basis solution and the FE approximation eNt

N is defined as eNt
N =φNt−φNt

N . With
∆en

N being our usual energy error bound (4.8), we note that

a(eNt
N ,eNt

N )=
∫

Ω
|∇eNt

N |
2≤ (∆en

N )2, (8.1)

follows from the inequalities in (4.12). The RB approximation of K
TNt
Nt

is given as

K
TNt
N =

1

TNt

∫

TNt

|∇φNt
N |

2, in TNt . (8.2)
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We next introduce

INt
N ≡

(∫

Ω
|∇φNt

N |
2

)1/2

. (8.3)

Our aim is now to develop an error bound for the kinetic energy K
TNt
N on TNt . On a single

triangle, we note that

K
TNt
Nt
−K

TNt
N =

∣∣∣∣∣
1

TNt

∫

TNt

|∇φNt |2−|∇φNt
N |

2

∣∣∣∣∣=
1

TNt

∫

TNt

∇(φNt−φNt
N )·∇(φNt +φNt

N )

=
1

TNt

∫

TNt

(
∇(φNt−φNt

N )·∇(φNt−φNt
N )+2∇(φNt−φNt

N )·∇φNt
N

)

≤
1

TNt



∫

TNt

|∇(eNt
N )|2+2

(∫

TNt

|∇(eNt
N )|2

)1/2(∫

TNt

|∇φNt
N |

2

)1/2

. (8.4)

Hence all over the domain we compute the following quantity, giving the error on kinetic
energy weighted with the area of each triangle of the mesh:

∑
TNt
∈TNt

|TNt ||K
TNt
Nt
−K

TNt
N |

≤ ∑
TNt
∈TNt

∫

TNt

∇(φNt−φNt
N )·∇(φNt−φNt

N )+2 ∑
TNt
∈TNt

∫

TNt

∇(φNt−φNt
N )·∇φNt

N

≤ ∑
TNt
∈TNt

∫

TNt

|∇(eNt
N )|2+2 ∑

TNt
∈TNt

(∫

TNt

|∇(eNt
N )|2

)1/2(∫

TNt

|∇φNt
N |

2

)1/2

≤
∫

Ω
|∇(eNt

N )|2+
1

σ ∑
TNt
∈TNt

∫

TNt

|∇(eNt
N )|2+σ ∑

TNt
∈TNt

∫

TNt

|∇φNt
N |

2

≤

(
1+

1

σ

)
(∆en

N )2+σ(INt
N )2≤ (∆en

N )2+2INt
N ∆en

N ≡∆K
N , (8.5)

by using the Young inequality and choosing, in particular, σ=σopt =∆en
N /INt

N . Thus ∆K
N is

a L1(Ω) error bound for the RB prediction for the velocity squared (|∇φNt
N |

2). An error
bound for the pressure can be obtained using (8.5) and Bernoulli’s equation. If we define

p
TNt
Nt

=
1

TNt

∫

TNt

(
Bin−

ρ

2
|∇φNt |2

)
, p

TNt
N =

1

TNt

∫

TNt

(
Bin−

ρ

2
|∇φNt

N |
2
)

,

where Bin ≡ pin+ ρ
2 |uin|2 is given, the error bound for the pressure, as before, follows

directly as

∑
TNt
∈TNt

|TNT
||p

TNt
Nt
−p

TNt
N |≤

ρ

2
∆K

N≡∆
p
N .
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8.1 Pointwise error bounds

We introduce also error bounds for pointwise calculations of velocity and pressure. Let
us consider a point xo as an internal point of the mesh triangle TNto. With∇o we indicate a
discrete gradient computed on TNto and since we are using P1 finite elements the gradient
of the solution (φ) is constant over each triangle TNto and so the velocity VNo(xo) and
pressure pNo(xo) given by

VNo(xo)=
1

|TNto|

∫

TNto

∇oφNo, pNo(xo)=1−
1

|TNto|

∫

TNto

|∇oφNo|
2.

We now develop an error bound for the pointwise squared velocity |(∇φNo)
2−(∇φo)2|.

