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We present lattice Boltzmann pore-scale numerical simulations of solute transport
and reaction in porous electrodes at a high Schmidt number, Sc = 102. The
three-dimensional geometry of real materials is reconstructed via X-ray computed
tomography. We apply a volume-averaging upscaling procedure to characterise the
microstructural terms contributing to the homogenised description of the macroscopic
advection–reaction–dispersion equation. We firstly focus our analysis on its asymptotic
solution, while varying the rate of reaction. The results confirm the presence of two
working states of the electrodes: a reaction-limited regime, governed by advective
transport, and a mass-transfer-limited regime, where dispersive mechanisms play
a pivotal role. For all materials, these regimes depend on a single parameter,
the product of the Damköhler number and a microstructural aspect ratio. The
macroscopic dispersion is determined by the spatial correlation between solute
concentration and flow velocity at the pore scale. This mechanism sustains reaction
in the mass-transfer-limited regime due to the spatial rearrangement of the solute
transport from low-velocity to high-velocity pores. We then compare the results of
pre-asymptotic transport with a macroscopic model based on effective dispersion
parameters. Interestingly, the model correctly represents the transport at short
characteristic times. At longer times, high reaction rates mitigate the mechanisms of
heterogeneous solute transport. In the mass-transfer-limited regime, the significant yet
homogeneous dispersion can thus be modelled via an effective dispersion. Finally, we
formulate guidelines for the design of porous electrodes based on the microstructural
aspect ratio.
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1. Introduction

Flows through porous media are ubiquitous. Many natural and human-made
substances can be interpreted as porous media through which fluids flow. These materials
exhibit a wide variability in the shape of their microstructures. They play a pivotal role
in many natural phenomena, each one thanks to their distinguishing microstructural
features. Examples are organic fluids flowing through biological tissues, where the
pore shape regulates the biological activities (Khaled & Vafai 2003), and water
infiltrating through soils, where the spatial distribution of porous layers marks the
rhythm of the water cycle, from the atmosphere to the oceans (Daly & Porporato
2005). Given their intrinsic capability of spreading active species and providing
surface area for reactions, porous media are also widely used as electrodes. Good
examples are electrodes in electrochemical batteries, such as lithium-ion batteries,
supercapacitors, capacitive deionisators for water treatment technologies and redox
flow batteries.

Redox flow batteries play a crucial role for energy storage applications. The
future scenario of global electrification imposes the need of finding smart ways
to store energy in the grid and to deliver it on demand. Redox flow batteries are
electrochemical storage devices well suited for a wide range of operational powers and
discharge times. Their scalability and flexibility make them ideal candidates for storing
energy from renewable sources (Guarnieri et al. 2016). They are electrochemical
rechargeable batteries; charging and discharging cycles are possible owing to the
presence of two chemical species dissolved in each solution feeding the two electrodes
of the battery cells, separated by a membrane, for producing chemical reduction and
oxidation (‘redox’) reactions. The liquid solution, named the liquid electrolyte, flows
through the porous electrodes to enable the storage of electrochemical energy. Because
of the low molecular diffusivity Dm of species in the liquid electrolyte compared to
its viscosity ν, i.e. because of a high Schmidt number Sc= ν/Dm ∼O(102–103), the
porous microstructure is fundamental for sustaining effective dispersion of the species
and for shortening the transport distances from the bulk to the reaction sites.

High Schmidt numbers are typical of liquid solutions. When a liquid solution flows
through a reactive porous material, the dispersion of species can affect the reaction
mechanism, and vice versa (Dentz et al. 2011). Indeed, it is the distribution and
mixing mechanisms of the solute that regulate the mass transport of active species to
the solid inner surfaces of the porous medium where the reactions occur. In this sense,
pore-scale simulations have recently attracted attention as tools for the development
of coupled transport formulations with reactive mechanisms, since they can take into
account the effect of the microstructure (Alhashmi, Blunt & Bijeljic 2016; Romano
et al. 2019). The prominent role of the microstructure in spreading active species
carried by a liquid solution has been quantified in various studies (Berkowitz &
Scher 1995; Icardi et al. 2014; Maggiolo, Picano & Guarnieri 2016; Dentz, Icardi
& Hidalgo 2018). The mechanism of species dispersion in liquids flowing through
porous media has a distinctive characteristic in that, as opposed to dispersion of
species carried by gases, it does not depend only on the value of the porosity, as
predicted for instance by the commonly used Bruggeman equation (Chung et al.
2013; Maggiolo et al. 2016). Knowing the value of the porosity of a medium is not
sufficient to predict dispersion phenomena and evidence shows that more complex
geometrical and fluid-dynamic factors contribute to the mechanisms of mass transport
(e.g. tortuosity and pore connectivity, to name two) (Moldrup et al. 2001; Yang et al.
2016).
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Solute transport and reaction in porous electrodes 896 A13-3

Another key feature that makes porous media widely used as electrodes is their
high value of specific surface area, that is, the total solid surface per unit volume.
As a consequence, porous electrodes are characterised by a large area available
for reactions of species and their global reaction efficiency is potentially very high.
However, the actual efficiency of a porous electrode does not only depend on the
overall reaction rate, but also on the amount of energy required to flow an electrolyte
through the medium in order to deliver the species to the reaction sites (Tang, Bao &
Skyllas-Kazacos 2014). A large specific surface area does not only imply a potentially
high amount of mass reacting in the electrode, but also a large fluid–solid interface,
which contributes to increase the pressure drag and skin friction (Zhou et al. 2016).
Consequently, the amount of energy required to flow an electrolyte through a porous
medium can be very high, especially in the case of intricate geometries.

Moreover, the extent and mechanism of reaction at the fluid–solid boundaries
also depend on the complex interaction between the liquid electrolyte and the
porous microstructure. Local heterogeneities are distinguishing traits of porous
microstructures and the local concentration of solute can be affected by such
geometrical constraints (Yang, Crawshaw & Boek 2013). In flows through porous
media at high Schmidt numbers, the heterogeneous nature of mass transport often
emerges from a strongly intermittent velocity field (Kang et al. 2014). Heterogeneities
affect not only the spatial distribution of the solute, but also a wide distribution of
transport time scales can be observed. The latter leads to what is commonly referred
to as non-Fickian transport, an anomalous behaviour that cannot be described by
the classical Fickian description (Yang & Wang 2019). In turn, the reaction can be
heterogeneous, being affected by such uneven spatial and temporal distributions of
the solute transport. Experimental observations confirm that the uniformity of solute
transport plays a decisive role in determining the output power of, for instance, redox
flow batteries (Kumar & Jayanti 2016).

Conversion is defined as the ratio between the mass reacted and the total mass
delivered to a system: it is an indicator of the efficiency of operation of a porous
electrode and its inverse is often named the ‘flow factor’ in redox flow battery
applications (Guarnieri et al. 2018). Practical experiences using liquid electrolytes
through porous electrodes indicate that values of solute conversion are often low
and that values close the maximum theoretical value are rarely achieved. Efficiency
maximisation occurs close to conversion values of around 1/8 at high current densities,
when the required energy output is high (Guarnieri et al. 2018, 2019). A high energy
output is often challenging since it poses strong requirements on the minimum size
of the system. This practical limitation can be overcome by maximising the efficiency
of mass transport inside the porous microstructure, but the transport mechanisms
that contribute to high conversion and power output of electrodes are still not well
understood. The complex interaction between macroscopic output and microscopic
fluid-dynamic phenomena has been traditionally described via empirical correlations
and measured mass-transfer coefficients (Schmal, Van Erkel & Van Duin 1986;
Ström, Sasic & Andersson 2012). The physical link with microstructural material
characteristics and coupled reactive–transport phenomena is still a matter of debate;
see e.g. Zhu & Zhao (2017) and Kok et al. (2019). The picture that emerges from the
latest experimental activities and preliminary theoretical analyses is that the optimum
operative condition of a porous electrode, however defined, depends on the specific
balance between the mechanisms of mass transport and reaction occurring at the pore
scale. Such a balance is intuitively also dependent on the porous microstructure.

