
Robotica (2025), 1–35
doi:10.1017/S0263574725101720

RESEARCH ARTICLE

A gesture-based behaviour-driven development approach
for end-user cobot programming
Anahide Silahli1 , Jose Pablo De la Rosa1 , Jorge Solis2 , Gustavo Alfonso Garcia Ricardez3 ,
Lotfi El Hafi3 , Johan Håkansson4 , Anders Stengaard Sørensen1 and Thiago Rocha Silva1

1The Maersk Mc-Kinney Moller Institute, University of Southern Denmark, Odense, Denmark
2Karlstad University, Karlstad, Sweden
3Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Japan
4Goodtech Solutions AB, Karlstad, Sweden
Corresponding author: Anahide Silahli; Email: ansil@mmmi.sdu.dk

Received: 29 November 2024; Revised: 15 April 2025; Accepted: 22 April 2025

Keywords: End-User Development (EUD); robot programming; industry 5.0; collaborative robots; multimodal interaction;
Behaviour-Driven Development (BDD); Domain-Specific Languages (DSLs)

Abstract
This study presents an innovative framework to improve the accessibility and usability of collaborative robot pro-
gramming. Building on previous research that evaluated the feasibility of using a domain-specific language based on
behaviour-driven development, this paper addresses the limitations of earlier work by integrating additional features
like a drag-and-drop Blockly web interface. The system enables end users to define and execute robot actions with
minimal technical knowledge, making it more adaptable and intuitive. Additionally, a gesture-recognition module
facilitates multimodal interaction, allowing users to control robots through natural gestures. The system was eval-
uated through a user study involving participants with varying levels of professional experience and little to no
programming background. Results indicate significant improvements in user satisfaction, with the system usabil-
ity scale overall score increasing from 7.50 to 8.67 out of a maximum of 10 and integration ratings rising from
4.42 to 4.58 out of 5. Participants completed tasks using a manageable number of blocks (5 to 8) and reported
low frustration levels (mean: 8.75 out of 100) alongside moderate mental demand (mean: 38.33 out of 100). These
findings demonstrate the tool’s effectiveness in reducing cognitive load, enhancing user engagement and supporting
intuitive, efficient programming of collaborative robots for industrial applications.

1. Introduction
Improving the efficiency of today’s manufacturing technology is paramount, and the use of collabora-
tive robots (cobots) has become an essential part of the equation. Many countries, including those in
Scandinavia and Japan, highly depend on the manufacturing industry but there are still several signif-
icant challenges. One challenge is the increasing employment rate among people aged 55–64 over the
last 20 years in many Organisation for Economic Co-operation and Development (OECD) countries [1].
In some countries, like Japan and Korea, this has significantly increased the labour force participation
among workers over 65. Although ageing societies are common in Europe, the share of the labour force
over 65 years old remains relatively lower [2]. As a preventive measure, the European Union’s Industry
5.0 program aims to employ research and innovation to achieve a more sustainable and human-centric
European industry [3].

To address these challenges, this research proposes a framework to enhance communication and syn-
chronization between humans and robots in collaborative tasks, using mixed reality (MR) and artificial
intelligence (AI). With MR, the framework visually conveys robot plans, motions, and status, as well
as the robot’s processed environmental data (e.g., detected objects, detected human, task state). With

C© The Author(s), 2025. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative
Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction,
provided the original article is properly cited.

https://doi.org/10.1017/S0263574725101720 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574725101720
https://orcid.org/0009-0000-2040-377X
https://orcid.org/0000-0002-1879-3833
https://orcid.org/0000-0002-6865-7346
https://orcid.org/0000-0001-6518-577X
https://orcid.org/0000-0001-9795-6153
https://orcid.org/0009-0008-7040-6803
https://orcid.org/0000-0003-0184-7281
https://orcid.org/0000-0001-8961-4663
mailto:ansil@mmmi.sdu.dk
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/S0263574725101720

2 Anahide Silahli et al.

rich, intuitive visual information, human collaboration is expected to be enhanced, improving decision-
making and assessment of the robot’s context to ensure task continuity. The AI module (1) interprets
multi-modal information from the human, such as hand gestures, body posture, and voice commands,
(2) generates robot behaviours that are responsive to human actions, and (3) adaptively determines the
next steps based on human intention and the task progress, relaying decisions back to the human via
MR.

The feasibility of integrating an ML-based gesture recognition system into an industrial collaborative
robot was previously verified [4], as well as using MR-based displays of cobot status through Microsoft
HoloLens for user interaction in different simplified collaborative scenarios [5]. Additionally, recent
research has proposed and evaluated safe and adaptable systems for human-robot collaboration that can
modify robot behaviour through natural language, based on user safety perceptions [6]. Moreover, adap-
tive task-planning systems have further enabled reliable human-robot collaboration for non-predefined
tasks instructed via multimodal communication. However, discussions with industrial partners on the
preliminary results from the human-robot interaction (HRI) perspective pointed out the importance of
providing flexibility to end users for customizing programmes [7].

End-user development (EUD) [8] has been studied for many years in software engineering to allow
subject-matter experts with no programming expertise to program and/or adapt software applica-
tions in their domain. In robotics, an expanding body of literature has been proposed to simplify the
programming of automation tasks through methods such as Programming by Demonstration, Visual
Programming, and Natural Language specification.

Despite advancements in human-robot collaboration, accessibility remains a significant challenge,
as many programming methods require substantial technical knowledge. This complexity, combined
with a lack of integrated, intuitive interfaces for multimodal communication, limits the ability of non-
experts to effectively interact with robots. While tools for natural language and gesture recognition exist,
there remains a need for more user-friendly systems that simplify the definition and execution of robot
behaviours. Addressing these gaps is crucial for advancing collaboration in industrial environments.

To address these challenges, this study focuses on enhancing the accessibility and usability of robot
programming for non-expert users by introducing several key innovations. First, a new intuitive Blockly-
based web interface is designed to enable non-experts to define robot actions with minimal programming
knowledge. Users define robot actions using a domain-specific language (DSL) based on behaviour-
driven development (BDD) [9], which provides clarity in the task definition. BDD is a software
development approach in which domain experts can specify system behaviour through independent,
functional examples called scenarios, written in a semi-structured natural language format.

In parallel, an expanding body of literature on visually enhanced DSLs, particularly when integrated
with popular tools like Scratch [10] or Blockly [11], encourages simple natural language through a
logical visual representation of the coded sequences. Such approaches have shown promise in enhancing
non-expert development by reducing syntax errors and improving the discoverability of development
environments [12].

The proposed interface is a web-based visual environment using Blockly [11], which simplifies sce-
nario creation with a modular, drag-and-drop interface that makes the process straightforward and free
of syntax errors. Additionally, it incorporates gesture-based interaction, allowing end users to control
tasks through natural movements, further enhancing the user experience and making the process more
fluid and engaging.

This paper continues the research presented in [13], which introduced a DSL based on a Given-
When-Then framework to improve human-cobot interaction through intuitive programming scenarios.
In this earlier study, we applied this approach to the system developed by [4]. Implemented on an
ABB Dual-Arm YuMi robot with a 3D gesture recognition system, the end-user programming frame-
work allowed users to control robot actions using body gestures. This design aimed to make cobot
programming accessible to non-experts, supporting the human-centric vision of Industry 5.0 [14]. To
evaluate this framework, a user study was conducted with 12 participants without programming experi-
ence. Participants created BDD scenarios within a programming editor displayed on a computer screen,

https://doi.org/10.1017/S0263574725101720 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574725101720

Robotica 3

enabling control of the robot in a pick-and-place task. The study demonstrated the tool’s usability
and adaptability for industrial tasks, identifying it as user-friendly and effective. However, areas for
improvement were noted, including gesture recognition accuracy and task flexibility.

In this paper, the BDD-based end-user programming framework is optimized and further investigated
through experiments involving 12 new participants without prior programming experience. The study’s
task now involves three distinct phases, positioning, grasping and placing, offering higher cognitive
demand and a more elaborate sequence than the pick-and-place task from the previous study. Unlike the
earlier research, where the pick-and-place task was pre-coded and user gestures triggered robot adjust-
ments (e.g., changing speed or stopping), this study allows participants to build a complete sequential
task themselves. The new BDD-based Blockly interface represents a significant improvement over the
earlier study, where participants relied on a basic programming editor and used paper documents to
label gesture signs. The updated platform allows participants to assemble Blockly blocks with distinct
types, shapes and colours for easy differentiation. Some blocks include images of the required hand ges-
tures and the interface is divided into fields with interactive buttons. Real-time feedback is integrated,
providing error messages and tracking code progress, ensuring a more guided and user-friendly expe-
rience. Additionally, the study was conducted in Denmark rather than Sweden, introducing diversity to
the user base and offering a comparative perspective on the interface’s effectiveness. The task was care-
fully designed to evaluate the interface’s usability, focusing on ease of understanding, user-friendliness,
intuitiveness, and adaptability in a practical robotic context.

Given the improvements introduced in the present study, including a new interface and more com-
plex task structures requiring higher cognitive involvement, the following research questions have been
defined:

• RQ1: How does prior programming experience affect non-expert users’ perception of the tool’s
intuitiveness and usability?

• RQ2: How does general professional experience influence users’ perceptions of the tool’s
intuitiveness and their ability to complete robot task assignments?

• RQ3: What aspects of user experience (e.g., intuitiveness, ease of learning, system integration)
show the most significant improvements in the new tool?

• RQ4: How do the System Usability Scale (SUS) metrics and user feedback in the current study
validate or challenge the qualitative improvements identified in the previous research?

Through these research questions, this study aims to evaluate the impact of the new interface on user
experience, identify the areas that have shown the most significant improvements, and determine the
tool’s effectiveness in real-world industrial applications.

2. Related work
Human-robot collaboration (HRC) systems aim to bridge the gap between human users and robotic
technologies, facilitating intuitive and continuous interaction even for non-expert users. Recent advance-
ments in HRC systems focus on improving accessibility, usability, and functionality across various
domains, including industrial robotics, social robotics, and educational tools. This section provides an
overview of the current approaches and challenges in this field.

2.1. Behaviour-driven development
BDD, introduced in 2006 [15], serves as a practical approach for defining software requirements and
acceptance criteria while addressing communication barriers between subject-matter experts and devel-
opers. By focusing on concrete examples of system behaviour [16], BDD helps stakeholders better
understand how specific features contribute to business value. The method promotes collaboration by
allowing requirements to be articulated in a format that is both testable and easy for technical and
non-technical participants to interpret [17].

https://doi.org/10.1017/S0263574725101720 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574725101720

4 Anahide Silahli et al.

To achieve this, BDD utilizes scenarios [18] described in a semi-structured natural language format
based on Gherkin syntax [19]. These scenarios typically include a title and three main parts: Given which
sets the context for the scenario, When which specifies the action taken, and Then which outlines the
expected outcome. Additional details, such as multiple contexts, actions, or outcomes, can be included
using “And” statements within these steps as can be seen below.