By indicating with pedix h the quantities related with FE solution, we note that

|KTh

h −K
Th
N | =

∣∣∣∣
1

Th

∫

Th

|∇φh|
2−|∇φN |

2

∣∣∣∣=
1

Th

∫

Th

∇(φh−φN)·∇(φh+φN)

=
1

Th

∫

Th

∇(φh−φN)·∇(φh−φN)+2∇(φh−φN)·∇φN

≤
1

Th

(∫

Th

|∇εh,N |
2+2

(∫

Th

|∇εh,N |
2

)1/2(∫

Th

|∇φN |
2

)1/2
)

.

Hence

|TNto||(∇φNo)
2−(∇φo)

2|≤ ∑
TNt∈TNt

|TNt||K
TNt
Nt
−KTNt

N |

≤ ∑
TNt∈TNt

∫

TNt

|∇eNt
N |

2+ ∑
TNt∈TNt

2

(∫

Tnt

|∇eNt
N |

2

)1/2(∫

TNt

|∇φN |
2

)1/2

≤ ∑
TNt∈Tnt

∫

Ω
|∇eNt

N |
2+

1

σ ∑
Tnt∈TNt

∫

TNt

|∇eNt
N |

2+σ ∑
TNt∈TNt

∫

TNt

|∇φN |
2

≤

(
1+

1

σ

)
(∆en

N )2+σI2
N≤ (∆en

N )2+2I2
N∆en

N ≡∆K
N ,

choosing σ=σopt =∆en
N /IN so that

|(∇φNo)
2−(∇φo)

2|≤
1

|TNto|
((∆en

N )2+2I2
N∆en

N )≡
1

|TNto|
∆K

N

and

|pNo−po|≤
1

|TNto|
∆

p
N .

We thus see that 1
|TNto|

∆K
N is essentially a L1(Ω) error bound on the RB prediction for the

pointwise velocity squared (|∇φ|2) and 1
|TNto|

∆
p
N is essentially a L1(Ω) error bound on the

RB prediction for pointwise pressure.
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9 Software, geometries and flow models

For all computations, the rbMIT software [44] has been used. This library is designed
for the solution of affine linear elliptic PDEs with the reduced basis method and is fully
implemented in MATLAB. A documentation for rbMIT software is available in [12, 37].

The software is based on an affine decomposition of the parametrized domain ge-
ometry into the three basic building blocks presented in Section 6.2: standard triangles,
elliptical triangles and more general curvy triangles. The geometry has been provided by
a set of points (can be parameter dependent) and edges describing different regions. The
edges can be either straight edges or parameter dependent curved lines, which have to
be formulated as

(
xo1

xo2

)
=

(
O1(µ)
O2(µ)

)
+

(
cosφ(µ) −sinφ(µ)
sinφ(µ) cosφ(µ)

)(
ρ1(µ) 0

0 ρ2(µ)

)(
g1(t)
g2(t)

)
, (9.1)

for t ∈ [t1,t2]. Each edge has to be either convex or concave. This corresponds to the
definition of our curvy triangles in Section 6.2. If we choose g1(t)=cost and g2(t)=sint,
we obtain the definition of an elliptical arc fulfilling the affine geometry precondition.

The software first performs the three main steps described in Section 6.2.3. We recall
that the aim is to construct a domain decomposition (6.1) of the reference geometry Ω

(defined by the user inputs) compatible with the interface condition (6.3). In addition, all
elliptical and curvy triangles have to satisfy the consistency/continuity condition (6.11)
and the internal angle conditions (6.14) and (6.15).

The software first focuses on all elliptical and curvy edges making part of the domain.
For each elliptical or curvy arc, an elliptical, resp. curvy, triangle is introduced according
to the definitions of Section 6.2. In the case of internal interfaces, two triangles are needed.
For each new triangle, an additional interior control point is added to the set of initial
control points. If a triangle does not fulfill the internal angle conditions or the interface
condition, this triangle is split by the software into two triangles. This process is repeated
until all introduced elliptical and curvy triangles are well-defined and consistent with the
internal angle and interface conditions and the curved geometry is represented properly.
After that, the algorithm fills the remainder of the domain with standard triangles by a
Delaunay triangulation [49].