Hence, two important questions arise. (i) At high Schmidt numbers, what are
the main transport phenomena contributing to reactions of the solute in porous
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electrodes? (ii) How should a porous electrode be designed in order to achieve the
optimal performance, in terms of both conversion and power output? In this work
we investigate, debate and clarify the fluid-dynamic aspects of such questions, by
numerically simulating, modelling and comparing the flow, dispersion and reaction
through real material microstructures, obtained via X-ray computed tomography. We
restrict our analysis to solute transport in porous media at high Schmidt numbers in
order to enrich the knowledge about dispersive phenomena in liquids flowing through
reactive porous media. The study provides insights into the fluid-dynamic optimisation
of systems based on such phenomena and it will eventually lead to a formulation of
universal design guidelines for porous electrodes.

The article is structured as follows. In § 2 the theoretical framework and numerical
methodology are described. The set-up of the numerical simulations and the
engineering procedure for reconstructing the porous electrodes are also presented.
In § 3 the mathematical framework used for the analysis of results, based on
spatial smoothing and homogenisation technique, is described. In § 4 the results
of the numerical simulations are presented. Different mechanisms of solute transport,
dispersion and reaction are discussed. In light of these results, the modelling of the
fluid-dynamic dispersion in porous media is discussed in § 5. In § 6 we identify the
optimal design guidelines for porous electrodes and in § 7 we summarise the results
of this study.

2. Pore-scale solute transport and reaction

The mechanism of solute transport through redox flow battery porous electrodes is
traditionally modelled via the Nernst–Planck equation, which describes the motion of
ions under the influence of ionic concentration gradients and electric fields (Probstein
2005; Arenas, de León & Walsh 2019). Such an approach is applied via numerical
simulations to a scale larger than the characteristic pore size of the electrode and the
microstructural effects are neglected. Further, pore-scale mechanisms can contribute
to the transport and reactions of the solute, in the form of advective and reactive
fluxes in the bulk and at the fluid–solid boundaries, respectively. When the gradients
of the electric potential are much smaller than the gradients of the solute concentration,
electric-field-induced ion migration can be considered negligible compared to other
transport mechanisms. A suitable example concerns redox flow batteries where the
typical length over which the electric potential varies, of the order of centimetres,
is much greater than the characteristic pore size, which is in the range of tens of
micrometres.

In the present analysis, we neglect ion migration due to electric field and we
solve the physics of transport and reaction in porous electrodes at the smallest scale.
The physical system that we investigate is then described at the pore scale by the
advection–diffusion equation:

∂c(x, t)
∂t

+
∂c(x, t)uj(x)

∂xj
=

∂

∂xj

(
Dm

∂c(x, t)
∂xj

)
, (2.1)

with Dm the molecular diffusion coefficient, c(x, t) the solute concentration at position
x and time t and uj(x) the steady-state jth Eulerian component of the solenoidal fluid
velocity along the direction xj that transports the solute (we assume that the solute
has no influence on the properties of the fluid). In addition, we assume that the
transported solute reacts at the fluid–solid boundaries inside the porous medium
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according to a first-order reaction equation. The surface flux depends on the chemical
reaction velocity kr and on the molecular diffusion Dm as

−Dm
∂c(x, t)
∂n

∣∣∣∣
S

= kr(c(x, t)|S − c0), (2.2)

where n is the versor normal to the boundary and the fluid–solid interface is here
denoted as S. The term c0 indicates an equilibrium value for the mass transfer at
the boundary. In our case, c0 = 0 since the kinetic rate of a realistic reaction is
proportional to the concentration of reactant c(x, t)|S. However, we keep the term c0
in the mathematical formulations below since it can represent a non-null equilibrium
value in other applications, such as for mixed boundary conditions in convective heat
transfer.

2.1. The lattice Boltzmann method
The numerical methodology used in this work is based on the lattice Boltzmann
method. This method represents an alternative way of solving the mass and
momentum equations. It is well suited for solving flows through complex geometries
with a pore-scale resolution (Succi 2001). The lattice Boltzmann method solves the
momentum transport equation through the discretisation of the Boltzmann equation,
which reads as

fr(x+ cr1t, t+1t)− fr(x, t)=−τ−1
ν ( fr(x, t)− f eq

r (x, t))+ Fr, (2.3)

where fr(x, t) is the distribution function at position x= (x, y, z) and time t along the
rth direction, cr is the discrete velocity along the rth direction, τν is the relaxation
time that provides a direct link to fluid viscosity and f eq

r is the equilibrium distribution
function along the rth direction:

f eq
r (x, t)=wrρ

(
1+

crjuj(x, t)
c2

s

+
(crjuj(x, t))2

c4
s

−
u2

j (x, t)

2c2
s

)
, (2.4)

with cs representing the speed of sound and wr the D3Q19 weight parameter of the
three-dimensional lattice structure.

The first step of our numerical study consists of solving the fluid flow at the steady
state, uj(x), via equation (2.3). A pressure gradient 1P/L that forces the fluid through
the porous microstructure is modelled via an equivalent body force Fr inserted in (2.3):

Fr(x, t)=
(

1−
1

2τν

)
wr

(
crj − uj(x, t)

c2
s

+
crjuj(x, t)

c4
s

crj

)(
1P
L

)
r

. (2.5)

We impose no-slip conditions at the fluid–solid interface and a periodic boundary
condition along the streamwise direction x. The physical domain is extended along
the streamwise direction x in order to straighten the flow after it exits the porous
medium and avoid unphysical effects at the border of the samples. The length of the
extension is 0.35 mm for all the three considered cases, a length that is larger than
the characteristic fluid-dynamic scale in the porous medium, since the mean pore size
of our samples is d= 0.08–0.18 mm (for further details of the geometrical parameters,
see the next section). At the boundaries along the transverse directions y and z, the
symmetry is guaranteed by imposing free-slip boundary conditions.
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The solution of the fluid field is deduced in each computational cell by integrating
the hydrodynamic moments of the distribution functions, so that when the algorithm
converges, we can extract the steady state velocity vector uj(x) and density ρ(x) as

ρ(x)=
∑

r

fr(x), (2.6)

ρ(x)uj(x)=
∑

r

crj fr(x)+
1
2

(
1P
L

)
j

. (2.7)

In the case of low Mach numbers, the density can be considered constant and the
solution of the momentum transport equation, provided by (2.3), exact with second-
order accuracy (Succi 2001; Guo, Zheng & Shi 2002).

The next step in the numerical analysis consists of solving the transport equation,
equation (2.1), for a solute which is injected at the inlet face of the samples with
a step input change of concentration cin. The advection–diffusion equation is thus
solved via a further lattice Boltzmann equation. For simulating the solute transport,
equation (2.3) is solved with the equivalent body force null, Fr= 0, because the solute
is advected by the previously resolved steady-state flow. From the first hydrodynamic
moment of this second lattice population gr, the local concentration c(x, t) is then
extracted:

c(x, t)=
∑

r

gr(x, t). (2.8)