Scenario: <title>
Given [context]
And [some more context]. . .

When [event]
And [another event]. . .

Then [outcome]
And [another outcome]. . .

2.2. Natural language programming systems
Natural language programming systems have been lastly deployed in the robotics field to make their pro-
gramming intuitive and engaging for non-technical users. Added to multimodal interfaces, these systems
have enhanced features to allow users to interact with robots using natural modes of communication such
as speech and gestures. For example, Gorostiza and Salichs introduced a Natural Programming System to
make programming social robots more accessible for non-expert users in education and entertainment
(edutainment) contexts. Their system leverages multimodal interaction, enabling users to communi-
cate with robots more naturally. While promising, the system is constrained by limited adaptability
to diverse human communication styles (e.g., accents, gestures) and dependence on specific utterances.
Additionally, small sample sizes and a lack of robust qualitative metrics have hindered its comprehensive
evaluation [20].

Another key contribution is the CAPIRCI system by Beschi et al. [21], which integrates natural lan-
guage and block-based programming to simplify robotic task definitions. This hybrid approach allows
users to define tasks using both intuitive blocks and natural language. However, it faces challenges
such as issues with pronoun resolution, difficulties with complex commands and the inability to han-
dle dynamic workflows or real-time error recovery. These limitations emphasize the need for systems
capable of managing complex, adaptive, multi-step tasks.

The Teaching-Learning-Collaboration model proposed by Wang et al. [22] employs natural language
to enable robots to learn from human demonstrations, improving task efficiency and reducing program-
ming effort. The model’s key benefit is its ability to learn from human input, reducing the need for
complex programming. However, the model’s robustness is compromised by noisy inputs and ambigu-
ous commands and its scope is limited to basic tasks. Furthermore, its application in complex industrial
scenarios remains untested, underscoring the need for systems with enhanced safety and reliability in
collaborative environments.

2.3. Visual programming and model-driven approaches
Visual programming environments empower non-expert users by providing intuitive, graphical inter-
faces for robot programming. Systems like EUD-MARS, developed by Akiki et al. [23], combine
model-driven development with block-based programming, enabling task customization across vari-
ous robot types. This hybrid approach supports diverse robot applications while keeping the interface
accessible. Despite its accessibility, challenges such as block misinterpretation and limited multi-robot
conflict resolution reduce its utility in complex environments.

The work of Silahli et al. [24] introduced a framework combining a DSL with a Neural Network
(NN) model for intuitive robot motion specification. The DSL allows users to define motions with
high-level commands, while the NN, trained on Dynamic Movement Primitives, generates smooth and
precise robot movements. This approach simplifies robot programming for non-experts and adapts across
various robotic platforms, as demonstrated through experiments on a robotic arm.

https://doi.org/10.1017/S0263574725101720 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574725101720

Robotica 5

No-code solutions are also gaining traction, exemplified by Blanc et al.’s block-based interface [25],
which empowers users through guided tutorials. The main advantage of this system is its simplicity
and usability, enabling non-technical users to complete tasks with minimal effort. While this system
demonstrated strong usability for novice users, it struggled with unclear guidance and lacked evaluation
of long-term adaptability. Additionally, its primary focus on beginners rather than shop-floor workers
limits its practical industrial relevance.

Behaviour Tree frameworks offer another approach for simplifying robot behaviour design. Tulathum
et al. [26] proposed a drag-and-drop system with integrated debugging tools, which allowed convenience
store staff to program robot behaviours without needing deep technical knowledge. This system’s main
benefit is that it combines simplicity with powerful debugging features, though participants reported
difficulties with organizing complex tasks, highlighting the need for better visual guidance and training.

Similarly, Trigger-Action Programming has been employed to personalize humanoid robot
behaviours in IoT-integrated environments. Leonardi et al. presented a platform enabling users to define
context-dependent actions, such as speech and gestures. This approach’s flexibility allows for diverse
behaviour customization, but it faces significant scalability and error management challenges, with its
applicability outside controlled environments remaining uncertain [27].

For children, block-based programming tools such as NaoBlocks by Sutherland and MacDonald [28]
prioritize simplicity and engagement. The iterative development of this tool, based on user feedback,
allows for enhanced learning experiences in programming. While these systems excel in encourag-
ing creativity and supporting diverse programming strategies, usability barriers like robot selection
difficulties and robustness issues indicate the need for guided assistance and improved generalizability.

2.4. Machine learning and AI for HRC
Machine Learning (ML) is pivotal in advancing HRC, enabling robots to adapt to dynamic, real-
world scenarios. Mukherjee et al. [29] emphasize ML’s role in enhancing pose detection, intention
prediction and decision-making in industrial applications. By enabling robots to learn from experi-
ence, these systems can improve efficiency and adaptability. Despite its potential, ML integration faces
problems such as limited training datasets, noise sensitivity and challenges in achieving real-time adapt-
ability. Moreover, stringent industrial regulations add complexity to deploying ML-based systems in
safety-critical environments, necessitating robust and reliable models.

2.5. Mixed reality and augmented reality interfaces
Augmented Reality enhances HRC by enabling intuitive and context-aware programming systems.
Kapinus et al. [30] introduced a spatially situated programming framework that allows users to directly
manipulate robot tasks in real-world contexts. This approach reduces cognitive load and increases task
efficiency by minimizing the need to switch between programming and physical spaces. However, it
faced challenges such as interface clutter and debugging difficulties.

Situated Live Programming (SLP) frameworks, such as the one developed by Senft et al. [31], repre-
sent an end-user programming approach that allows users with limited programming experience to create
collaborative applications for human-robot interaction. In their framework, incremental task program-
ming is facilitated through annotated augmented video feeds, blending the programming environment
with real-world scenarios. The main advantage of this approach is its smooth integration of programming
into the physical environment. However, while it is effective for simpler tasks, SLP faces challenges with
debugging, managing complex tasks and reliance on predefined actions, which limits its applicability
in dynamic workflows.

Mixed Reality (MR) systems simplify programming through 3D interfaces and hand gestures. Gadre
et al. [32] demonstrate that this approach reduces cognitive effort and enhances task completion speed,
allowing users to interact with robots more naturally. However, their dependency on MR technology and
small-scale evaluations limit broader applicability.

https://doi.org/10.1017/S0263574725101720 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574725101720

6 Anahide Silahli et al.

2.6. Evaluation challenges in tools and approaches for enhancing HRC
A critical limitation in the development of tools and approaches for improving HRC is the lack of com-
prehensive, real-world, long-term evaluations. For example, studies such as Beschi et al. [21] and Wang
et al. [22] are constrained by short-term assessments or controlled environments, which fail to cap-
ture usability and robustness under practical, dynamic conditions. Moreover, participant diversity in
evaluations remains a significant issue. Many studies focus narrowly on specific user groups, such as
students or IT professionals, neglecting the needs of other demographics like older adults, children, or
non-technical users, who may interact differently with HRC systems.

2.7. Multi-domain applications and scalability of HRC tools
Many tools and approaches for HRC suffer from limited scalability and adaptability across different
domains. For instance, systems designed for industrial environments, such as Akiki et al.’s model-driven
adaptive robotics framework [23], often lack the flexibility to be deployed in healthcare or domestic
applications. Similarly, tools tailored for social or educational robots may not perform effectively in
dynamic industrial settings. Addressing this challenge requires a focus on developing scalable and versa-
tile solutions that can accommodate diverse task requirements and adapt seamlessly to multiple contexts,
thereby broadening the scope of HRC applications.

3. Methods
This study follows established empirical methods for evaluating the proposed tool and its effects on
HRC. The methodology draws on Engineering Research, Qualitative Surveys and Experiments (with
Human Participants), each of which contributes to assessing the tool’s usability, effectiveness, and
real-world applicability. Below, we briefly describe the adopted approaches.

3.1. Engineering research
The primary methodology employed in this study is Engineering Research (or Design Science), which
involves the creation and evaluation of technological artefacts; in this case, a BDD-based Blockly web
interface for robot programming. This approach focuses on developing new solutions (the new pro-
gramming tool) and empirically assessing their effectiveness. The artefact here is evaluated through
experiments with human participants who interact with the tool to assess its impact on usability and
task performance.

This methodology allows for a focused evaluation of the tool’s design, its integration with existing
systems and its potential for real-world application in the context of HRI. The engineering research
standard ensures that the artefact is tested against clear research questions, with empirical results
contributing to both practical insights and theoretical contributions to the field.

3.2. Experiments (with human participants)
To assess the impact of the tool in a controlled environment, the study adopts the Experiments (with
human participants) standard. This method allows for the manipulation of independent variables (such
as the interface and task complexity) to observe their effects on dependent variables like task completion
time, error rates, and user satisfaction. Participants are assigned to different experimental conditions to
evaluate the tool’s usability across different user groups, including those with basic and without prior
programming experience.

Experiments with human participants provide empirical evidence of the tool’s effectiveness in real-
world settings and showcase its strengths and weaknesses in facilitating robot programming tasks. Post-
task standardized questionaries are applied to assess the tool’s usability and the user’s cognitive load,
along with open-ended questions to allow participants express their overall experience and the perceived
opportunities for improvements.

https://doi.org/10.1017/S0263574725101720 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574725101720

Robotica 7

Sequence and Scenario definitions
<sequence > ::= (<scenario >) *
<scenario > ::= 'Scenario:' <description >

'Given' <initial state >
'When' <event >
'Then' <resulting state >

State-related clauses for robots and objects
<initial state > ::= (<robot state clause > | <object state clause >)
<resulting state > ::= (<robot state clause > | <object state clause >)

Event triggered by the user affecting the system’s state
<event > ::= <user entity > <user action >

Robot and Object state clauses
<robot state clause > ::= 'the' <robot entity > 'is' 'not'? <robot state >
<object state clause > ::= 'the' <object entity > 'is' 'not'? <object state >

Robot and Object states
<robot state > ::= 'positioned' <robot position >
<object state > ::= 'picked from' | 'placed at' <object position >

Entities and user actions
<user action > ::= 'do the' <gesture name > 'sign'
<user entity > ::= 'I'
<robot entity > ::= 'robot'
<object entity > ::= 'object'

Terminals
<description > ::= <STRING>
<gesture name > ::= <STRING>
<robot position > ::= <STRING>
<object position > ::= <STRING>

Listing 1: Backus–Naur Form grammar definition of the DSL

4. A BDD-based Blockly web interface for robot programming
This work investigates the use of BDD as a method to facilitate task specification for end-user program-
ming in bodily human-robot interaction scenarios. As a proof of concept, a DSL was developed that
allows users to define interactive scenarios with a collaborative robot using a semi-structured natural
language approach guided by BDD. Subsequently, an EUD environment was implemented comprising
a suite of tools to support end users, specifically non-expert robot users, throughout the authoring and
execution processes of interactive scenarios based on the proposed DSL.