The parametrization of the curved geometry is unfortunately not arbitrary. The de-
termination of the third point of an elliptical or a curvy triangle requires that the origin
(O1(µ),O2(µ))T of the curve in the form (9.1) must not lie on the segment of the curve.
In addition, there is another possibility to control the domain decomposition process by
defining additional initial control points and edges that are not necessary for the specifi-
cation of the geometry. As illustrated with several examples in [49], a good choice of the
control points can reduce the number of affine terms Qa by enforcing a domain decom-
position which results in many parametrically similar subdomains.

In the last steps, the parameter-dependent affine mappings for each subdomain are
constructed and then translated into the PDE coefficients, as described in Section 6.3. Fi-
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nally, the FE system matrices and vectors have to be assembled (in the affine formulation
(2.5)) and stored. In addition to the geometry and the problem to be solved, we have to
specify the parameter range D, the reference parameter µref and the value for µ in the
X-norm definition. The parameter range has important implications on the performance
of the RB method, since (i) a bigger parameter range will require more basis functions;
(ii) the geometry should be well-defined for all µ∈D; (iii) also the domain decomposition
must not become singular for any µ∈D. Here is a short overview of the subsequent steps
performed by the software in the offline and online phase:

1. In the offline stage the greedy “train” sample Ξtrain,SCM is built and the SCM algo-
rithm is performed to compute the lower bounds for the coercivity constants for
all members µ∈Ξtrain,SCM. After that, the reduced basis space is generated by the
greedy algorithm and stored for the online stage.

2. In the online stage, the solution and output for a particular parameter value µ are
computed. For the computation of the solution, we can either prescribe a value for
the desired accuracy or the number of basis functions. Then the lower bound for the

coercivity constant αNt
LB(µ;CJ,M) is computed in order to calculate the a posteriori

error bound (4.8) for the field variable. Finally, the field variable is used to compute
the output (or outputs).

The computations, provided in this work as examples, have been done for three geomet-
ric configurations dealing with different problems: a Venturi channel, a curved bend and
a basin. The following sections are devoted to the description of these problems.

10 A Venturi channel

Flows in ducts, channels, and pipelines are of great interest in fluid mechanics applica-
tions especially when flows can be studied in a parametrized geometrical configuration.
This first example considers a 2D potential flow into a Venturi channel and it can be
seen as an example for the design of a parametrized fluidic device (which can be con-
sidered also as an element of a more complex modular fluidic system and by adopting a
more complex fluid model). We illustrate the calculation of pressure and velocity by the
Bernoulli Theorem and the curvy geometry parametrization. Velocity and pressure are
influenced by the channel/constriction configuration (i.e. height and length of the throat
and radius of curvature of the connection). The fluid velocity must increase through the
constriction to satisfy the equation of continuity, while its pressure must decrease due to
conservation of energy. The gain in kinetic energy is supplied by a drop in pressure or a
pressure gradient force. Gravitational effects or other force fields could be applied.

The limiting case of the Venturi effect is choked flow, in which a constriction in a pipe
or channel limits the total flow rate through the channel because the pressure cannot drop
below zero in the constriction. Choked flow is used to control the delivery rate of water
and other fluids through valves. Examples of the Venturi effect are everywhere: in the

https://doi.org/10.4208/cicp.100310.260710a Published online by Cambridge University Press

https://doi.org/10.4208/cicp.100310.260710a


G. Rozza / Commun. Comput. Phys., 9 (2011), pp. 1-48 37

capillaries of the human circulatory system; in large cities where wind is forced between
buildings; in inspirators that mix air and flammable gas in burners; in atomizers and
nozzles.

10.1 Problem description

We consider the physical domain Ωo(µ) shown in Fig. 5. Here x=(x1,x2) denotes a point
in Ωo(µ), non-dimensionalized with respect to height of the inlet L̃. Note that a tilde
˜ denotes dimensional quantities, and the absence of a tilde signals a non-dimensional
quantity. We identify in Fig. 5 the domain Ω1, representing the Venturi channel (inlet,
connection, throat, connection, outlet).

฀

฀ ฀

฀

Figure 5: Parametrized geometry (left) and domain boundaries (right).