2.2. Porous electrode reconstruction
The three-dimensional geometry of two real materials is acquired and reconstructed
via X-ray computed tomography: a commonly used carbon felt composed of randomly
intersected fibres and a carbon vitrified foam that exhibits a honeycomb-like
microstructure. The materials are scanned by means of a metrological computed
tomography system (Nikon Metrology MCT225), characterised by a micro-focus
X-ray source (minimum focal spot size equal to 3 µm), a 16-bit detector with
2000 × 2000 pixels and a cabinet ensuring a controlled temperature of 20 ◦C. For
further information about the real material reconstruction technique, the reader is
referred to Maggiolo et al. (2019). A third material, a bed composed of spherical
particles, is artificially generated by a uniform random distribution of spherical
particles with diameter size ds= 77 µm. We have selected this specific third material
in order to augment confidence in our fluid-dynamic data analysis and provide a rich
variability in our samples, as depicted in figure 1; the number of spherical particles
composing the cluster of spheres is set to attain the desired porosity value. The felt,
the foam and the cluster of spheres are thus characterised by porosity values of 0.95,
0.67 and 0.81, respectively. The length of the three samples is L = 1.3 mm and
their cross-sectional area is a square with surface A = 0.6152 mm2. The resolution
of the computed tomography reconstructed models is maximised by minimising the
voxel size and the focal spot size. In particular, the focal spot size is reduced by
keeping the X-ray power at a minimum so that the metrological structural resolution
is enhanced (Zanini & Carmignato 2017). On the other hand, the selected resolution
of the artificial medium is sufficiently high to allow an accurate solution of the
flow field, but without compromising the computational time. The resulting voxel
size 1x for the felt, foam (reconstructed via X-ray) and the cluster of spheres
(artificially generated) is then 4.4, 5.9 and 7.7 µm, respectively. The statistical
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FIGURE 1. Left-hand panels: geometrical input for numerical simulations. Carbon felt (a)
and carbon vitrified foam (b) reconstructed via X-ray computed tomography, and cluster of
spheres (c). The cluster of spheres has been numerically generated to achieve a porosity
intermediate between that of the two reconstructed materials by distributing the centres
of the solid spheres in the domain according to a random uniform distribution. The parts
of the spherical objects that lie out of the border of the domain are cut out along the
transverse directions. Right-hand panels: simulations of solute transport at t∗ = 1 with no
reaction. The solute is transported from left to right with an applied pressure gradient
1P/L. The magenta and yellow colours indicate the beginning and the end of the solute
front, respectively, at the same characteristic time, for a qualitative comparison.

difference between the materials in terms of pore diameter distribution is highlighted
in figure 2 where the probability distribution function (PDF) of pore diameters
is depicted. The computation of the PDF is not a trivial task. Typical strategies
include methodologies based on effective pore area or volume computation. The latter
strategies are effective if applied to porous structures formed mostly of disconnected
pores, but they can become difficult to use in highly interconnected pore structures,
such as a felt and a cluster of spheres. Therefore, given the great difference in the
geometrical characteristics of the considered media, we adopt the following strategies.
For the felt and the cluster of spheres we estimate the pore diameter distributions by
computing all the distances between solid fibres and spheres, respectively, in different
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FIGURE 2. Probability distribution functions of pore diameters computed on several cross-
sections on the (y, z) plane for the felt, foam and cluster of spheres. The PDFs refer to (a)
the pore size di and (b) the standardised pore size d∗i = (di − d)/σ (di), with d the mean
value. To obtain a consistent statistical sample size for all three materials (around 650),
4, 55 and 16 cross-sections have been selected for the felt, foam and cluster of spheres,
respectively.

d

d

d

d/√2

d/
√2

(a) (b) (c)

FIGURE 3. (a,b) Sketches describing the computation of pore diameters. The circles
indicate the solid phase, i.e. the fibres composing the felt material or the spheres
composing the bed of spheres. The dashed lines point out the criterion for selecting
the distances between fibres as valid measurements of the pore diameters: the segments
between the solid phase must pass at a minimum distance from the solid phase greater
than d/

√
2. (a) A computation of a pore diameter along a segment for which such a

minimum distance is respected. (b) The situation where the fibres or spheres are positioned
at the corners of a square of size d2; for such a situation, the distance between solid
objects computed along the diagonal of the square does not satisfy this geometric criterion.
The minimum distance is computed along the major axis of the considered solid phase.
(c) Sketch of the pore diameter computation in the foam material: the pore diameter is
determined as the equivalent diameter of the pore.

cross-sections. We only consider the interdistances between solid fibres or spheres
for which the segment connecting the solid phases is not intersecting another solid
phase or passing close to it, i.e. by setting a minimum distance from the solid phases.
Such a distance is computed along the major axis of the solid phase (see figure 3a).
In contrast to the felt and the cluster of spheres, the majority of the pore throats in
the foam are not interconnected. Therefore, in the latter case, the PDF of the pore
diameters is determined by evaluating the equivalent diameters of the pore areas, as
depicted in figure 3(b). In both strategies, the pore diameters have been computed
along planes perpendicular to the streamwise direction. It is important to notice that
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ε d/L σ(di)/L SsL Err

Felt 0.95 0.062 0.049 35.1 0.92× 10−2

Foam 0.67 0.081 0.108 73.4 2.91× 10−2

Cluster of spheres 0.81 0.141 0.071 36.7 2.14× 10−2

TABLE 1. Values of the parameters characterising the microstructures of the three
considered materials. The computed compressible error Err is also reported.

in the limit case represented by a squared pore defined, in the former strategy, by
four fibres placed at the corners of the square and, in the latter strategy, by a squared
cavity, both methodologies consistently compute the pore diameter as the side length
of the square.

The values of the computed mean diameter d and the variance of the PDF σ(di)
are reported in table 1. The significant difference of the sample microstructures is
well visible from the PDFs in figure 2, with the cluster of spheres characterised by
the largest mean pore diameter, i.e. d/L= 0.141, and the foam material by the largest
variance of pore diameter, i.e. σ(di)/L = 0.108. Also, we notice that the foam has
the lowest value of porosity ε. In § 4 we will observe how these microstructural
differences influence the behaviour of the solute transport and reaction mechanisms.

2.3. Numerical accuracy and validation
We have carefully checked the accuracy of our numerical framework, which is
mainly determined by the maximum resolution of the porous microstructure that we
can achieve via X-ray computed tomography during material reconstruction. The error
in the momentum equation for an incompressible flow Err= |1−

∫
in u dA/

∫
out u dA| is

of O(10−2) (see table 1 for the exact values).
We have also validated the numerical schemes adopted for simulating the reaction

at the boundaries. To solve (2.2), we make use of the advective–diffusive Robin
boundary condition applied to lattice Boltzmann formulations (Huang & Yong 2015).
We have compared the obtained numerical results with the analytical solution for
the two-dimensional problem of diffusion and reaction in a rectangular domain
with linear kinetics at a boundary (Zhang et al. 2012) and found an error within
O(10−2). For further information about the numerical validation of the numerical
framework the reader is referred to Maggiolo et al. (2016). We restrict our analysis to
dimensionless times t∗∼3 (defined as the ratio between time and mean residence time;
see equation (3.5)) since the simulations are long enough to provide a quantitative
analysis of the dispersion and reaction mechanisms and to compare the behaviour of
the porous electrodes in transporting and converting a solute.

2.4. Numerical set-up for porous electrode comparison
The pressure gradient is chosen such that the pump power is the same for all
three cases: Pw = 4 kW m−3. Such a procedure allows us to correctly compare the
efficiencies of the electrodes, in terms of a balance between the energy converted by
the battery from/to an electric form and the energy spent to flow the electrolyte. The
viscosity of the electrolyte is ν = 4.4× 10−6 m2 s−1 and its density ρ = 1500 kg m−3.
The pump power is determined as

Pw =
1P
L

U, (2.9)
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where U is the spatially averaged velocity along the streamwise direction x as defined
by (3.3).

We are interested in the different behaviours of the electrodes in transporting and
converting the solute. In our numerical approach, the physics of the reaction is defined
by (2.2). By means of dimensional analysis, such an equation can be rewritten in
terms of a dimensionless number that we address as the Thiele modulus; the Thiele
modulus is defined as the ratio between the reaction rate and the characteristic
diffusive mass transfer rate at the fluid–solid boundaries:

Φ2
=

kr

SsDm
. (2.10)

The length scale characterising the reactive flux at the fluid–solid boundary is the
inverse of the specific surface area, 1/Ss. It is a measure of the mean pore size, and it
is the smallest length scale characterising the physical system herein studied. We will
further discuss the significance of this geometrical parameter in light of the numerical
results later on.

In the present analysis, we vary the value of the Thiele modulus (i.e. the value
of the reaction velocity kr) in order to identify the macroscopic behaviour of the
considered materials when they are used as porous electrodes for a wide range of
electrochemical reaction systems. A total of 17 simulations are performed: 5 for
the felt, 5 for the the foam and 4 for the cluster of spheres, with varying reaction
rate, together with 3 further simulations with null reaction, one for each material, as
discussed in § 5. The pump power Pw and the Schmidt number Sc= 102 are constant
in all the considered cases.