This section provides an overview of (a) the proposed DSL, (b) the EUD environment implementa-
tion, and (c) the mechanisms and principles supporting the execution of user-defined code.

4.1. BDD-based domain-specific language
In this approach, BDD scenarios are interpreted as complete state transitions within a state machine.
A definition of the DSL syntax is presented in Listing 1. A programme, or <sequence>, consists of
one or more instances of the non-terminal <scenario>. Each <scenario> follows a Given-When-
Then format, where <initial state> defines the preconditions for the scenario and <resulting
state> describes the outcomes after an <event> occurs. Both <initial state> and <resulting
state> can be specified using either a <robot state clause> or an <object state clause>,
describing the current condition or placement of the <robot entity> or <object entity>,
respectively.

https://doi.org/10.1017/S0263574725101720 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574725101720

8 Anahide Silahli et al.

Scenario: Position the robot in the middle !
Given t h e r o b o t is not p o s i t i o n e d in the middle
When I do t h e Hello s i g n
Then t h e r o b o t is p o s i t i o n e d in the middle

Scenario: Pick up the object from the Base position
Given t h e r o b o t is p o s i t i o n e d in the middle
When I do t h e Thumbs up s i g n
Then t h e o b j e c t is p i cked from Base

Listing 2: Sample scenario: Positioning robot and picking up object from “Base”

Figure 1. State diagram from sample sequence in Listing 2. User gestures trigger robot state transitions.

Events are triggered by user actions, where the <user entity> performs a specific gesture (<user
action>). The terminal <description> provides a brief explanation of the scenario, serving a
documentation purpose without affecting task execution. The terminals <gesture name>, <robot
position> and <object position> are user-defined strings that are translatable into computer-
understandable values. <gesture name> defines a specific gesture performed by the user, such as a
hand sign, while <robot position> and <object position> refer to the placement of the robot and
object, respectively. A mapping file translates these user-defined terminals into computer-understandable
values: <gesture name> is mapped to a category recognized by a gesture recognition model and
<robot position> and <object position> are mapped to vectors of specific robot positions,
pre-trained through demonstration.

Listing 2 shows a sample sequence derived from the provided syntax. This programme can be
described using a three-state finite-state machine (Figure 1) that governs the robot’s behaviour. Each
scenario corresponds to a transition between these states, with user gestures acting as triggers for the tran-
sitions. The user-defined Hello sign moves the robot to the middle, while the Thumbs up sign prompts
the robot to pick up an object.

4.2. EUD environment architecture
An EUD environment was implemented on a multi-tiered architecture separating client, server and robot
layers to ensure modularity and clear division of responsibilities (Figure 2). The interactive elements
of the IDE represent the client-side perspective of the architecture. These components enable the end

https://doi.org/10.1017/S0263574725101720 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574725101720

Robotica 9

Figure 2. Overview of the system’s architecture.

user to configure and manage sequences while interacting with the robot (Figure 3), based on five main
components:

1. Visual Editor: A block-based editor built using Blockly1 that allows users to compose indepen-
dent scenario blocks by dragging and dropping elements from a toolbox into a Workspace zone
(Figure 3a), assembling them in a jigsaw-like manner. The grammar of the DSL is enforced
through specific block shapes and association rules, which restrict how blocks can connect.

2. Launch Interface: An interactive view adjacent to the development editor (Figure 3b), dynam-
ically updating based on the current stage of the development process. It provides essential
functionalities such as launching, stopping, saving, or restoring previous versions of the appli-
cation. Additionally, an embedded console offers real-time feedback regarding the application’s
state, enabling users to monitor the execution process, identify current system states, and explore
potential transition paths within the application’s workflow.

3. Code Generator: This component automatically parses the blocks assembled in the visual edi-
tor’s workspace to produce a list of scenario strings that adhere to Python’s Behave2 feature file
format. Upon the user’s Launch command, the generated feature file is deployed on an appli-
cation server controlling the robot’s execution according to the scenarios defined. Additionally,
a secondary code generator, linked to the Save/Load functionality, creates or retrieves an XML
representation of the workspace’s block structure, allowing users to save or restore previous
versions of their scenarios for future use.

4. Label Wizard: This tool enables users to create custom labels for available gestures (Figure 3d).
User-defined labels are then dynamically integrated as selectable options within the visual editor,
specifically for the <gesture name> terminal string. For instance, gestures such as Hello and
Thumbs up (shown in Figure 3a) are represented as blocks within the editor. This allows users to
define scenarios using action descriptors in their language terms.

5. Gesture Recognition: The gesture recognition view displays a live camera feed, monitoring the
user’s gestures. Once a gesture is detected, a set of key landmarks is overlaid onto the image,
with the corresponding gesture label displayed (Figure 3e). During runtime, identified gesture
categories are transmitted to an application server, which uses this data to initiate transitions
between the robot’s states according to the control logic specified by the user’s scenarios.

1https://developers.google.com/blockly
2https://behave.readthedocs.io/en/stable/gherkin.html#gherkin-feature-testing-language

https://doi.org/10.1017/S0263574725101720 Published online by Cambridge University Press

https://developers.google.com/blockly
https://behave.readthedocs.io/en/stable/gherkin.html#\gdef '{#}\gdef no{no}\gdef yes{yes}gherkin-feature-testing-language
https://doi.org/10.1017/S0263574725101720

10 Anahide Silahli et al.

Figure 3. Interface elements of the development environment.

On the server side, the computational logic is managed by an Application Service, which acts as the
central middleware, coordinating between client requests and backend operations. This includes pro-
cessing gesture interpretations and executing control commands based on user-defined scenarios. Two
artefacts, the Mapping File and the Scenarios File, are used to store configuration mappings and user-
defined scenarios, respectively. A Robot Interface component within the server communicates with the
robot’s API, translating user-defined commands into actionable instructions for the robot’s proprietary
Control Software.

4.3. Execution environment
Figure 4 provides an overview of the runtime model. This can be resembled to the pipes-and-filters
model [33], in which a complex task is decomposed into a series of successive subtasks. Each subtask is
executed by a separate, autonomous unit referred to as a filter. The integration and communication among
these filters are facilitated through the exchange of data via channels known as pipes. The architecture
is composed of three main filters, developed as independent processes: Gesture Recognition, User’s
Application Logic, and the Robot Interface. Communication between the filters is piped via TCP web
sockets between the processes. Each filter is briefly described below:

1. Gesture Recognition Filter (GR): A continuous running process that receives a stream of data
from the camera sensor, providing a recognition category to the output pipe. As a proof of con-
cept, Google’s MediaPipe Gesture Recognizer [34] model was implemented to detect and write
the category numbers of seven standard hand gestures.

https://doi.org/10.1017/S0263574725101720 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574725101720

Robotica 11

Figure 4. System architecture based on a pipe-and-filter pattern.

2. User Application Logic Filter (UAL): A process executing Python’s Behave library ([35]) to
parse and execute the end user’s scenarios, which are contained in text files called features.
Behave executes all the Given, When, and Then clauses from the scenarios of such feature files
as sequential steps. Each step is mapped to an implementation function by using annotations with
regular expressions. The input pipe of this process contains the gesture categories recognized by
the GR. To allow the end user to describe gestures and robot positions in their own words, the
process uses a mapping file (JSON) that relates the values used by the system with their preferred
naming in natural language. If a scenario returns a successful evaluation, the resulting state from
the Then clause is written to the output pipe, which is used by the Robot Interface for updating
the robot’s behaviour.

3. Robot Interface: This process continuously communicates with the robot’s controller
(i.e., FlexPendant) using its proprietary SDK API to a) collect information about the robot, and
b) perform actions specified by the user’s scenarios.

The execution procedure is depicted in Figures 5 and 6, which begins as the user triggers a launch
event from the authoring client. This action sends a request to the application server, which, in turn,
spawns the UAL process. During the Given phase, the UAL interacts with the robot by requesting and
awaiting a status update. Upon receiving the robot’s response, the process evaluates the Given condition.
If the condition is evaluated as false, the preconditions for running the scenario are not fulfilled, hence
the gesture recognition and robot command stages are bypassed and the process moves directly to the
next scenario. For each scenario in the sequence where the Given condition is true, the process advances
to the When clause, at which point the system waits for user gestures. Once the expected gesture is recog-
nized, the UAL sends commands to the robot to perform specific actions, such as executing a predefined
trajectory. The robot subsequently reports its outcome back to the UAL, which is then relayed to the
server and communicated to the client. Upon completion of all scenarios, the UAL process terminates
and the server notifies the client of the process’s conclusion, which updates the view to unlock new
actions for the user, including the ability to relaunch the code or re-engage programming.

5. Experiment
This section presents the experiment conducted to address our research questions. It provides an
overview of the experimental procedure and summarizes the key findings. The experiment involved
one to two proctors and a single participant working in the experimental environment.

5.1. Before the experiment
5.1.1. Participants recruitment
Participants were primarily individuals from academia or professionals with experience in companies.
Recruitment was conducted using flyers for advertisement and through networking and outreach. The
majority of participants shared a similar profile of being educated individuals. Specifically, most partic-
ipants from academia were PhD students from the University of Southern Denmark (SDU) in Odense,
Denmark.

https://doi.org/10.1017/S0263574725101720 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574725101720

12 Anahide Silahli et al.

IDE
Client

Flask Server
Server

Robot
Robot

Gesture Recognition
Gesture Recognition

POST /launch

UAL
User’s Logic

Start

Response (200 OK, PID)

Given

Given Result
App State

When

When Result
App State

Then

Then Result
App State

Given condition==True

Repeat for each Scenario

App State

msc Main sequence

Figure 5. Main execution sequence of user’s application logic.

5.2. During the experiment
5.2.1. Experimental setup
As illustrated in Figure 7, the working environment consists of a collaborative UR5 robot mounted on
a mobile platform, which remains stationary and unused for this experiment. A cubic object, built with
LEGO bricks, is placed at the centre of the table at a location marked as “Base”. The workstation is
divided into two separate areas, labelled as Left and Right.

Each area includes three marked locations for object placement, labelled “A”, “B” and “C”,
providing the user with multiple positioning options.

https://doi.org/10.1017/S0263574725101720 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574725101720

Robotica 13

(a)

(b)
(c)

Figure 6. Sub-sequences of execution for the user’s application logic: (a) Given, (b) When, (c) Then.

(a) (b)

Figure 7. Overview of the experimental setup.

5.2.2. Tools and documents used during the experiment
Table I and Figure 8 below outline the tools and documents provided to the participants and used by the
proctors to facilitate the flow of the experiment.