In this example the boundary segments Γ3, Γ5, Γ7, Γ9 are curved (all other bound-
ary segments and internal interfaces are straight lines). The segment Γ3 is given by the
parametrization

[
x1

x2

]
=

[
4−µ3

1−µ3

]

︸ ︷︷ ︸
O1(µ)

+

[
1 0
0 1

]

︸ ︷︷ ︸
Q1(µ)

[
µ3 0
0 µ3

]

︸ ︷︷ ︸
S1(µ)

[
cos(πt)
sin(πt)

]
,

where t∈ [0,1/2]. The segment Γ5 is given by the parametrization
[

x1

x2

]
=

[
4+µ3

µ1+µ3

]

︸ ︷︷ ︸
O2(µ)

+

[
1 0
0 1

]

︸ ︷︷ ︸
Q2(µ)

[
µ3 0
0 µ3

]

︸ ︷︷ ︸
S2(µ)

[
cos(πt)
sin(πt)

]
,

where t∈ [1,3/2]. The segment Γ7 is given by the parametrization
[

x1

x2

]
=

[
4+µ2−µ3

µ1+µ3

]

︸ ︷︷ ︸
O3(µ)

+

[
1 0
0 1

]

︸ ︷︷ ︸
Q3(µ)

[
µ3 0
0 µ3

]

︸ ︷︷ ︸
S3(µ)

[
cos(πt)
sin(πt)

]
,

where t∈ [3/2,2]. The segment Γ9 is given by the parametrization
[

x1

x2

]
=

[
4+µ2+µ3

1−µ3

]

︸ ︷︷ ︸
O4(µ)

+

[
1 0
0 1

]

︸ ︷︷ ︸
Q4(µ)

[
µ3 0
0 µ3

]

︸ ︷︷ ︸
S4(µ)

[
cos(πt)
sin(πt)

]
,
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where t∈ [1/2,1]. The Venturi element could be integrated into a more complex modular
system. We consider here P = 3 parameters. Here µ1, µ2, µ3 are geometry parameters
defined in Fig. 5; µ1 is the height of the throat (i.e., the central narrow part of the Venturi
channel), µ2 is the length of the narrow part of the channel, and µ3 is the radius used to
smooth the connections between the inlet (and the outlet) with the central throat. The
parameter domain is given by

D=[0.25,0.5]×[2,4]×[0.1,0.2].

We show in Fig. 5 the boundaries of the domain, on which we impose the following
boundary conditions:

• homogeneous Dirichlet condition φ(µ)=0 on boundary Γ11;

• non-homogeneous Neumann condition ∂φ/∂n=1 on boundary Γ1 (i.e., imposition
of the velocity at the inlet);

• homogeneous Neumann conditions ∂φ/∂n = 0 (i.e., zero normal velocity) on the
other boundaries.

For this problem the output of interest is provided by the visualization of velocity
field (by streamlines) and/or pressure contour field. The error bounds are computed on
the pressure and on the velocity.

This problem is then modeled by the P1 finite element (FE) discretization over the tri-
angulation (represented in red) shown in Fig. 6; the FE space contains Nt =3137 degrees
of freedom. FE approximation is typically too slow for man query and/or real time ap-
plications, and we hence approximate the FE prediction for the output and field variable
by the reduced basis (RB) method.

Figs. 7 and 8 report some representative solutions for selected values of parameters
and also an indication of the computed error bounds on velocity and recovered pressure.

10.2 Numerical results

For this problem, with P = 3 parameters, we can visualize in Fig. 9 the sample SNmax

obtained by application of the (energy version of the) greedy algorithm of Section 3.5 for
Ξtrain a log-uniform random sample of size ntrain = 3000. Clearly, the point distribution
is very far from tensor-product in form: there is some clustering near the boundaries of
the parameter domain, however the interior of the domain is very sparsely populated.
We also note that the sample SNmax reflects the particular problem of interest, as would
be expected from the “adaptive” greedy procedure: the densest clustering of points is
near regions of D in which the parametric sensitivity is largest. We also plot in Fig. 9 the
SCM lower and upper bounds for the coercivity constant, while in Fig. 10 the quantity

maxµ∈Ξtrain

(
∆en

N (µ)/||φNt
N (µ)||µ

)
for the Lagrange RB approximations associated with the

sample of Fig. 9. We observe very rapid, exponential convergence.
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Figure 6: Finite element mesh.