3. Spatial smoothing at larger length scales
The method of volume averaging is a mathematical technique that allows the

derivation of continuum equations for multiphase systems (Whitaker 2013). In
particular, starting from the transport (2.1), valid in the fluid pores, and the
boundary (2.2), it is possible to mathematically define an equation that is valid
everywhere in the system, at a sufficiently larger scale. The resulting volume-averaged
equation describes the transport in terms of the averaged quantities and effective
parameters which convey information about spatial deviations of these physical
quantities. In flows through porous media, the effective parameters are related to
the underlying porous microstructure and their quantification is therefore useful for
understanding the physical mechanisms contributing to the global efficiency of the
system. In particular, for porous electrodes and chemical reactors, such analysis
allows us to define the efficiency of the system by transferring the information about
the rate of reaction from the microscopic characteristic scale to the ‘design length
scale’ L.

The spatial smoothing, or upscaling, is based on the identification of the
characteristic lengths at the pore scale, mesoscale and macroscopic scale, to which
the following averaging volumes correspond:

d3
� Vb� Vf . (3.1)

The averaging volume at the pore scale d3 is defined by the mean pore diameter d,
whereas the total fluid volume of the sample is Vf = εAL. The mesoscale volume Vb
must lie between, larger than d3 and smaller than the sample size. If these conditions
are satisfied, the porous medium can be considered ‘disordered’ with respect to
the mesoscale volume, in the sense defined by Quintard & Whitaker (1994), and
the spatial upscaling can rely on some simplifications that make the mathematical
procedure more effective.
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3.1. Mesoscopic description
We here make use of the spatial averaging procedure as suggested by Whitaker (2013).
Firstly, the generic physical quantity ξ is decomposed into the averaged quantity 〈ξ〉
and its spatial fluctuation ξ̃ :

ξ = 〈ξ〉 + ξ̃ . (3.2)

The spatially averaged quantities are computed at the mesoscale fluid volume Vb as

〈ξ〉 =
1
Vb

∫
Vb

ξ(x, t) dV, (3.3)

and the volume averaging theorem allows one to decompose the averaged derivatives
as (Whitaker 1967; Cushman 1982)〈

∂ξ

∂xj

〉
=
∂〈ξ〉

∂xj
+

1
Vb

∫
Sb

njξ dS. (3.4)

By considering the porous medium disordered with respect to the mesoscale
volume, we can make use of the classic volume averaging theorem and of the
following dimensionless parameters (with τ = L/U the mean residence time):

x∗ =
x
L
; t∗ =

t
τ
; u∗j (x)=

uj(x)
U
; c∗(x, t)=

c(x, t)
cin − c0

; c∗0 =
c0

cin − c0
(3.5a−e)

in order to finally compute the following volume-averaged transport equation:

∂〈c∗(x, t)〉
∂t∗

+
∂〈c∗(x, t)〉〈u∗j (x)〉

∂x∗j
=

1
Pe

∂

∂x∗j

(
∂〈c∗(x, t)〉
∂x∗j

+
SsL
Sb

∫
Sb

njc̃∗(x, t) dS
)

−
∂〈c̃∗(x, t)ũ∗j (x)〉

∂x∗j
−Da SsL

(
〈c∗(x, t)〉 +

1
Sb

∫
Sb

(c̃∗(x, t)− c∗0) dS
)
. (3.6)

It is interesting to notice that, besides the transport terms (accumulation, advection,
diffusion and dispersion, from left to right), the reactive conditions at the fluid–solid
boundaries are combined into the last term of equation (3.6). During the averaging
procedure, we assume that the specific surface area Ss = S/Vf = Sb/Vb is constant
at the averaging scale throughout the sample and we ensure the validity of this
approximation by choosing an appropriate size of the mesoscopic averaging volume.
In particular, by choosing the volume as Vb = 3d/L Vf we observe a sufficiently low
value of the spatial fluctuations of the specific surface area, as depicted in figure 4.
We therefore assume such a value as a reasonable one for performing the averaging
procedure, also with respect to condition (3.1).

Equation (3.6) is defined via the dimensionless Péclet and Damköhler numbers,
which quantify the balances between the fluid-dynamic mechanisms, advection,
diffusion and reaction:

Pe=
UL
Dm

, (3.7)

Da=
kr

U
. (3.8)
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FIGURE 4. The standard deviation for the quantity Ss is plotted as a function of the
mesoscopic volume averaging length for (a) the cluster of spheres, (b) the felt and (c)
the foam material. By choosing a mesoscopic characteristic length as 3d, the normalised
fluctuation is reduced in all three material samples to ∼O(10−1).

Equation (3.6) represents a closure problem. To solve it, equation (3.6) should
be formulated in terms of effective parameters that do not depend on the local
concentration values. Various procedures have been proposed for achieving this
mathematical expression, such as moment matching, moment-difference expansion
and homogenisation (Mauri 1991). Identifying the exact mathematical solution for
closing (3.6) is beyond the scope of the present study. Here, we impose a formulation
of two mesoscopic parameters to obtain a one-dimensional volume-averaged equation;
we then quantify via numerical simulations the leading and subleading microstructural
terms of such a formulation and discuss their significance for possible mathematical
closure strategies.

Since symmetric boundary conditions are imposed along y and z directions, we thus
rewrite (3.6) as

∂〈c∗(x, t)〉
∂t∗

+
∂〈c∗(x, t)〉
∂x∗

=
1

Peb

∂2
〈c∗(x, t)〉
∂x∗2 −Dab SsL (〈c∗(x, t)〉 − c∗0). (3.9)

The mesoscopic parameters convey information about the spatial fluctuations of the
physical quantities induced by the porous microstructure. These parameters are defined
as

1
Peb

∂2
〈c∗(x, t)〉
∂x∗2 =

1
Pe

[
∂2
〈c∗(x, t)〉
∂x∗2 +

∂

∂x∗

(
SsL
Sb

∫
Sb

nxc̃∗(x, t) dS
)]

−
∂〈c̃∗(x, t)ũ∗x(x)〉

∂x∗
, (3.10)

Dab =Da
(

1+
1

〈c∗(x, t)〉 − c∗0

1
Sb

∫
Sb

c̃∗(x, t) dS
)
. (3.11)

The mesoscopic Péclet number Peb is formulated so that it gathers all the diffusive
and dispersive mechanisms, that is, the overall hydrodynamic dispersion, in the sense
defined by Whitaker (2013). The overall dispersion in the porous medium is the sum
of the molecular diffusion, the diffusive process induced by the microstructure and the
dispersion mechanisms sustained by advective forces (i.e. the first, the second and the
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Vb

L�

L

x* = 0+

x* = 1-

FIGURE 5. The three-dimensional mesoscopic domain Vb (in shaded blue colour) and the
macroscopic domain of length L′. The extremities of the macroscopic domain along the
streamwise direction are identified by the positions x∗ = 0+ and x∗ = 1− that correspond
to the centroids of the mesoscopic averaging volume.

third terms on the right-hand side of (3.10)). The second parameter is the mesoscopic
Damköhler number Dab that quantifies the spatial configuration of the concentration
at the fluid–solid boundaries and it is therefore a measure of the actual reaction
mechanism inside the porous electrodes. In the present analysis, we investigate the
impact of these terms on the solute transport and reaction in the complex structure
of the electrodes.