5.2.3. Onboarding and experimental procedure
The experiment was conducted in a structured manner to ensure the protocol adherence and participant
comfort to engage with the testing interface. Upon arrival, each participant was welcomed by the proctor,
who provided a detailed explanation of the session’s objectives and the scientific goals related to the
usability testing of the interface.

Participants were guided through the necessary documents, including the consent form and the first
survey, which they were required to complete before beginning the task. The first survey, shown in
Figures A1 and A2 in Appendix A, is a demographic survey consisting of eight questions. These ques-
tions collected personal background information, such as age and gender, as well as other key factors
essential for the subsequent data analysis. The final three questions focused on the participants’ overall
professional experience (in years), programming experience and experience with robot programming
(in years). For the first and third of these questions, participants selected one of four categories: Less
than one year, Between 1 and 3 years, Between 3 and 5 years or More than 5 years. In the second

https://doi.org/10.1017/S0263574725101720 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574725101720

14 Anahide Silahli et al.

Table I. Resources provided to participants and proctor.

Participants’ tools Proctors’ tools
Paper-format documents Paper-format documents
Task instructions (A4 document, see Figure 10b), Consent form,
NASA-TLX survey, Demographic survey,
SUS survey Proctor notes
Hardware tools (see Figure 8b) Recording tools
Webcam/RealSense camera, GoPro camera (see Figure 8b),
Monitor, Video recordings,
Mouse, Screen recordings,
Robotic platform and LEGO block Timer for task duration
Software tools
Web interface for gesture labelling (see Figure 8a),
BDD-based visual editor (see Figure 8c)

question, participants were asked to rate their programming proficiency on a scale from 1 to 5, where
1 indicated less proficient and 5 indicated most proficient.

After completing the survey, the proctor provided an introductory presentation, lasting 15 min, dur-
ing which the available tools and the BDD-driven Blockly visual editor were explained. Following the
introduction, participants were guided on how to assign customized names to gesture signs using the
web interface shown in Figure 8(a). They were informed that they were free to choose any name they
preferred, in any language they felt comfortable with, and that there would be no need to remember
these names. Instead, the customized names would be displayed alongside images of the signs in the
corresponding blocks during the task.

5.2.4. Task selected for the experiment
The experiment involved programming the cobot in three sequential steps to manipulate a cubic object,
move it within the workstation and place it in specific locations. At the beginning of the experiment, the
cobot’s configuration is random, positioned over the workstation with the tool facing the plane of the
table, as illustrated in the first subfigure of Figure 9.

The task is structured into three main phases. Figure 9 illustrates the intermediate and final
arrangements of the object and the robot after each step.

1. Positioning and initial grasp: In the initial step, the user positions the robot at the central starting
point of the workstation. Once the robot reaches this point, the user programmes it to grasp the
cubic object located at the table’s centre, referred to as the “Base”.

2. Placing the cube at position right B: After grasping the object, the robot is guided by the user
to the right side of the workstation, where it places the object at position “B”.

3. Moving the cube to location left A: In the final phase, the user programmes the robot to pick
up the object from position “B” and move it to position “A” on the left side of the workstation,
completing the sequence.

The aforementioned task was selected for the experiment because it involves performing a series of
fundamental actions commonly found in robotics, such as positioning, object manipulation and place-
ment within a robotic framework. Additionally, the task was adapted to assess the ease of understanding
and intuitiveness of the proposed BDD-based Blockly visual interface for the participants.

5.2.5. Task execution and observation
Participants were free to use the 45 min allocated for the experiment as they wished to solve the task. The
proctor was not permitted to assist with solving the task but could address participant inquiries unrelated

https://doi.org/10.1017/S0263574725101720 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574725101720

Robotica 15

(a)

(b)

(c)

Figure 8. Visual representation of the tools listed in Table I.

to task completion, such as clarifications regarding the instructions, the task description, or support with
technical issues. If participants indicated that they had completed the task but had not executed their
programme, the proctor requested them to run it to verify their solution. If the programme did not solve
the task successfully and time was still available, participants were allowed to make further attempts to
improve their solution.

https://doi.org/10.1017/S0263574725101720 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574725101720

16 Anahide Silahli et al.

Pick from “Base”

Place at right “B” Place at left “A”

Figure 9. Task overview; three phases of robot object manipulation.

5.2.6. Data annotation
Throughout the session, data collection was carefully conducted for subsequent analysis. Video and
screen recordings were initiated with the participant’s consent for a detailed review of interactions with
the interface. A proctor supervised the experiment at all times and took notes on participant perfor-
mance and behaviour. Figure B1, Appendix B illustrates the spreadsheet used by the proctor during the
experiment for data collection.

The duration of each of the three steps of the experiment was recorded using a digital clock, along
with the start and end times. The proctor also tracked specific events during the experiment, including
the number of times participants executed their programme solution. Once a participant had completed
the task, the proctor reviewed the code and recorded the number of scenarios used in their solution.

5.3. Post-experiment feedback
After completing the experiment, participants were asked to fill out two post-experiment surveys: the
NASA-TLX [36] survey and a System Usability Scale (SUS) [37] survey.

The NASA-TLX survey is a standardized tool used to measure perceived workload across multiple
dimensions, such as mental and physical demand, temporal demand and frustration level. This allows
for a nuanced assessment of how mentally and physically demanding participants found the tool to use.

The SUS survey, on the other hand, focuses specifically on usability, providing a simple but reli-
able measure of how effectively and efficiently participants could navigate the tool. These two surveys
were chosen to offer complementary insights: the NASA-TLX captures the cognitive and physical effort
involved in using the tool, while the SUS survey evaluates overall usability and user satisfaction. To pro-
vide clarity on the assessment process, Figure C1 in Appendix C displays the SUS survey forms used
in the study.

6. Results
6.1. Analysis of participants’ demographics
The data collected from the experiment surveys were processed to perform a qualitative analysis and
assess whether the objectives of the study were met.

https://doi.org/10.1017/S0263574725101720 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574725101720

Robotica 17

(a) (b)

(c)

Figure 10. Survey results of participants’ background and experience.

For this research, the last three questions of the demographic survey mentioned in Section 5.2.3, were
selected and were particularly important:

1. How many years of professional experience do you have?
2. How would you evaluate your computer programming abilities?
3. Do you have experience working with robots?

Using the participants’ responses, the following graphs were generated to visualize the distribution
of participants within each category.

Upon examination of the results, the graph Figure 10(a) demonstrates the diversity of professional
experience in all groups of participants. This is particularly beneficial as it ensures a diverse range of
working profiles within the study. The inclusion of participants with varying levels of professional expe-
rience offers a broader perspective on how different backgrounds might influence both the effectiveness
and ease of use of the tool. This diversity enables an evaluation of whether participants with more profes-
sional experience are able to use the tool more effectively. In turn, this helps assess its user-friendliness
and overall performance across different experience levels.

Analysing the graph Figure 10(b), it can be observed that most participants rated themselves at the
lowest level for programming experience, indicating no experience, while a smaller group assigned
themselves a score of 3, suggesting minimal or introductory knowledge. This indicates that while most
participants had limited or no programming experience, some had basic familiarity with technical tools.
Including both groups allows for a more comprehensive evaluation of the tool’s usability across different
levels of technical familiarity.

Finally, the last graph shows that, except for one participant, all others had a low exposure, or limited
experience with robots (less than one year), which helps to provide a clearer picture of how the tool
performs for individuals who are unfamiliar with robotic technology. It allows us to assess how intuitive
and effective the tool is for those with little to no experience in a human-robot interaction (HRI) context.

https://doi.org/10.1017/S0263574725101720 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574725101720

18 Anahide Silahli et al.

Table II. Evaluation variables created from SUS survey.

Category Description Variables Participant questions
Task/System
functionality

Variables in this category
evaluate participants’ perception
of the system’s task execution
and integration

Workflow “I found the workflow for
implementing new tasks for the
robot to be simple”

EasyUse “I thought that the programming
tool for the robot was easy to
use”

GestureRecog “I found that the robot, the
gesture recognition module and
the programming tool are well
integrated”

Consistency “I found that the robot
consistently responded to body
gestures while using the
programming tool”

Internalization Variables in this category
evaluate the participants’
interest in using the tool for
future tasks and integration into
their routine work/life

LikeUse “I think that I would like to use
this programming tool
frequently for automating other
tasks around me”

Accessibility Variables in this category assess
how easily participants feel they
can access and use the tool, even
without technical support

ProgramNew “I think that I could programme
new scenarios for the robot
without the support of a
technical person”

Learnable “I would imagine most people
would learn to use the
programming tool for robots
very easily”

UseWithout-
Learning

“I could use the programming
tool without having to learn
anything new”

Comfort of
user

Variables in this category
evaluate how comfortable and
intuitive participants found the
tool during the experiment

Intuitive “I found the programming tool
to be very intuitive”

Comfort “I felt comfortable and in
control while using scenarios to
program the robot’s behaviours”

Rating “In general terms, I would rate
my experience using the
programming tool as. . .”

6.2. Hypothesis formulation
To initiate the data analysis, testing hypotheses were defined to evaluate the tool’s suitability for non-
technical users within an industrial HRI context. The hypotheses to be examined are as follows:

https://doi.org/10.1017/S0263574725101720 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574725101720

Robotica 19

• Null Hypothesis 1 (H01): Users’ programming experience level does not significantly impact
the tool’s intuitiveness in completing robot task assignments without extensive training.

• Alternative Hypothesis 1 (H11): Users’ programming experience level significantly impacts the
tool’s intuitiveness in completing robot task assignments without extensive training.

• Null Hypothesis 2 (H02): Users’ general professional experience level does not significantly
impact their perception of the tool’s intuitiveness in completing robot task assignments without
extensive training.

• Alternative Hypothesis 2 (H12): Users’ general professional experience level significantly
impacts their perception of the tool’s intuitiveness in completing robot task assignments without
extensive training.

For the tool to be viable for broad deployment in industrial HRI applications, it should be intuitive for
users without programming backgrounds. Therefore, the analysis will investigate whether programming
experience correlates with participants’ ratings of the tool’s intuitiveness and other features, which are
determined by the values of the associated variables.

Additionally, to explore whether other dimensions of expertise play a role, a secondary hypothesis
was defined to assess the impact of general professional experience in the industry. This analysis seeks
to determine whether those with longer or shorter industrial experience find the tool more intuitive,
regardless of their programming knowledge. This added layer of investigation allows for a broader under-
standing of user background influences on the tool’s usability in real-world settings, focusing specifically
on how familiarity with industry workflows might impact perceptions of the tool.

Based on the answers to the SUS survey (Table V), several variables were created for data analysis
and organized into distinct categories. Table II presents these variables by category, with accompanying
descriptions of each category’s evaluation goals and the specific questions asked to the participants.
Each category targets a particular aspect of the tool and its variables capture participants’ feedback on
related experiences.