Figure 7: Representative solutions for potential and velocity (with error bounds) for µ = [0.25,2,0.1] and µ =
[0.5,4,0.2].

Figure 8: Representative solutions for pressure (with error bounds) for µ=[0.25,2,0.1] and µ=[0.5,4,0.2].

0.25 0.3 0.35 0.4 0.45 0.522.22.42.62.83
3.23.43.63.84

µ1

µ

2
0 500 1000 1500 2000 2500 3000−0.100.10.20.30.40.50.6

Figure 9: Venturi channel example. Left: greedy sample SNmax
; note the value of µ3 (0.1≤ µ3 ≤ 0.2) is

proportional to the radius of the circle. Right: upper and lower bounds for the coercivity constant, here Ξtrain

is a log-uniform random sample of size ntrain = 3000: αNt

UB(µ) (upper curve, solid) and αNt

LB(µ) (lower curve,

dotted) as a function of µ′∈Ξtrain,SCM after Jmax=14 iterations of the SCM greedy algorithm; here the abscissa

represents the index of the point µk
train,SCM in Ξtrain,SCM.

0 2 4 6 8 10 12 1410−310−210−1100101102
NE rror

Figure 10: Venturi channel example: maxµ∈Ξtrain

(
∆en

N (µ)/||φNt
N (µ)||µ

)
as a function of N for the Lagrange

RB approximations associated with the sample of Fig. 9; here Ξtrain is a log-uniform random sample of size
ntrain =3000.
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11 Circular bend

In this second example we look at a potential flow into a bend with a parametrization
on the internal and the external radius. Velocity and pressure are influenced by the
bend configuration (i.e., angle and radius of curvature). The major points are the curved
streamlines, the pressure gradient induced by the curvature, and the classical irrotational
flow field associated with zero vorticity. Also gravitational effects or other force fields
could be applied.

11.1 Problem description

We consider the physical domain Ωo(µ) shown in Fig. 11. Here x = (x1,x2) denotes a
point in Ω(µ), non-dimensionalized with respect to a unit radius R̃ (note that a tilde ˜
denotes dimensional quantities). We identify in Fig. 11 the subdomains Ω1,Ω2,··· ,Ω5,
describing a bend for a given internal and external radius and an angle. The geometrical
configuration studied in this problem is quite complex to be parametrized dealing with
two curved walls at a small distance. In this problem the boundary segments Γ2, Γ3, Γ4,
Γ6, Γ7, and Γ8 are curved (all other boundary segments and internal interfaces are straight
lines). The segments Γ6, Γ7, and Γ8 are given by the parametrization

[
x1

x2

]
=

[
0
0

]

︸ ︷︷ ︸
O1(µ)

+

[
1 0
0 1

]

︸ ︷︷ ︸
Q1(µ)

[
1−µ1 0

0 1−µ1

]

︸ ︷︷ ︸
S1(µ)

[
cos(t)
sin(t)

]
,

where for Γ6, t∈ [3/5,4/5], for Γ7, t∈ [3/10,3/5], and for Γ8, t∈ [0,3/10]. The segments
Γ2, Γ3, and Γ4 are given by the parametrization

[
x1

x2

]
=

[
0
0

]

︸ ︷︷ ︸
O2(µ)

+

[
1 0
0 1

]

︸ ︷︷ ︸
Q2(µ)

[
1+µ1 0

0 1+µ1

]

︸ ︷︷ ︸
S2(µ)

[
cos(t)
sin(t)

]
,

where for Γ2, t∈ [0,3/10], for Γ3, t∈ [3/10,3/5], and for Γ4, t∈ [3/5,4/5]. These curvy
boundaries describe the walls of the bend, straight lines are representing the inlet and
the outlet. The bend element could be integrated into a more complex modular system.