3.2. Macroscopic description
The final step of the spatial smoothing procedure consists of performing a further
averaging step, at the design length scale, which is identified here by the sample
macroscopic length L. Again, we split the generic physical quantity ξ into its averaged
value ξ̄ and spatial fluctuation ξ ′:

ξ = ξ̄ + ξ ′. (3.12)

The macroscopic averaging is identical to the one we have performed at the mesoscale,
except for the size of the averaging volume that now is the sample fluid volume
V ′f = L′Aε. The macroscopic volume is defined in order to perform the averaging as
described and illustrated in figure 5: its length L′ corresponds to the distance between
the centroids of the mescoscopic averaging volumes Vb at the extremities of the
sample. Therefore, it is the case that L′ = L − 3d. Since the mesoscopic quantity ξ

depends only on the position x we can rewrite the macroscopic averaging as

ξ̄ =
1
V ′f

∫
V ′f

〈ξ〉 dV =
L
L′

∫ 1−

0+
〈ξ〉 dx∗, (3.13)

where the first integration limit 0+ and second limit 1− here stand for the positions
x∗= (3/2) d/L and x∗= (1− 3/2) d/L corresponding to the extremes of the averaging
volume V ′f (see figure 5). By applying macroscopic averaging to (3.9), we obtain the
following averaged equation:

dc̄∗

dt∗
+ 〈c∗〉

∣∣∣∣1−
0+
=

1
PeL

∂〈c∗〉
∂x∗

∣∣∣∣1−
0+
−DaLSsL′ (c̄∗ − c∗0), (3.14)
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with the macroscopic Péclet and Damköhler numbers, PeL and DaL, redefined with
respect to the macroscopic averaged concentration and fluctuation values as

1
PeL

∂〈c∗〉
∂x∗

∣∣∣∣1−
0+
=

1
Pe
∂〈c∗〉
∂x∗

∣∣∣∣1−
0+
+

1
Pe

[
SsL
Sb

∫
Sb

nxc̃∗ dS
]1−

0+
− 〈c̃∗ũ∗x〉|

1−
0+, (3.15)

DaL =Da
(

1
c̄∗ − c∗0

1
S

∫
S
(c∗ − c∗0) dS

)
. (3.16)

The macroscopic transport equation, equation (3.14), presents features similar to
those of the pore-scale transport equation, equation (2.1), but the right-hand side of
the equation presents two different terms, expressed as functions of the macroscopic
observables (or flux ratios) PeL and DaL. The first quantifies the overall dispersive
behaviour of the flow embodying the effect of the microstructure as a function of
the macroscopic concentration gradients; the second measures the actual reaction
occurring inside the porous medium as a function of the averaged macroscopic
concentration c̄∗. We will later discuss the significance of these formulations in
order to close the macroscopic advection–reaction–diffusion equation (3.14) and the
conditions in which they can be considered as effective parameters, thus as physical
quantities definable without referring to the small-scale concentrations.

The reactive term is defined with the additional geometrical knowledge provided by
the dimensionless length SsL′, which becomes SsL when one takes into account the
total electrode length L. The values of SsL are listed in table 1. As already mentioned,
the inverse of the specific surface area is the characteristic microscopic length. In the
case of a pipe or of a duct, the inverse of the specific surface area varies linearly
with the hydraulic diameter dh. In other words, the inverse of the specific surface
area can be considered as the generalised formulation of the hydraulic diameter. This
evidence is confirmed by the fact that 4/(SsL)∼O(d/L) (see table 1). Consequently,
the dimensionless length SsL represents a sort of aspect ratio of the porous medium,
which, in the limit of a single circular pore of length Lc, becomes SsL→ 4Lc/dh. This
parameter thus contains important information on the topology of the microstructure,
which can play a prominent role in determining the working state of the porous
electrode (in particular, see §§ 4.1 and 6).

4. Numerical simulations of solute transport and reaction
4.1. The mechanisms of conversion in a porous electrode

To measure the efficiency of a porous electrode, one has to quantify its intrinsic
capability, provided by the microstructure, of spreading, transporting and promoting
solute reactions. Such a quantification is often named electrode conversion, that is, the
ratio between the rates of solute converted and solute injected into the electrode. The
mathematical expression of electrode conversion can be deduced from the macroscopic
equation of transport and reaction. It is intuitive to recognise that the reactive term
in equation (3.14) represents, in a dimensionless form, the total amount of solute
converted inside the electrode or, alternatively, the balance between the inlet and
outlet fluxes. This term is therefore the measure of the electrode conversion, which
at the steady state can be expressed as

DaLSsL c̄∗ =

(
−〈c∗〉|1

−

0+ +
1

PeL

∂〈c∗〉
∂x∗

∣∣∣∣1−
0+

)
L
L′
, (4.1)
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FIGURE 6. Conversion values for the cluster of spheres (circles), felt (squares) and foam
(triangles): (a) as a function of the Thiele modulus Φ2 and (b) as a function of the product
between the Damköhler number and the geometrical factor SsL.

where the multiplier L/L′ has been introduced since we are measuring the conversion
relative to the total electrode length L.

The steady-state values of conversion computed from the numerical simulations are
depicted in figure 6. In particular, the values of conversion as a function of the Thiele
modulus Φ2 are indicated in figure 6(a). It can be noticed immediately that, at the
same value of Φ2, the foam performs better in terms of percentage of converted solute.
It is now useful to recall that the Thiele modulus, as stated in (2.10), is defined as
the ratio between the reaction rate at the fluid–solid boundaries krSs and the diffusive
rate DmS2

s . Therefore, at an equal Thiele modulus, the electrodes are characterised by
the same mechanism of reaction at the boundaries, as stated in (2.2). Also, we remark
that the Thiele modulus is proportional to the characteristic microscopic length of the
system, that is, Φ2

∝ S−1
s . Since the foam specific surface area is the largest and the

molecular diffusion is the same (the Schmidt number is the same), at a fixed Thiele
modulus the velocity of reaction kr in the foam is the highest. Intuitively, this will in
turn translate into high values of global reaction rates and conversion, which are thus
induced by the large area available to reaction in the foam material.

However, the high conversion value observed in the foam is not merely induced by
a large specific surface area. The ratio between the conversion values of the foam and
the felt is much greater than the ratio between their specific surface areas, at the same
Thiele modulus (e.g. the specific surface areas are 0.11 and 0.33, and the conversion
values at Φ2

∼ 0.4 are 0.10 and 0.55 for the felt and the foam, respectively). Since the
conversion is defined as the ratio between the global reaction rate and the averaged
rate of solute transport τ−1

=U/L, it is not only a measure of the overall reactive flux
at the boundaries, but it also depends on the behaviour of solute transport.

The global functioning of the electrodes in converting the solute is better quantified
via the product Da SsL, which also encompasses the effects of the mean solute
transport (U) and of the microstructure (SsL). Figure 6(b) depicts the strong
relationship between conversion and such a product, with all the data points denoting
the different numerical solutions collapsing on a single master curve.

From figure 6, we can also observe two distinct regimes. At low Damköhler
numbers, more precisely when Da SsL < 1, the working mode of the electrode
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FIGURE 7. The ratio between the macroscopic Damköhler number and Damköhler number
representing the partitioning of spatial solute concentration between fluid–solid boundaries
and bulk. A value of one represents a perfect balance of such spatial partitioning with
reactions occurring uniformly.

is reaction-limited. This regime corresponds to fast solute transport compared to
the slow dynamics of the reaction at the boundaries or, equivalently, short solute
residence time compared to long reaction times at the boundaries. Therefore, the
physical system in this regime is governed by the fast dynamics with which the
solute fills the pores so that the reactions occur uniformly at the steady state. In the
limit defined by Da SsL < 1, the conversion is simply identified by ∼Da SsL, that
is, the global reaction rate is determined by the reaction velocity multiplied by the
specific surface area, since at the boundaries (c∗ − c∗0)∼ 1. The linear proportionality
between conversion and Da SsL can also be easily seen in figure 6 where the data
points are aligned along a line of slope 1. However, even though the reactions are
almost homogeneous in the porous electrode in the reaction-limited regime, the solute
transport can present some heterogeneous traits, as we will see and discuss in § 5.

The working mode of the porous electrode changes when Da SsL & 1 and it
becomes a mass-transfer-limited mode. This second regime is characterised by slow
solute transport compared to the rate of reaction at the fluid–solid boundaries and
the concentration of the solute inside the porous medium rapidly decreases along the
electrode length, on average. The master curve slope is lower than unity, indicating
that the conversion increases less than proportionally to the product Da SsL, and then
it eventually saturates at its theoretical maximum, i.e. the unit value.