Data analysis was conducted using Stata [38], a statistical software for both quantitative and qual-
itative analysis. To evaluate the first alternative hypothesis (H11) and potentially reject the associated
null hypothesis (H01), the participant sample was segmented based on programming experience. This
categorization was based on responses to the previously introduced question 2 from the demographic
survey (see Section 6.1). A new independent variable, prog_experience_group was created to categorize
participants based on their self-assessed programming experience (Figure 10b).

Two categories were defined: participants who rated their programming experience as 1 or 2 (pre-
sumably indicating no programming skills) and those who rated it as 3 (presumably indicating notions
or low programming skills). Subsequently, analysis of variance (ANOVA) tests were conducted for each
variable listed in Table II (e.g., Workflow, EasyUse, ProgramNew, etc.) to determine whether statis-
tically significant differences existed across the two programming experience groups. In these tests,
the variables listed in Table II served as the dependent variables, while prog_experience_group served
as the independent grouping variable. Each ANOVA test produced an F-statistic and p-value to indi-
cate whether the differences between the two groups were significant. Statistically significant p-values
(e.g., below 0.05) would suggest that professional experience has a meaningful effect on the mean ratings
for a given variable.

In a secondary analysis, the participant sample was segmented based on years of professional experi-
ence, to evaluate whether general professional experience had a significant effect on participants’ ratings
of various aspects of the system. The purpose was to evaluate the second alternative hypothesis (H12)
and potentially reject the associated null hypothesis (H02). Four experience groups were created (see
Figure 10a): participants with less than one year of experience, those with 1–3 years, 3–5 years, and
more than 5 years. Each group was assigned a corresponding numerical value (1 through 4) through the
creation of a new variable, experience_group. Similar to the first analysis, a second wave of ANOVA
tests were conducted for each variable in Table II, with these variables as dependent variables and
experience_group as the independent grouping variable.

https://doi.org/10.1017/S0263574725101720 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574725101720

20 Anahide Silahli et al.

Table III. ANOVA results for each dependent vari-
able listed in Table II based on programming
experience.

Variable F-value p-value
Workflow 0.48 0.5059
EasyUse 0.09 0.7760
GestureRecog 0.61 0.4543
Consistency 0.00 1.0000
LikeUse 0.39 0.5465
ProgramNew 0.06 0.8105
Learnable 0.39 0.5465
UseWithoutLearning 2.97 0.1156
Intuitive 0.37 0.5564
Comfort 0.61 0.4543
Rating 0.28 0.6097

6.3. ANOVA results
6.3.1. Results on programming experience groups
From the initial set of tests, the F-value and p-value for each ANOVA output were gathered in Table III.

• Results reflecting high p-values (no statistical significance): All variables associated with task
and system functionality displayed p-values close to or above 0.5, which is far above the threshold
for statistical significance (0.05). For instance, Workflow resulted in a p-value of 0.5059, indicat-
ing that there is no significant difference in ratings of the system’s task-related workflow between
groups with different levels of programming experience. Likewise, EasyUse (p = 0.7760) and
GestureRecog (p = 0.4543) show no significant impact of programming experience on perceived
ease of use or gesture recognition performance. Interestingly, Consistency displayed an F-value
of 0 and a p-value of 1, suggesting that ratings were identical across groups. These results together
indicate that programming experience does not significantly affect participants’ views regarding
the system’s ability to execute tasks and provide integrated functionality. Regarding internaliza-
tion, the LikeUse variable, with a p-value of 0.5465, suggests that programming experience does
not significantly impact participants’ interest in using the tool regularly for future tasks. Both
groups show similar tendencies toward frequent use, independent of prior programming experi-
ence. For ProgramNew (p = 0.8105) and Learnable (p = 0.5465), no significant differences in
accessibility ratings were observed between experience groups. Both rated the system’s learn-
ability similarly, indicating that programming experience does not heavily influence perceptions
of accessibility or the need for technical assistance. However, results for UseWithoutLearning
will provide further insights on this aspect. The Intuitive variable (p = 0.5564) shows no signif-
icant difference between groups in terms of intuitive use. Similarly, Comfort (p = 0.4543) and
overall Rating (p = 0.6097) indicate that programming experience does not particularly affect
participants’ comfort or general satisfaction. Both experienced and inexperienced users found
the tool comfortable and intuitive.

• Results with lower p-value (approaching significance): For UseWithoutLearning (F = 2.97,
p = 0.1156), the results were closer to significance, with a p-value closer to the 0.05 thresh-
old. Although not statistically significant, this finding suggests a slight trend that programming
experience could influence ratings. While most participants felt extensive training unnecessary,
additional testing with a larger sample might clarify whether programming experience subtly
affects perceptions of ease without additional learning.

https://doi.org/10.1017/S0263574725101720 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574725101720

Robotica 21

Table IV. ANOVA results based on professional
experience.

Variable F-value p-value
Workflow 4.00 0.0519
EasyUse 0.34 0.8001
GestureRecog 1.29 0.3430
Consistency 0.38 0.7696
LikeUse 1.04 0.4268
ProgramNew 1.56 0.2737
Learnable 0.99 0.4465
UseWithoutLearning 7.38 0.0108
Intuitive 0.70 0.5797
Comfort 0.87 0.4961
Rating 0.67 0.5927

6.3.2. Results on professional experience groups
For a second analysis, the purpose was to evaluate whether professional experience has a significant
effect on participants’ ratings of various aspects of the tool/system. The F-value and p-value for each
test were gathered in Table IV.

• Results with high p-values: The F-value of 4.00 for Workflow suggests some variation between
groups in how they rate the Workflow feature. The p-value of 0.0519 is close to the 0.05 thresh-
old, indicating a trend toward significance, meaning there may be differences in how participants
with varying levels of experience evaluate the task workflow. Further investigation with a larger
sample size might be needed to confirm this. For EasyUse, the F-value of 0.34 indicates a very
small variance between groups and the p-value of 0.8001 is well above the typical 0.05 thresh-
old, suggesting that professional experience does not impact perceptions of the tool’s ease of
use. Similarly, the F-value of 1.29 for GestureRecog and 0.38 for Consistency suggests min-
imal variance between groups. High p-values of 0.3430 and 0.7696 respectively indicate no
significant difference in the evaluation of the tool’s gesture recognition system or consistency
based on professional experience. For the LikeUse variable, the p-value of 0.4268 suggests that
participants’ interest in regularly using the tool for future tasks is consistent across groups and
independent of professional experience. An F-value of 1.56 for ProgramNew suggests moderate
variance between groups, but the high p-value of 0.2737 indicates no significant difference in
how participants rate the tool’s ProgramNew feature. The Learnable variable, with a p-value of
0.4465, shows both groups rated the system’s learnability similarly, suggesting that professional
experience does not significantly influence perceptions of accessibility or the need for technical
assistance. The outcomes of the three variables evaluating user comfort and intuitiveness with
the tool, Intuitive (p = 0.5927), Comfort (p = 0.4961), and Rating (p = 0.5927), show general
satisfaction across participants. These non-significant p-values suggest no notable differences
between groups in terms of intuitive use, indicating that professional experience does not impact
comfort and ease of use.

• Results with low p-values: For UseWithoutLearning, the F-value of 7.38 indicates significant
variation between groups. The p-value of 0.0108, below the 0.05 threshold, confirms a statisti-
cally significant result. Professional experience significantly influences participants’ perceptions
of the ability to use the tool without prior learning, with more experienced participants rating
this feature differently than less experienced ones.

https://doi.org/10.1017/S0263574725101720 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574725101720

22 Anahide Silahli et al.

Table V. Mean scores and standard deviations for usability scale responses from this study and the
previous study. Values from the previous study are shown in violet.

This study Previous study
Question (Q) Mean SD Mean SD

1 I think that I would like to use this programming
tool frequently for automating other tasks around me

4.00 0.95 4.17 0.99

2 I found the workflow for implementing new tasks for
the robot to be simple

4.25 0.87 4.50 0.87

3 I thought that the programming tool for the robot
was easy to use

4.42 0.67 4.58 0.64

4 I think that I could programme new scenarios for the
robot without the support of a technical person

4.08 0.79 3.92 0.86

5 I found that the robot, the gesture recognition
module and the programming tool are well
integrated together

4.58 0.51 4.42 0.49

6 I found that the robot consistently responded to body
gestures while using the programming tool

4.00 0.85 4.25 0.72

7 I would imagine most people would learn to use the
programming tool for robots very easily

4.00 0.95 4.08 0.76

8 I found the programming tool to be very intuitive 4.33 0.65 4.25 0.72
9 I felt comfortable and in control while using

scenarios to program the robot’s behaviours
4.42 0.51 4.25 1.23

10 I could use the programming tool without having to
learn anything new

3.58 0.90 3.83 0.99

11 In general terms, I would rate my experience using
the programming tool as:

8.67 1.50 7.50 2.43

6.4. Comparison with previous study
This experiment built on the previous study [13], replicating its main objective, evaluating an end-user
programming framework for collaborative robots, while introducing enhancements to tools and task
design. Unlike the first study, which used a standard programming editor to write scenarios using a BDD-
based DSL, the second study employed a web-based Blockly interface. This allowed users to assemble
scenarios using drag-and-drop blocks with preformatted sentence structures and gesture images to
simplify interaction and eliminate manual coding. The first experiment involved 12 participants with
entry-level programming skills performing a basic pick-and-place task with an ABB Dual-Arm YuMi
robot in Sweden, while the second involved 12 new participants with little to no programming experi-
ence in Denmark, using a UR5e robot. The task expanded to a more complex, sequential pick-and-place
operation with three phases, positioning, grasping, and placing, requiring users to build complete sce-
narios rather than trigger pre-coded adjustments. Both studies maintained similar durations and usability
assessments using System Usability Scale (SUS) scores, but the second added NASA-TLX workload
evaluations, reflecting reduced cognitive burden for non-expert users. This experiment reused the same
SUS survey from the previous study to calculate the mean scores and standard deviations for each ques-
tion (Table V) and evaluate the user experience and the usability of the tool. By comparing these metrics
from both experiments, this study assesses whether the enhanced tool improved usability.

The comparison of results reveals improvements over the first experiment. Across the values in
Table V, the mean scores for most questions are higher in the second experiment, indicating a gen-
erally more positive user experience with the new tool. For example, the results for Question 2, which
asks about the simplicity of the workflow for implementing new tasks, showed a mean value of 4.25
in the new experiment. Despite a slight decrease from the first experiment (mean = 4.50), the results

https://doi.org/10.1017/S0263574725101720 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574725101720

Robotica 23

Table VI. Mean scores and standard deviations for each NASA-
TLX subscale.