We consider here only P = 1 parameter: here µ1 is the semi-width of the bend, so
that internal radius is 1−µ1 and the external one is 1+µ1 (considering a unit radius as
reference length R̃); the angle (measured in radiant) between the inlet and the outlet is
given, and its vertex is the origin of the concentric circles whose portions describes the
curvy walls. The outflow/inflow straight zone is parametrized considering a length of
4max(µ1). The parameter domain is given by D=[0.05,0.2].

We have also to impose interface and boundary conditions. We show in Fig. 11 the
boundaries of the domain. On boundary Γ15 we impose homogeneous Dirichlet con-
ditions φ(µ) = 0, while on boundaries Γ2, Γ3, Γ4, Γ6, Γ7, Γ8, Γ11, Γ13, Γ14, and Γ16 we
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Figure 11: Parametrized geometry (left) and domain boundaries (right).

Figure 12: Representative solutions for potential and velocity (with error bounds) for µ=[0.05] and µ=[0.2].

Figure 13: Representative solutions for pressure (with error bounds) for µ=[0.05] and µ=[0.2].
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impose homogeneous Neumann conditions, ∂φ/∂n = 0. In addition we impose non-
homogeneous Neumann condition, ∂φ/∂n =1 at the inflow Γ12 (i.e., imposed inflow ve-
locity). Also for this problem the output of interest is provided by the visualization of
velocity field (by streamlines) and/or pressure contour field. The error bound is com-
puted on the pressure.

This problem is then modeled by a P1 finite element (FE) discretization whose space
contains Nt =7765 degrees of freedom. FE approximation may be typically too slow for
many query and real time applications, and we hence approximate the FE prediction for
the output and field variable by the reduced basis (RB) method.

11.2 Numerical results

For this problem, considering one parameter (P = 1), we can now build the sample
SNmax =[0.12,0.06,0.17] obtained by application of the (energy norm version of the) greedy
algorithm of Section 3.5 for Ξtrain a log-uniform random sample of size ntrain =1000. We

plot in Fig. 14 maxµ∈Ξtrain

(
∆en

N (µ)/||φNt
N (µ)||µ

)
for the Lagrange RB approximations as-

sociated with the sample SNmax : we observe very rapid, exponential convergence and just
3 basis functions have been selected and used (this explains the linear plot).

1 2 300 .050 .10 .15
NE rror

Figure 14: Circular bend example: maxµ∈Ξtrain

(
∆en

N (µ)/||φNt
N (µ)||µ

)
as a function of N for the Lagrange RB

approximations associated with the sample SNmax
=[0.12,0.06,0.17]; here Ξtrain is a log-uniform random sample

of size ntrain =1000.

12 Added mass

In this last example we provide a simple model to compute the added mass of a para-
metrized rectangular body in order to get added mass calculations not yet available in
the literature. This is a simple hydrodynamics problem. Its applications are well known
and important not only in marine hydrodynamics and relatedly in naval architecture
and ocean engineering (including oil drilling platforms), but also in more general fields
studying floating and buoyancy effects. We consider here a simplified body floating into
inviscid and incompressible flows using a potential flow model.
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In fluid mechanics, added mass is the inertia added to a system because an acceler-
ating or decelerating body must move some volume of surrounding fluid as it moves
through it, since the object and fluid cannot occupy the same physical space simulta-
neously. For simplicity this can be modeled as some volume of fluid moving with the
object, though in reality “all” the fluid will be accelerated, to various degrees. All bodies
accelerating in a fluid will be affected by added mass, but since the added mass is depen-
dent on the density of the fluid, the effect is often neglected for dense bodies falling in
much less dense fluids. For situations where the fluid density is comparable to, or even
greater than, the density of the body, the added mass can often be greater than the mass
of the body and neglecting it can introduce significant errors into a calculation. See for
example [25].

12.1 Problem description

We consider the physical domain Ωo(µ) shown in Fig. 15. We identify in Fig. 15 the
subdomains Ω1 and Ω2, which will serve to define the geometry or introduce inhomoge-
neous physical properties. The domain represents an outer box containing a rectangular
body.