4.2. The partitioning of the solute distribution in the porous medium
It is interesting to notice also that the macroscopic quantity formulated in the reactive
term of equation (4.1) scales with the dimensionless product Da SsL, as highlighted
in figure 7. By looking at the definition given in (3.16), we immediately recognise
that the ratio DaL/Da quantifies the partitioning of the solute spatial distribution along
the boundaries with respect to the averaged concentration. This observation suggests
that such partitioning depends on both the reaction rate and the material geometrical
characteristics; again the product Da SsL provides a reasonable measure of the solute
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partitioning mechanisms, evidencing the prominent role played by the aspect ratio SsL.
The values of DaL/Da tend to unity for low reaction rates and diminish for high
reaction rates, as expected when the high velocity of the reaction significantly reduces
the solute concentration at the fluid–solid boundaries. As a consequence, c∗< c̄∗ at the
boundaries and the value of the right-hand side of (3.16) diminishes.

The observed behaviour of the solute partitioning also suggests that the ratio
DaL/Da represents the closure variable for the reactive term of equation (3.14).
Notably, such a variable conveys specific physical information and it can be
interpreted as a sort of Nusselt number, as already suggested by Mauri (1991),
or, alternatively, as an effective fluid–solid mass-transfer coefficient (i.e. Sherwood
number). Indeed, by combining equations (2.2) and (3.16), we can write

DaL

Da
=

(
−
Dm

S

∫
S

∂c(x, t)
∂n

dS
)

1
kr(c̄∗ − c∗0)

. (4.2)

We notice that a value of unity of the ratio DaL/Da indicates uniform reactions
where the mass flux at the fluid–solid boundaries, determined by the numerator
of (4.2), equals the product between the chemical reaction rate and the averaged
concentration kr(c̄∗ − c∗0). Therefore DaL/Da = 1 identifies the maximum fluid–solid
mass transfer achievable in the system with that value of solute concentration. In
addition, we acknowledge that the mass-transfer coefficient decreases with increasing
magnitude of the reaction rate with respect to flow velocity kr/U. Such a trend
indicates that the flow velocity is not high enough for delivering the solute into the
pores and for sustaining the maximum chemical reaction theoretically attainable with
the bulk concentration.

4.3. The contribution of the transport terms to the overall reaction
Since we are solving (2.1) at the pore scale, we can now focus on the individual
contribution that each transport term has in determining the electrode operation, as
stated in equations (3.14) and (3.15), in order to quantify the leading and subleading
terms for the closure problem. The results of the numerical simulations indicate that
the diffusive transport is negligible while the advective and dispersive forces play an
important role, as depicted in figure 8. For the sake of clarity, it is important to
stress that we refer to ‘dispersive’ forces following the traditional definition of the
dispersion tensor (Whitaker 2013); hence, we refer to the third term on the right-hand
side of (3.15), while we name the other two terms ‘diffusive’. The global dispersion
can thus be rewritten as

1
PeL

∂〈c∗〉
∂x∗

∣∣∣∣1−
0+
=−〈c̃∗ũ∗x〉|

1−
0+ . (4.3)

This result is not surprising, given the very low molecular diffusivity that species have
in liquids or, in other words, the high Schmidt number that characterises our system.
In fact, the mathematical expression of the two diffusive terms contains prefactors
dependent on the Schmidt number. If we define the Reynolds number as Re=U/(Ssν),
the prefactors are Pe−1

= (SsL Re Sc)−1 in the case of the first diffusive term on the
right-hand of (3.15) and Pe−1SsL= (Re Sc)−1 in the case of the second term. Even in
the case of low flow velocity and low Reynolds numbers, which are typical for liquids
flowing through porous media, at high Schmidt numbers the Péclet number is high,
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FIGURE 8. Individual contributions of transport terms to conversion. The sum of the
contributions (solid line) is partitioned between advective (open symbols), dispersive (filled
symbols) and two other diffusive terms, which here we address as pure diffusive term
(dashed lines) and second diffusive term (dotted lines). The pure and second diffusive
terms refer to the first and second terms on the right-hand side of (3.15), while the
dispersive term refers to the third one. Note that the legend only indicates the symbols
referring to the cluster of spheres material (circles, blue colour); the other symbols denote
the felt material (squares, red colour) and the foam material (triangles, green colour).
Inset: zoom of the dispersive terms plotted in logarithmic scale, pointing out a quasi-linear
dependence on Da SsL at high reaction rates.

unless the porous electrode is characterised by a very low value of the aspect ratio SsL.
A low value of this aspect ratio indicates a squat medium, with mean diameter larger
than its length. Such a design is rarely encountered in electrodes because of its poor
efficiency, induced by the small extent of reactive solid surface. Therefore, the first
term on the right-hand side of (3.15) is expected to be negligible for most applications
involving liquid flow solutions, as is the second term as long as the product of the
Reynolds and Schmidt numbers is not less than unity. The values of the Reynolds and
Péclet numbers are reported in table 2.

The advective and dispersive terms significantly contribute to the transport. Figure 8
also highlights that such terms have a similar trend in the three materials: in the
reaction-limited regime the conversion of the electrode is fully quantified by the
balance between advective fluxes at the inlet and outlet, while the dispersion plays
a negligible role. This situation corresponds to a moderate decrease of the averaged
concentration in the medium along the streamwise direction at the steady state, and
an almost uniform reaction, due to the low consumption of solute at the fluid–solid
boundaries. When the reaction rate becomes limited by mass transport, that is, in
the mass-transfer-limited regime, the mechanism of transport partitioning changes. In
the latter case, the dispersive forces start to play a pivotal role, contributing to up
to the 20 % of the global reaction. We can observe such a substantial contribution
in figure 8 and also notice that, in the mass-transfer-limited regime, it increases
proportionally to Da SsL.
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FIGURE 9. Example of solute transport along preferential paths in the felt material at
Da SsL = 3.4. (a) Contour lines of the dimensionless velocity fluctuations ũ∗. (b) The
dimensionless concentration c̃∗. The depicted section is taken at the position y∗ = 0.24,
which corresponds to half of the lateral dimension.

τ (s) Re Pe PeL

Felt 0.08 0.14 499 21.6
Foam 0.15 0.04 260 8.5
Cluster of spheres 0.09 0.19 683 13.9

TABLE 2. Values of the mean residence time and of different flow dimensionless numbers
for the three considered materials. The Schmidt number is Sc= 100 for all cases.

4.4. The interaction between dispersion and reaction mechanisms
The dispersive term 〈c̃∗ũ∗x〉 represents the contribution provided by the microstructure
in spreading the solute, at high Schmidt numbers. This contribution, which is
analogous to the Reynolds stresses in turbulent flows, is a measure of the correlation
between solute concentration and flow velocity spatial fluctuations. Alternatively, it
can be conceptualised as the mean contribution to transport imposed on the solute
concentration by such spatial fluctuations.

With low reaction rates, this mechanism of transport is switched off, while it is
triggered when, with increasing product Da SsL, the reaction rate at the boundaries,
krSs, starts to be comparable to the mean advective transport rate, U/L. We can
conceptualise this situation of the electrode as a demanding condition, where the high
requirement of solute at the boundaries for sustaining reactions cannot be fulfilled
everywhere, especially in the pores characterised by low flow velocities, and a further
mechanism of transport is triggered for bolstering the reaction of solute in the
electrode. This mechanism consists of the exploitation of the high-velocity flow paths
for sustaining the global reaction. Indeed, we observe the creation of preferential
flow paths for the solute transport in the pores characterised by high flow velocities,
as clearly depicted in figure 9. In the low-velocity pores the reaction rate is high
compared to mass transport and the solute is consumed rapidly, so that close to the
inlet, for ũ∗x < 0, we have c̃∗< 0. On the contrary, the mechanism in the high-velocity
pores is different, since there the mass transport can sustain more reaction. In these
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¯c˘ ¯u˘

¶ ¡ ud/kr

(a) (b)

FIGURE 10. Sketch of the solute transport in connected parallel pores with different sizes.
(a) The functioning of pore filling is depicted; it is calculated accordingly to the balance
between reactive and mass transfer rates. (b) The pore velocities are determined with the
assumption of an equal pressure drop in the pores.

pores, the solute is not consumed immediately, but rather transported for longer
distances and decreases gradually along the flow direction, so that, at the inlet, for
ũ∗x > 0, we have c̃∗ > 0. This correlation between solute concentration and flow
velocity is mathematically translated into −〈c̃∗ũ∗x〉|

1−
0+ = 〈c̃

∗ũ∗x〉|0+ − 〈c̃
∗ũ∗x〉|1− > 0.