NASA-TLX subscale Mean score Standard deviation
Mental demand 38.33 19.08
Physical demand 4.58 4.77
Temporal demand 15.91 19.75
Performance 18.75 24.25
Effort 25.00 15.81
Frustration 8.75 12.44

suggest that participants still found the workflow simple and easy to understand, even with the enhanced
interface. In contrast, the results for Question 5 showed an increase in the mean score, from 4.42 to 4.58.
This suggests that the new tool was perceived as better integrated and contributed to a smoother user
experience.

Question 1, which asked participants whether they would like to use the programming tool frequently,
showed a slight decrease from 4.17 (SD = 0.99) in the previous experiment to 4.00 (SD = 0.95) in the
new experiment. Another notable difference is seen in question 3, which assesses the ease of use of the
programming tool. In the first experiment, the mean was 4.58 (SD = 0.64), while in the new experiment,
it slightly decreased to 4.42 (SD = 0.67). Despite the mean scores slightly dropping for both questions,
the standard deviations remained low, signifying that the responses were more consistent in the second
experiment.

A notable accomplishment observed in this evaluation is the tool’s improved accessibility.
Participants noted that the interface and its features were intuitive enough to use effectively without
requiring extensive learning. Indeed, the mean score for question 4 increased from 3.92 in the original
experiment to 4.08 in the new experiment. Additionally, the results indicate a clear increase in satisfac-
tion. Question 11, which asked participants to rate their overall experience with the programming tool,
showed a significant improvement, with the mean score rising from 7.50 in the first experiment to 8.67
in the new experiment.

6.5. Workload assessment results using NASA-TLX scores
The NASA-TLX [39] uses a 20-point scale for each of the six workload subscales: Mental Demand,
Physical Demand, Temporal Demand, Performance, Effort and Frustration. Participants rate each sub-
scale by marking one of 20 boxes, with each box corresponding to a score increment of 5 points, ranging
from 0 to 100, with higher values indicating greater demand or frustration. The first box represents a
score of 0 and the last box represents a score of 100.

For further analysis in this study, ratings from 12 participants were collected and gathered in Table VI.
The table presents the mean scores and standard deviations for each subscale, calculated based on the
ratings provided by all participants.

The dimensions with the highest mean scores were Mental Demand and Effort, both surpassing the
first quartile. The Mental Demand dimension showed a mean score of 38.33, indicating that participants
generally experienced a moderate level of mental workload. However, the high standard deviation of
19.08 suggests notable variation in participants’ experiences with mental effort during the task.

For Effort, the mean score was 25.00 with a standard deviation of 15.81, indicating that participants
felt a moderate level of effort was required to complete the task. The marginally lower standard deviation
suggests that participants’ ratings for the required effort were slightly more consistent.

The remaining dimensions recorded mean scores below the first quartile threshold. Physical Demand
had the lowest mean score, at 4.58, suggesting that participants did not perceive the task as physically
demanding. The standard deviation of 4.77 shows that while some participants perceived slightly more

https://doi.org/10.1017/S0263574725101720 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574725101720

24 Anahide Silahli et al.

Table VII. Quantitative data collected: Task timing and code interaction.

Total Time Time Time Blocks
Participant duration (Start–Task 1) (Task 1–2) (Task 2–3) Code runs count
1 16 min 4 min 8 min 4 min 1 7
2 30 min 4 min 9 min 17 min 6 5
3 53 min 30 min 9 min 14 min 4 8
4 33 min 18 min 4 min 11 min 7 7
5 30 min 7 min 6 min 17 min 2 7
6 16 min 6 min 3 min 7 min 3 5
7 23 min 5 min 9 min 9 min 7 6
8 9 min 2 min 4 min 3 min 1 7
9 24 min 2 min 6 min 16 min 1 6
10 11 min 3 min 2 min 6 min 2 6
11 36 min 20 min 5 min 11 min 2 8
12 21 min 5 min 7 min 8 min 3 8

physical demand than others, physical effort was generally minimal. The participants found the task
slightly time-pressured by referring to the mean score for Temporal Demand, though a large standard
deviation indicates considerable variability in how participants experienced this aspect.

The second-lowest mean score was for Frustration, at 8.75, with a standard deviation of 12.44. This
low score indicates that frustration was not a significant factor for most participants. However, the sub-
stantial standard deviation indicates that some participants experienced higher levels of frustration than
others during the task.

Regarding Performance, participants generally felt moderately positive about their performance,
but this dimension had the highest standard deviation (24.25), meaning a broad range of responses in
participants’ self-assessment of their performance.

6.6. Timing metrics in task performance analysis
The quantitative data collected during the experiment are presented in Table VII, which includes the
overall duration required to complete the task, tracked by proctors for each session through start and
end times. Additionally, the table shows the time taken by each participant to complete the three main
phases or milestones: Positioning and initial grasp, Placing the cube at position right B and Moving the
cube to location left A, as detailed in Section 5.2.4 and illustrated in Figure 9.

Additional metrics include the number of programme executions on the physical system, referred to
as Code Runs in Table VII and the total number of scenario blocks assembled to accomplish the task,
labelled Blocks Count.

From the collected information, we can gain several perspectives on the tool’s usability and efficiency.

• Total Task Duration and Consistency: The total duration for completing the task varies con-
siderably, from as low as 9 min(Participant 8) to as high as 53 min (Participant 3). This wide
range suggests significant variability in participant familiarity or comfort with the task and tool.
It also indicates that certain participants took longer to familiarize themselves with the task
requirements. The fastest completion times, particularly those under 20 min, suggest that the
tool can be learned, understood and effectively applied by some participants with minimal diffi-
culty. However, additional factors outside of the proctors’ control, such as participants’ physical
state (fatigue) or emotional readiness, may also have influenced completion times. Participants
who were not fully focused or mentally prepared may have encountered greater challenges during
task execution.

https://doi.org/10.1017/S0263574725101720 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574725101720

Robotica 25

• Milestone Times: The time taken for each phase also varies widely. For example, times for Task 1
completion range from 2 min (Participant 9) to 30 min (Participant 3). Such differences might
reflect individual differences in problem-solving approaches or the need for more structured guid-
ance in the initial introduction. Phases 2 and 3 show shorter times overall, which could mean
that participants found these milestones simpler or became more familiar with the tool as they
progressed.

• Tool Usability and Code Runs: The number of code runs per participant ranges from 1 to 7, with
an average of around 3-4 runs. Higher numbers of code runs, such as for Participant 4 (7 runs),
may indicate trial-and-error in reaching the solution. Participants with fewer code runs generally
have lower total durations, indicating a potential link between tool ease of use and efficiency.

• Scenario Blocks Assembled: The assembled blocks range from 5 to 8, with no participant need-
ing a large number of blocks, implying that the tool allows participants to accomplish the task
with a manageable set of actions. However, variations here may still indicate differing levels of
optimization or clarity in problem-solving approaches.

7. Discussion
This study aimed to evaluate a new end-user programming tool designed to cobot task definition
BDD-based DSL and a Blockly interface. The results obtained from the user study, combined with
statistical analyses, provide useful insights into the effectiveness of the proposed framework, answering
our research questions and addressing the challenges outlined in the introduction. Hereafter we discuss
our findings in light of the RQs.

RQ1: How does prior programming experience affect non-expert users’ perception of the tool’s
intuitiveness and usability? The analysis, particularly through ANOVA testing, indicated that prior pro-
gramming experience did not have a statistically significant impact on the tool’s usability, supporting
the hypothesis that the tool is accessible to users without programming expertise. However, the variable
UseWithoutLearning did show, for both ANOVA tests, a trend where programming experience may
influence participants’ perceptions of the necessity for prior training, suggesting that some users might
feel more confident using the tool independently, while others may need a learning phase. This result
implies that while the tool is designed for ease of use, there is still room for improvement in onboarding
users without prior technical experience.

RQ2: How does general professional experience influence users’ perceptions of the tool’s intuitive-
ness and their ability to complete robot task assignments? Similarly, professional experience did not
significantly affect ratings across most tool features. However, the variable UseWithoutLearning again
stood out, showing that more experienced participants felt they could use the tool with less training.
This suggests that professional experience, especially in technical domains, might reduce the perceived
learning curve.

RQ3: What aspects of user experience (e.g., intuitiveness, ease of learning, system integration)
show the most significant improvements in the new tool? The results show significant improvements in
workflow simplicity, ease of integration and overall user satisfaction, addressing key concerns from the
previous study. The new tool’s enhancements, such as the introduction of a drag-and-drop interface for
scenario creation, eliminating the need for manual coding, real-time feedback during code execution, a
simplified gesture labelling interface and the development of a web-based platform, have significantly
improved usability ratings. However, there was some fluctuation in specific usability metrics, indicating
that the tool, while generally positive, could benefit from further refinement in certain areas, such as
task guidance and feedback clarity during the early stages of use.

RQ4: How do the System Usability Scale (SUS) metrics and user feedback in the current study val-
idate or challenge the qualitative improvements identified in the previous research? The SUS metrics
confirm that the new tool provides a clear improvement in user satisfaction compared to the previous sys-
tem. Key enhancements, such as better task flow simplicity and a more intuitive interface, were reflected

https://doi.org/10.1017/S0263574725101720 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574725101720

26 Anahide Silahli et al.

in higher mean scores for several survey questions. For instance, the overall user experience rating (Q11)
showed a significant increase from 7.50 to 8.67 out of a maximum of 10, indicating greater participant
satisfaction. Additionally, integration between the robot, gesture recognition module and programming
tool (Q5) improved, with the mean score rising from 4.42 to 4.58 out of 5. While some areas, like ease
of use (Q3) and workflow simplicity (Q2), saw slight decreases in mean scores, these were minor and
accompanied by lower standard deviations, suggesting more consistent participant feedback in the new
study. Importantly, participants felt more confident using the tool independently (Q4), with the mean
score increasing from 3.92 to 4.08 out of 5. These findings validate the enhancements introduced in the
system and demonstrate meaningful progress in improving its usability.

7.1. Insights from task performance metrics analysis
The task performance metrics provide additional context for understanding the tool’s usability. Task
completion times varied significantly, ranging from 9 min for the fastest participant to 53 min for the
slowest, reflecting wide variability in user familiarity and efficiency. The number of code runs ranged
from 1 to 7, with higher runs often indicating trial-and-error approaches, particularly for participants
who took longer. Despite this variability, the number of blocks assembled was consistent across par-
ticipants, ranging from 5 to 8 blocks, demonstrating that the tool supports task completion with a
manageable set of actions.