We consider here P=3 parameters. Here µ1, µ2, µ3 are geometry parameters defined
in Fig. 15: µ1 is the semi-width (basis) of the rectangular body sitting inside a bigger
rectangular body, µ2 is the distance between the free surface and the upper surface of
the floating rectangular body, and µ3 is the height of the rectangular body. The fact
that we have introduced two parameters for the rectangular body is motivated by the
fact that we aim at studying interesting limit cases (i.e., the rectangular body is degen-
erating into a lateral disk or into a transverse disk). The parameter domain is given
by D= [0.5,3.5]×[4,8]×[0.1,3.2]. We show in Fig. 15 the boundaries of the domain. On
boundaries Γ5 and Γ6 we impose homogeneous Dirichlet conditions φ(µ)=0 representing
a free surface, while on boundaries Γ1, Γ2, Γ3, Γ4, Γ7, Γ8, Γ10, and Γ12 we impose homoge-
neous Neumann conditions, niκij

∂
∂xj

φ(µ)= 0. In addition we impose non-homogeneous

Neumann conditions on the top and on the bottom of the rectangular body, respectively,

∂φ

∂n
(µ)= l on Γ9,

∂φ

∂n
(µ)=−1 on Γ11.

By applying Neumann non-homogeneous boundary conditions on the body surface,
we obtain our output of interest, the added mass, given by

s(µ)=
∫

Γ9

φ(µ)−
∫

Γ11

φ(µ),

which represents the mass of the unit density fluid moved around the body [25]. Several
comparisons (and tests as limit case) have been carried out between theoretical values
proposed in [25] and the ones computed with the proposed methodology for plates/disks:
the computational model proves to be a very good approximation.
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Figure 15: Parametrized geometry (left) and domain boundaries (right).

Figure 16: Finite element mesh.

Figure 17: Representative solutions for the added mass problem µ=[0.5,4,0.1] and µ=[3.5,8.0,3.2].

This problem is then modeled by the P1 finite element (FE) discretization over the
triangulation shown in Fig. 16; the FE space contains Nt =404 degrees of freedom.‡

‡The user can obtain the RB prediction for the output and field variable (visualization) — as well as
a rigorous error bound for the real error between the RB and FE predictions — through the website
http://augustine.mit.edu/workedproblems/rbMIT/probname/F rbMIT probname webserver.htm, where
probname is just a label to be replaced by venturi, bend or addedmass in the cases taken into account in
this review paper. Who wish to run on their own computers and who have already downloaded our rbMIT
software package may also create the RB approximation by downloading the specific Matlab code at the link
http://augustine.mit.edu/workedproblems/rbMIT/probname/rbMIT data/rbU probname.m.
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Figure 18: Added mass. Left: greedy (energy version) sample SNmax
. Right: maxµ∈Ξtrain

(
∆en

N (µ)/||φNt

N (µ)||µ
)

as a function of N for the Lagrange RB approximations associated with the sample of Fig. 18; here Ξtrain is a
log-uniform random sample of size ntrain =3000.

12.2 Numerical results

For this problem, with P=3 parameter, we visualize in Fig. 18 the sample SNmax obtained
by application of the (energy version of the) greedy algorithm of Section 3.5 for Ξtrain

a log-uniform random sample of size ntrain = 3000. We may conclude with the same
consideration done in Section 10.2 about the clustering of sample near the boundaries of
the parameter domain and the sparse sample population in the interior of the domain. We

also plot in Fig. 18 maxµ∈Ξtrain

(
∆en

N (µ)/||φNt
N (µ)||µ

)
for the Lagrange RB approximations

associated with the sample on the left. We observe very rapid, exponential convergence.

13 Conclusion

We have studied some applications of reduced basis methodology to potential flows in
parametrized geometries with also a special attention to domains with curved bound-
aries of interest for internal flows. All the crucial elements concerning problem parame-
trization have been introduced and generalized. Special error bounds for velocity and
pressure have been proposed, also pointwise in the internal domain coming from the
general error bound on the potential solution. Demonstrative results underline the ver-
satility of the proposed methodology in the solution of flows in parametrized complex
geometries. The error bounds on velocity and pressure (recovered by Bernoulli theo-
rem) provide an example of versatility of the methodology in computing also quantities
related with the gradient of the solution.
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