We can further confirm this correlation by computing the length ` necessary
for consuming the solute into a specific pore. This length can be estimated by
imposing the balance between reaction rate and mass transport in the pore, that is,
by reformulating the equation Da SsL = 1 at the single-pore level, from which we
resolve

`∼
ud
kr
, (4.4)

where we impose Ss= d−1. Let us then consider two pores, one small with d1< d and
one large with d2> d, as the sketch in figure 10 depicts. We make the hypothesis that
the porous system is represented by these two pores connected in parallel; then, they
experience the same pressure drop, so the relation between the velocities u1/d2

1=u2/d2
2

holds. We thus apply (4.4) to obtain the difference between pore filling lengths as
1`/`1 ∼ (d2/d1)

3
− 1. This result points out that the higher the pore variability, the

greater the difference in the solute transport lengths and the greater the correlation
between high-velocity pores and high concentration values. Indeed, the foam material
that presents the higher pore variability (see table 1) exhibits a higher dispersive flux
for high reaction rates. For low values of reaction kr, the filling length is greater
than the sample length, ` > L; in this situation, in the reaction-limited regime, all
pores are similarly filled along the electrode length and the correlation 〈c̃∗ũ∗x〉 ∼ 0.
As we increase the reaction rate, ` starts to be smaller than L, firstly in the low-
velocity pores, then in the slightly faster pores and so on, so that the number of
pores contributing to the global dispersive term increases as well as the magnitude
of the correlation 〈c̃∗ũ∗x〉. This trend explains why the dispersive term increases with
increasing reaction rate in the mass-transfer-limited regime.

5. Modelling the effective dispersion in porous media

It has been long debated as to whether the dispersion mechanisms in porous media
depend on the reaction (e.g. Valdés-Parada, Lasseux & Whitaker 2017). The possibility
of computing each individual microstructural term that contributes to the transport and
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FIGURE 11. The dispersive terms are plotted against the averaged concentration gradients
in order to extract the effective Péclet numbers, for each material sample, according
to equation (4.3). The linear fit has been performed for the simulated cases for which
Da SsL > 1 (filled symbols), since for lower values (open symbols) the dispersive terms
are considered negligible.

reaction of a solute allows us to further investigate this relationship in the case of
high Schmidt numbers. It also allows us to test the observation formulated in (4.3),
which suggests that the macroscopic (3.14) can be closed by means of an effective
parameter represented by the macroscopic dispersive coefficient PeL. We then assume
the effective dispersion mechanisms, at such Schmidt numbers, to be independent of
the reaction rate and we test this hypothesis. Therefore, an effective Péclet number
PeL is extracted for each material sample by fitting the microstructural values provided
from (4.3) at a steady state. Figure 11 illustrates such a procedure; the linear fit has
been performed by taking into account only the values corresponding to Da SsL> 1,
since for lower values the dispersive term is considered negligible. According to this
procedure, we evaluate the effective parameter that quantifies the global dispersion by
assuming such dispersion proportional to the gradient of the averaged concentration.
The computed effective Péclet numbers are listed in table 2.

To investigate the validity of the extracted PeL values, three further numerical
simulations have been performed, one for each material, with the reaction switched
off (kr = 0). These three cases thus correspond to pure advective–dispersive problems
and they should indicate whether the effective Péclet numbers are a good measure of
the dispersive forces at low reaction rates, without loss of generality. For the three
new cases, we compute the time-dependent breakthrough curves as a measure of the
solute transport:

B(t)=

∫
A
(c∗(x, t)− c∗0)u

∗

x(x) dA∫
A

u∗x(x) dA

∣∣∣∣∣∣∣∣
1

, (5.1)

and compare them with the analytical solution provided by the effective parameter
PeL (Kreft & Zuber 1978):

B(t∗)=
1
2

[
erfc

(√
PeL(1− t∗)2

4t∗

)
+ exp(PeL)× erfc

(√
PeL(1+ t∗)2

4t∗

)]
. (5.2)
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FIGURE 12. Complementary breakthrough curves for the three materials with null reaction
(kr= 0) versus dimensionless time t∗. The symbols indicate the numerical solution whereas
the solid lines indicate the analytical solution in (5.2), with the parameter PeL extracted
from (4.3). Inset: PDFs P of spatial solute concentration for the three materials at t∗∼ 2;
the dimensionless concentration value is reported on the abscissa.

The time-dependent complementary breakthrough curves 1 − B(t) for the three
materials with null reaction are shown in figure 12. The decay behaviour is
qualitatively similar for the three materials, but we observe a very sharp decay for
the felt and a smooth one for the foam. This observation suggests that the dispersion
mechanism is more uniform in the felt, with the majority of the solute reaching the
outlet at the same time, as it would be similarly observed in the case of transport
of a homogeneous front. Instead, in the foam the distribution of concentration at the
outlet is non-uniform, indicating that some pores are filled much faster than others.
This different dispersive behaviour is also highlighted in the inset of figure 12 where
the PDFs of the dimensionless concentration values are reported at the dimensionless
time t∗ ∼ 2. Again, the variability in solute transport is visible in the foam material:
some parts of the solute are characterised by longer residence times, so that the PDF
presents a clear bimodal shape. It is intuitive to observe the relation between such
a bimodal shape and the high tail of the residence time distribution of the foam:
they both describe the anomalous dispersion behaviour triggered by the variability of
the foam microstructure which, in turn, gives rise to substantially different residence
times and concentration values.

Interestingly, the dispersive trend in these three unsteady simulations is well
captured by the previously extracted steady-state effective Péclet numbers, with the
foam characterised by the highest dispersion and the felt by the lowest. However,
differences can again be observed; in particular, while a constant effective Péclet
number describes well the dispersive behaviour in the case of the felt and the cluster
of spheres, it fails to predict the long-tail behaviour observed for the foam, as well
depicted in figure 12.

To understand the discrepancy between the solution extrapolated from the
steady-state reactive simulations and numerical solutions of pure advective–dispersive
transport, it is useful to look at the breakthrough curves in the presence of reactions.
The complementary breakthrough curves with activated reactions for the three
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FIGURE 13. Complementary breakthrough curves for (a) the felt, (b) the foam and (c)
the bed of spheres. Symbols: complementary breakthrough curves with kr = 0. Solid lines:
complementary breakthrough curves with reaction; the increasing darkness of the solid
lines indicates the reduction of the reaction rate kr.

materials are plotted against dimensionless time in figure 13. In all cases the values
decrease until t∗ ∼ 1 when they reach a constant value, which shows that a global
balance is found between the mass of solute introduced in the porous electrode and
the mass that reacts inside it, after a time comparable to the mean residence time.

Since the solute is consumed in the porous electrode by the reaction occurring at
the fluid–solid boundaries, the complementary breakthrough curves with reaction do
not tend to zero as in the case of the pure advective–dispersive transport. The long
tail observed in the case of null reaction in the foam material is thus filtered out by
the reaction. In other words, the reaction can homogenise the the spatial distribution
of solute in the medium by mitigating the mechanisms of early arrivals and late delays
responsible of the long-tailed shape of the breakthrough curve.

The long-time tail characterising the breakthrough curve is a typical feature of
non-Fickian transport in highly dispersive media, such as the foam material. The
anomalous behaviour emerges because the nature of transport in such materials is
highly heterogeneous. This situation implies that the system cannot be considered at
local equilibrium and the representative volume Vb is not well mixed (the concept
of well mixed is equivalent to that of a ‘disordered’ medium with respect to the
mesoscale volume). In such conditions, even though the reactions occur rather
homogeneously (see § 4), the dispersive mechanism cannot be described by a
temporally and spatially homogeneous Péclet number, and equations (4.3) and (5.2)
are no longer valid (Dentz et al. 2018).