The NASA-TLX workload assessment showed mental demand and required effort primarily affect
task execution. The high mental workload observed originates from the combination of a new tool, a new
environment, and a novel task, which required significant reflection even for a roboticist. An important
factor is that the robotic setup and laboratory environment were unfamiliar to all participants. Even
though they had achieved high levels of education, their expertise lay in different fields like literature or
chemistry, not robotics. Humans are known to retain only about 80% of information presented to them
initially, as argued by Ericsson et al. [40], meaning regular practice and training are required to master
a new tool or habit. In this experiment, the tool was introduced in 20 min, which is relatively brief.
Participants needed mental effort to recall the grammar rules, understand the unfamiliar pick-and-place
task, a concept they had never encountered before, and adapt to working with a robot, increasing their
cognitive load.

If the tool was deployed in industrial settings, repeated use would reduce this burden. As end-users
become familiar with the tool through practice and the robotic tasks become routine, the mental demand
should decrease substantially, diminishing initial cognitive load with habitual use.

It is interesting to consider the threshold of this tool, where experienced users are better suited for
robot interaction. As task complexity increases, such as when more scenarios are added, mental demand
also rises. However, novice users may experience increased mental demand due to discomfort with
technology or fear of robots, regardless of task complexity.

Another potential limitation could arise from the complexity of task definition. Many tasks in
robotics, such as pick-and-place, seem conceptually simple but remain challenging due to hardware
and environmental constraints. In industrial settings, however, such tasks are typically repetitive and
structurally straightforward, making their high-level definition relatively simple. A potential limit might
arise in more complex multi-robot setups, which require the construction of numerous scenarios.

Thus, the main barrier may not be task complexity, but rather technological unfamiliarity. Future
studies with diverse user backgrounds and multi-robot setups could help clarify this threshold.

7.2. Key improvements and remaining challenges
The optimizations introduced in this study have successfully addressed several key limitations identified
in earlier work. For instance, compared to the CAPIRCI system [21], which relied on unstructured natural
language for task definitions, the new tool’s use of a structured DSL based on BDD ensures more clarity
and reduces ambiguity in task definitions. This change directly addresses identified limitations in task
precision and flexibility. Furthermore, the integration of a Blockly-based interface with modular, drag-
and-drop blocks enhances usability by making the programming process more intuitive and visually

https://doi.org/10.1017/S0263574725101720 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574725101720

Robotica 27

clear. The new tool also expands task complexity, moving beyond most of the basic workflows presented
in the other tools discussed in existing research, to accommodate more dynamic industrial scenarios,
involving sequential workflows like positioning, grasping and placing.

In comparison to systems like EUD-MARS [23] and visual programming tools, the new tool demon-
strates a distinct advantage in minimizing cognitive load. Participants could seamlessly create robot
actions by assembling colour-coded blocks, accompanied by gesture-specific images and real-time
feedback. This design offers a more intuitive and user-friendly experience compared to many visual
programming systems, which often depend on abstract representations that non-expert users may find
difficult to interpret. Moreover, the integration of gesture-based commands introduces a multimodal
dimension, further enhancing both accessibility and user engagement.

However, challenges remain regarding task flexibility and real-time adaptability. Like many tools in
the existing research, the system requires further improvements in handling complex tasks, particularly
in areas such as error recovery and real-time feedback during execution. This was evident in the vari-
ability observed in task completion times, where participants encountered difficulties in the early stages.
Enhancing task instructions, onboarding processes and feedback mechanisms could further streamline
the user experience and improve overall efficiency.

These usability challenges also raise questions about the influence of participant demographics on
the study outcomes. Specifically, we believe that the relatively homogeneous educational background
of our participant group, comprising primarily engineering-focused PhD students and students from
non-scientific fields such as literature and business, directly influenced their perception of the tasks. Our
group lacked diversity, consisting mainly of educated individuals from academia. Research suggests that
academics develop improved cognitive skills compared to less-educated individuals, such as prolonged
focus, rapid memorization, and efficient reasoning, due to the demands of academic training, as proposed
by Peng and Kievit 2020 [41]. Education strengthens these cognitive abilities and improves the ability
of academics to extract key details from complex tasks.

To address this, we plan to enrich future experiments by diversifying the participant pool to include
a broader range of profiles varying in age, occupation, educational level, and gender, to better assess the
tool’s usability across different demographics.

8. Conclusion and future work
This paper introduces a new programming framework designed to bridge the gap between end users and
collaborative robots, emphasizing accessibility for non-expert users. The integration of a BDD-inspired
DSL and a visual Blockly web interface allows for intuitive task definition and execution, supporting a
wide range of industrial applications. Through a user-centric approach, the system simplifies the com-
plexities of collaborative robot programming, providing a suitable experience for users with minimal
technical training.

To enhance human-robot interaction, this paper proposes a comprehensive solution that interprets
multi-modal information from users – hand gestures and constructed commands – and generates respon-
sive robot behaviours. The system adapts to human intentions and communicates decisions effectively.
A feedback mechanism delivers real-time updates and a history of actions within the interface, enabling
users to track executed commands and helping their understanding and interaction. This multimodal
design advances Industry 5.0’s goal of human-centric automation by encouraging intuitive and efficient
collaboration.

The results from the user study highlight important improvements in the tool’s usability. The overall
user experience rating from the SUS survey increased significantly from 7.50 to 8.67 out of a maximum
of 10. Additionally, integration between the robot, gesture recognition module and programming tool
improved, with the mean score rising from 4.42 to 4.58 out of 5. Task completion times varied widely,
ranging from 9 min (fastest) to 53 min (slowest), showcasing variability in user familiarity and comfort
with the tool. Despite this variability, participants completed tasks using a consistent number of blocks
(ranging from 5 to 8 blocks), indicating that the tool allows for task completion with a manageable set

https://doi.org/10.1017/S0263574725101720 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574725101720

28 Anahide Silahli et al.

of actions. The NASA-TLX workload assessment scores indicated moderate mental demand (38.33 out
of 100) and low frustration (8.75 out of 100), reflecting the tool’s accessibility and ease of use.

Despite these achievements, challenges persist, particularly in enhancing real-time adaptability and
managing errors dynamically during task execution. Addressing these limitations in future work will
further strengthen the framework’s applicability to diverse and dynamic industrial scenarios.

Building on the findings of this study, future research will target both immediate enhancements to
the current framework and broader contributions to the field of human-robot collaboration. A more
comprehensive quantitative data collection is planned by including additional sensors and measure-
ment devices. Future efforts will focus on increasing quantitative parameters and employing advanced
statistical analysis to evaluate system performance more rigorously.

To improve scalability and adaptability, the framework is set to transition to run on the robot oper-
ating system, enabling seamless integration with a variety of robotic platforms and applications. This
transition will allow the system to evolve into a more generalizable solution, adaptable to diverse robotic
systems and environments.

When considering the tool deployed in industrial settings, it represents a proof of concept requiring
initial optimization. Currently, robot poses are hardcoded from a preprocess involving manual movement
to target locations and saving those movements. For on-site use, the underlying code must adapt to new
environments and object locations. To facilitate this, the web interface could incorporate a “free drive”
button to activate learning by demonstration, allowing users to move the robot to desired positions and
save them, thus enabling non-experts to configure it independently of specialists. Physical introductions
could be substituted with a tutorial video and straightforward integration steps for industrial workers.
For deployment, safety measures should be considered, a digital twin could replicate the setup to test
scenarios virtually before real execution, and a gesture-based or digital stop button might provide a
more intuitive option than the physical red button. Hardware such as a tablet or computer and a camera,
necessary for the interface, remains affordable and simple to install. To further improve communica-
tion between human operators and robots, the tool could integrate multimodal feedback such as visual
(e.g., LED indicators), auditory (e.g., confirmation beeps) or haptic cues (e.g., vibration or handled
device) to support real-time interaction and increase user confidence. Additionally, incorporating voice
commands alongside gesture recognition could make the system more intuitive and responsive.

Future studies will also expand the participant pool, dividing them into two groups: those with
programming or robotics experience and those without. This distinction will help establish a base-
line for how familiarity with technology influences tool usability, isolating factors like intuitiveness
and effectiveness. Furthermore, experiments will include multiple levels of task complexity to evaluate
the system’s effectiveness across varying cognitive demands. Key quantitative parameters, such as task
completion time, error rates and user adaptation, will be identified to establish standardized metrics for
evaluating human-robot interaction performance. These enhancements will be paired with longitudi-
nal studies to assess learning curves, usability improvements over time and integration into industrial
workflows, ensuring that the framework evolves to meet the demands of real-world applications. In this
regard, studies such as the one conducted by Solis et al. [42] highlight the importance of robust evalu-
ation methodologies that incorporate learning curves to better understand trainee skill progression and
guide system improvements effectively.

Author contributions. AS and JR conceived and designed the study as well as performed statistical analyses. JS and TRS
co-designed the conceptual design and the user experiments and revised the article. GG and LEH co-designed the system archi-
tecture from the robot integration perspective. JH provided intellectual contributions from the industrial perspective. AS provided
intellectual contributions from an academic perspective. AS, JR and JS wrote the article.

Financial support. This research was financed in part by VINNOVA (registration number: 2021-04810) and now financed in
part by Ritsumeikan International Collaborative Research Promotion Program “Sustainable Human-Robot Synergy in Extended
Reality by Foundation Model Integration for Super Smart Society 5.0” as well as in part by the DIREC project “Low-Code
Programming of Spatial Contexts for Logistic Tasks in Mobile Robotics” at the University of Southern Denmark.

https://doi.org/10.1017/S0263574725101720 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574725101720

Robotica 29

Competing interests. The authors declare no conflicts of interest exist.

Ethical approval. Not applicable.

References
[1] OECD, Pensions at a glance 2023: OECD and G20 indicators (2023).
[2] Eurostat, Employment by sex, age and citizenship (2023).
[3] E. Commission, Industry 5.0: Human-centric, sustainable and resilient (2020).
[4] J. Solis, K. Nakamori, G. A. G. Ricardez and J. Håkansson, “Body Gesture Recognition for Collaborative Robots,” The

16th World Congress of the International Federation for the Promotion of Mechanism and Machine Science, Tokyo, Japan,
November 5-10, 2023 (2023) pp. 61–62.

[5] G. A. G. Ricardez, C. Töerg, L. E. Hafi, J. Solis and T. Taniguchi, “Toward Safe and Efficient Human-Robot Teams: Mixed
Reality-based Robot Motion and Safety Index Visualization,” The 16th World Congress of the International Federation for
the Promotion of Mechanism and Machine Science, Tokyo, Japan, November 5-10, 2023 (2020) pp. 53–54.

[6] B. Bastin, S. Hasegawa, J. Solis, R. Ronsse, B. Macq, L. E. Hafi, G. A. G. Ricardez and T. Taniguchi, “GPTAlly: A Safety-
Oriented System for Human-Robot Collaboration Based on Foundation Models,” 2025 IEEE/SICE International Symposium
on System Integrations (SII) (2025) pp. 878–884.

[7] E. Martin, S. Hasegawa, J. Solis, B. Macq, R. Ronsse, G. A. G. Ricardez, L. E. Hafi and T. Taniguchi, “Integrating
Multimodal Communication and Comprehension Evaluation During Human-Robot Collaboration for Increased Reliability
of Foundation Model-based Task Planning,” 2025 IEEE/SICE International Symposium on System Integrations (SII) (IEEE,
2025) pp. 1053–1059.

[8] H. Lieberman, F. Paternò and V. Wulf, End User Development, Human-Computer Interaction Series (Springer Dordrecht,
2006).

[9] T. R. Silva, “Towards a Domain-Specific Language for Behaviour-Driven Development,” 2023 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC) (2023) pp. 283–286.

[10] M. Resnick, J. Maloney, A. Monroy-Hernández, N. Rusk, E. Eastmond, K. Brennan, A. Millner, E. Rosenbaum, J. Silver
and B. Silverman, “Scratch: Programming for all,” Commun. ACM 52(11), 60–67 (2009).

[11] N. Fraser, “Ten Things We’ve Learned from Blockly,” 2015 IEEE blocks and beyond workshop (blocks and beyond) (IEEE,
2015) pp. 49–50.

[12] M. V. Merino, T. Van Der Storm and Google, “Block-based Syntax from Context-Free Grammars,” Proceedings of the 13th
ACM SIGPLAN International Conference on Software Language Engineering (2020) pp. 283–295.

[13] J. P. De la Rosa, J. Solis, K. Nakamori, G. A. G. Ricardez, J. Håkansson, A. S. Sorensen and T. R. Silva, “From Gestures
to Behaviours: An Empirical Study on Behaviour-Driven Development Scenarios to Support End-User Programming of
Collaborative Robots,” IFToMM International Symposium on Robotics and Mechatronics (Springer, 2024) pp. 369–381.

[14] X. Xu, Y. Lu, B. Vogel-Heuser and L. Wang, “Industry 4.0 and industry 5.0—inception, conception and perception,” J.
Manuf. Syst. 61, 530–535 (2021).

[15] D. North, Introducing BDD (2006).
[16] G. Adzic, Specification by Example: How Successful Teams Deliver the Right Software (Simon and Schuster, New York,

2011).
[17] J. P. De La Rosa Gutierrez, T. R. Silva, Y. Dittrich and A. S. Sorensen, “Design goals for end-user development of robot-

assisted physical training activities: A participatory design study,” Proc. ACM Hum. Comput. Interact. 8, 1–31 (2024).
[18] D. North, What’s in a story? (2022).
[19] Cucumber, Gherkin (2024).
[20] J. F. Gorostiza and M. A. Salichs, “End-user programming of a social robot by dialog,” Robot. Auton. Syst. 59(12), 1102–

1114 (2011).
[21] S. Beschi, D. Fogli and F. Tampalini, “CAPIRCI: A Multi-Modal System for Collaborative Robot Programming,” End-User

Development: 7th International Symposium, IS-EUD 2019, Hatfield, UK, July 10-12, 2019, Proceedings 7 (Springer, 2019)
pp. 51–66.

[22] W. Wang, R. Li, Y. Chen, Z. M. Diekel and Y. Jia, “Facilitating human–robot collaborative tasks by teaching-learning-
collaboration from human demonstrations,” IEEE Trans. Autom. Sci. Eng. 16(2), 640–653 (2018).

[23] P. A. Akiki, P. A. Akiki, A. K. Bandara and Y. Yu, "EUD-MARS: End-user development of model-driven adaptive robotics
software systems," Sci. Comput. Program. 200, 102534 (2020). Publisher: Elsevier.

[24] A. Silahli, A. Kramberger and T. R. Silva, “A Domain-Specific Language Framework for Specification and Generalization
of Robot Motion,” 2024 IEEE 20th International Conference on Automation Science and Engineering (CASE) (IEEE, 2024)
pp. 3733–3739.

[25] C. Blanc, L. Boudry, A. Sonderegger, J. Nembrini and S. Dégallier-Rochat, “Empowering Production Workers to Program
Robots: A No-Code, Skill-Based Approach,” International Conference on Computer-Human Interaction Research and
Applications (Springer, 2023) pp. 21–39.

[26] P. Tulathum, B. Usawalertkamol, G. A. G. Ricardez, J. Takamatsu, T. Ogasawara and K. Matsumoto, “Robot behavior
debugger for non-expert users in convenience stores using behavior trees,” Adv. Robot. 36(17), 951–966 (2022).

[27] N. Leonardi, M. Manca, F. Paternò and C. Santoro, “Trigger-Action Programming for Personalising Humanoid Robot
Behaviour,” Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (2019) pp. 1–13.

https://doi.org/10.1017/S0263574725101720 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574725101720

30 Anahide Silahli et al.

[28] C. J. Sutherland and B. A. MacDonald, “Naoblocks: A Case Study of Developing a Children’s Robot Programming
Environment,” 2018, 15th International Conference on Ubiquitous Robots (UR) (IEEE, 2018) pp. 431–436.

[29] D. Mukherjee, K. Gupta, L. H. Chang and H. Najjaran, “A survey of robot learning strategies for human-robot collaboration
in industrial settings,” Robot. Comput. Integr. Manuf. 73, 102231 (2022).

[30] M. Kapinus, V. Beran, Z. Materna and D. Bambušek, “Spatially Situated End-User Robot Programming in Augmented
Reality,” 2019, 28th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN) (IEEE,
2019) pp. 1–8.

[31] E. Senft, M. Hagenow, R. Radwin, M. Zinn, M. Gleicher and B. Mutlu, “Situated Live Programming for Human-Robot
Collaboration,” The 34th Annual ACM Symposium on User Interface Software and Technology (2021) pp. 613–625.

[32] S. Y. Gadre, E. Rosen, G. Chien, E. Phillips, S. Tellex and G. Konidaris, “End-User Robot Programming Using Mixed
Reality,” 2019 International Conference on Robotics and Automation (ICRA) (IEEE, 2019) pp. 2707–2713.

[33] M. Shaw, Larger Scale systems require higher-level abstractions, ACM Sigsoft Software Engineering notes 14(3), 143–146
(1989).

[34] G. A. I. Edge, Mediapipe gesture recognizer (2023).
[35] J. Engel, B. Rice and R. Jones, Behave: BDD, python style (2024).
[36] S. G. Hart and L. E. Staveland, “Development of NASA-TLX (task load index): Results of empirical and theoretical

research,” Adv. Psychol. 52, 139–183 (1988).
[37] P. Kortum, C. Z. Acemyan and F. L. Oswald, “Is it time to go positive? assessing the positively worded system usability

scale (SUS),” Hum. Factors. 63(6), 987–998 (2021).
[38] U. Kohler and F. Kreuter, Data analysis using Stata (Stata press, College Station, TX, 2005).
[39] S. G. Hart, “Nasa-task load index (NASA-TLX); 20 years later,” Human Factors and Ergonomics Society Annual Meeting,

50(9) (Sage Publications, Los Angeles, CA, 2006), pp. 904–908.
[40] K. A. Ericsson, R. T. Krampe and C. Tesch-Römer, "The role of deliberate practice in the acquisition of expert

performance," Psychol. Rev. 100(3), 363 (1993).
[41] P. Peng and R. A. Kievit, The development of academic achievement and cognitive abilities: A bidirectional perspective,”

Child Dev. Perspect. 14(1), 15–20 (2020).
[42] J. Solis, N. Oshima, H. Ishii, N. Matsuoka, K. Hatake and A. Takanishi, “Towards understanding the suture/ligature skills

during the training process using WKS-2rii,” Int. J. Comput. Assist. Radiol. Surg. 3, 231–239 (2008).

https://doi.org/10.1017/S0263574725101720 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574725101720

Robotica 31

Appendix A. Demographic Survey Administered to the Participants Before the Experiment
The Figures below represent the first survey shared with the participants to require personal background
information and gather other crucial key factors.

Figure A1. Demographic survey Page 1.

https://doi.org/10.1017/S0263574725101720 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574725101720

32 Anahide Silahli et al.

Figure A2. Demographic survey Page 2.

https://doi.org/10.1017/S0263574725101720 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574725101720

Robotica 33

Appendix B. Proctor Notes used During the Experiment
The document below presents the relevant quantitative information gathered by the proctors during the
experiment.

Data Annotation - Participant P#

During the task

Start time:
Time used task #1:
Time used task #2:
Time used task #3:
End time:

The number of times a participant executed their program solution:

Once task is finished

Number of scenarios created to solve:

Figure B1. Proctor notes.

https://doi.org/10.1017/S0263574725101720 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574725101720

34 Anahide Silahli et al.

Appendix C. SUS Survey Administered to the Participants After the Experiment
An SUS survey was used to provide a reliable measure of the usability of the proposed system from the
users’ perspective.

Figure C1. SUS Page 1 (Questions 1–5).

https://doi.org/10.1017/S0263574725101720 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574725101720

Robotica 35

Figure C2. SUS Page 2 (Questions 6–10).

Cite this article: A. Silahli, J. P. De la Rosa, J. Solis, G. A. Garcia Ricardez, L. El Hafi, J. Håkansson, A. Stengaard Sørensen
and T. Rocha Silva, “A gesture-based behaviour-driven development approach for end-user cobot programming”, Robotica.
https://doi.org/10.1017/S0263574725101720

https://doi.org/10.1017/S0263574725101720 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574725101720
https://doi.org/10.1017/S0263574725101720

	A gesture-based behaviour-driven development approach for end-user cobot programming
	Introduction
	Related work
	Behaviour-driven development
	Natural language programming systems
	Visual programming and model-driven approaches
	Machine learning and AI for HRC
	Mixed reality and augmented reality interfaces
	Evaluation challenges in tools and approaches for enhancing HRC
	Multi-domain applications and scalability of HRC tools

	Methods
	Engineering research
	Experiments (with human participants)

	A BDD-based Blockly web interface for robot programming
	BDD-based domain-specific language
	EUD environment architecture
	Execution environment

	Experiment
	Before the experiment
	Participants recruitment

	During the experiment
	Experimental setup
	Tools and documents used during the experiment
	Onboarding and experimental procedure
	Task selected for the experiment
	Task execution and observation
	Data annotation

	Post-experiment feedback

	Results
	Analysis of participants"2019` demographics
	Hypothesis formulation
	ANOVA results
	Results on programming experience groups
	Results on professional experience groups

	Comparison with previous study
	Workload assessment results using NASA-TLX scores
	Timing metrics in task performance analysis

	Discussion
	Insights from task performance metrics analysis
	Key improvements and remaining challenges

	Conclusion and future work
	Demographic Survey Administered to the Participants Before the Experiment
	Proctor Notes used During the Experiment
	SUS Survey Administered to the Participants After the Experiment