From these observations, we conclude that the pre-asymptotic dispersion mechanism
(i.e. for t∗ < 1) is independent of reaction and well approximated by a model based
on a homogeneous effective Péclet number, even in highly dispersive media. In the
mass-transfer-limited regime, the anomalous dispersion mechanisms are filtered out
because of the presence of high reaction rates that govern the transport in the pores
and non-Fickian effects are negligible; as highlighted in figure 11, in such conditions,
dispersion effects are proportional to the homogenised concentration gradients and
the model can thus correctly describe the asymptotic solution of solute transport. In
the reaction-limited regime, by contrast, it fails to represent the asymptotic dispersive
behaviour in the presence of complex microstructures (e.g. the foam), where the
mechanisms of delays and early arrivals of the solute are pronounced, leading to a
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FIGURE 14. (a) The functioning of the electrode, in terms of dimensionless power output
DaL/Dac̄∗ and conversion DaLSsLc̄∗, on varying the parameter Da SsL. The dashed and
solid curves are obtained by fitting the data from numerical simulations (circles). The
resulting fitted curves are y = 0.8 exp(−0.34 x) for the power output (dashed line) and
y = 0.84[1 − exp(−1.0 x)] for the conversion (solid line). On the right is illustrated the
balance between mass entering the medium and reacting at the surface that determines
the formulation of the parameter Da SsL: (b) for a pipe or a duct and (c) for a porous
electrode with a more complex geometry.

strongly heterogeneous transport and a not-well-mixed medium, for long characteristic
times.

6. Design of porous electrodes

Once the role of the microstructure in transporting, dispersing and converting the
solute has been clarified, its potential impact on the design of porous electrodes has
to be debated, in order to make the fluid-dynamic understanding of the system more
comprehensive. When one deals with the practical design of an electrode, an optimal
operative condition is not unequivocally determined by the converted power. Indeed
it is not only the amount of mass reacted over the mass injected that should be
taken into account, but also the global reaction rate attained in the system. Whilst
the former is quantified by the conversion factor formulated in (4.1), the latter can be
expressed through the ratio between the macroscopic Damköhler number obtained and
the Damköhler number determined as input, that is, DaL/Dac̄∗. This term expresses
the power output of the system in relation to its theoretical maximum that is found
when DaL =Da.

Figure 14 sketches the principles of the functioning of an electrode from a
perspective of both conversion and power output. While conversion varies from
values close to zero to unity, the dimensionless power output DaL/Dac̄∗ tends to
unity in the reaction-limited regime, when the maximum power is extracted in the
electrode, and it decreases for higher values of Da SsL in the mass-transfer-limited
regime.

Ideally, one would like to achieve the best conversion values, but one is often
limited by the required power output. Figure 14 clearly depicts such a cumbersome
restriction, with a rapid decrease of output power with increasing conversion. It is
therefore important that, on the basis of the application, one considers how to balance
these two mechanisms. Once the required power output is defined, the design of the
system that guarantees optimal operative conditions can be identified. For instance,
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one could choose to sacrifice the effectiveness of the conversion in order to maximise
the output power and minimise the battery size. Or, alternatively, one can decide to
convert more efficiently the solute with an oversized system.

Interestingly, the present analysis reveals that the operating modes of all the
investigated materials can be defined on the basis of a single parameter, Da SsL,
whose physical significance is conceptualised in the sketch of figure 14. Once such a
functioning is decided, the design of the system can be based on the corresponding
value of the parameter Da SsL. In light of this result, a practical and universal
design procedure can be established. For example, given the characteristics of the
chemical reaction, i.e. kr, the material properties Ss and the power to be spent to
flow the electrolyte, which provides the mean velocity U, the optimal length L of
the electrode is determined by imposing the desired Da SsL. Alternatively and more
interestingly, given the chemical reaction and the pump power of a system, the
optimal design and aspect ratio of the material, SsL, can be identified for a specific
application.

7. Summary and conclusions

We have used X-ray computed tomography combined with the lattice Boltzmann
method for simulating the pore-scale solute transport and reactions in reconstructed
real porous electrodes. This methodology has allowed us to gain an insight into the
transport and reaction mechanisms occurring inside various porous microstructures
at high Schmidt numbers. We have compared two real materials, a carbon felt and
a carbon vitrified foam, with a numerically generated material composed of solid
spherical particles. We have made use of the volume-averaging technique to upscale
and homogenise the advection–reaction–diffusion transport equation and identify
the microstructural terms responsible for the functioning of the three electrodes at
the macroscopic scale. This comparison has been made in terms of macroscopic
conversion efficiency, with varying the reaction rate at the fluid–solid boundaries
inside the electrodes, i.e. the Damköhler number Da, at an equal pump power.

The foam material outperformed the other electrodes in terms of percentage of
power conversion. The primary reasons are its high specific surface area and its
intricate microstructure, highlighted by the wide variability of its pore sizes that
promotes solute dispersion. With regards to the working modes of the electrodes,
two main regimes have been identified: (i) the reaction-limited regime, identified by
Da SsL< 1, and (ii) the mass-transfer-limited regime, corresponding to larger values of
Da SsL. These two operating regimes, which are typical of monolithic reactors (Hayes
& Kolaczkowski 1994), are here found to be unequivocally determined for the three
electrodes by a single parameter: the product of the Damköhler number and the
microstructural aspect ratio SsL.

By means of the homogenisation procedure, we have also quantified the impact of
the dispersion behaviour on the functioning of the electrodes. In the reaction-limited
regime, reactions occur rather homogeneously in the medium, and the dispersion
plays a minor role. In these conditions, conversion increases proportionally with
Da SsL. When approaching the mass-transfer-limited regime, conversion increases less
than proportionally with Da SsL and dispersion mechanisms contribute incrementally
to the solute transport and reaction. We have found that the dispersion mechanism
is quantified and mathematically expressed by the spatial correlation between solute
concentration and high-flow-velocity paths. The solute is transversally scattered and
transported along pores characterised by high flow velocities, a mechanism of selection
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of preferential paths that sustains transport and reaction in the porous electrodes at
high reaction rates.

The volume-averaging procedure has allowed us to identify the closure variables
for upscaling the pore-scale advection–reaction–diffusion equation. Such variables are
an effective fluid–solid mass-transfer coefficient, which is mathematically expressed as
the partitioning between solute concentration at the fluid–solid boundaries and in the
bulk, and an effective Péclet number.

We have then investigated the possibility of modelling the dispersion mechanism
in both the pre-asymptotic and asymptotic regimes via such a temporally and
spatially homogeneous Péclet number. Through this analysis, we have remarked
that a model based on a macroscopic effective Péclet number can correctly represent
the solute transport at short characteristic times of any reactive conditions. This
observation has been corroborated by the comparison between the latter model and
the numerical solution of purely advective–dispersive transport with null reaction.
For long characteristic times and low reaction rates, the model fails to reproduce
the non-Fickian transport behaviour of highly heterogeneous media (e.g. the foam
material), since it rests on the assumption of a well-mixed medium at the intermediate
mesoscopic scale, a condition that is not fulfilled in the presence of delays of the
transported solute (Dentz et al. 2018). By contrast, in the mass-transfer-limited regime,
the dispersion is well captured through the effective Péclet number, since the fluid
dynamics inside the pores is characterised by high reaction rates that mitigate such
delay mechanisms.

Finally, we provide guidelines for an optimal design of porous electrodes. In
particular, having recognised that the conversion values for all the investigated
materials can be determined on the basis of the Damköhler number and the
microstructural aspect ratio, we have suggested a novel designing practice: given the
rate of the electrochemical reaction and the flow velocity for a specific application,
that is, given the Damköler number, the porous electrode can be designed to exhibit
the optimal aspect ratio SsL, corresponding to the desired working states of the system,
irrespective of whether it belongs to the reaction-limited or the mass-transfer-limited
regime.
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