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Let Q[x i, x2, • • •, xn] denote the algebra of polynomials in variables x j , x2, • • •, xn

with coefficients from a fixed field Q of characteristic zero, where n = 1,2, •••.
There exists a natural projection

which maps xn onto 0 and all the other variables onto themselves, for n = 1,2, • • •.
This enables one to construct the corresponding inverse limit

limQ.[xl,x2,---,xn},

which we here denote by Q.[x]. The algebra ft[x] has a natural degree function
defined on it. We show

(1) fi[x] has a countably generated subalgebra which is not isomorphic
to a subalgebra of an algebra of polynomials in some set of variables over Q;

(2) the elements of finite degree in Q[x] form a subalgebra of £2[x] which
is isomorphic to an algebra of polynomials in some set of variables over Q.

Let Ik(n) denote the ideal ofCl[xltx2,-",x^] consisting of all those polynomials
whose homogeneous components of degree < k are zero, for k = 2,3, ••• and
n = 1,2, •••. Then the above defined <j>n induces a homomorphism

for n = 2 , 3 , - " . This enables one to construct the corresponding inverse limit:

lim

for fixed k = 2,3, •••. We show that this algebra is isomorphic to a subalgebra
of an algebra of polynomials in some set of variables over £2 modulo the /c-th
power of the augmentation ideal of the latter algebra.

We have similar results for free nonassociative algebras with unit element
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130 A. L. Allen and S. Moran [2]

over Q, free associative algebras with unit element over Q. and free Lie algebras
over Q, where Q can now be taken to be an arbitrary field. The case of free Lie
algebras has already been considered by one of the authors [4]. Present considera-
tions''10 show that [4] Theorem 2.4 is false. However the rest of the paper [4]
is left undisturbed.

Finally we note that the above results hold if we consider the inverse limit
of polynomial algebras in some arbitrary infinite collection of variables over Q.
under the natural projections. The same can be said about the three other types
of free algebras mentioned above. However for the sake of simplicity we shall
restrict our attention to the countable case.

1. Inverse limit of free Lie algebras

Let Ln denote the free Lie algebra on the free generators x1,x2,---,xn with

coefficients from the field Q, for n = 2 , 3 , • • • . There exists a natural projection

which is defined by <j>n{x?) = xt for every i < n and </>„(*„) = 0, for n = 2,3, •••.
Let L denote the corresponding inverse limit

lim Ln.

L contains a subalgebra naturally isomorphic to the free Lie algebra Lon the free
generators xi,x2,---, over Q. This is obtained by mapping the generator xt in
L onto the string of elements

of L, where xt appears first in ith place for i = 1,2, •••. We shall identify L with
its image in L. Then L can be considered to be the closure of L in L under the
naturally defined topology in L. By O(n) we denote the natural projection of L
onto Ln, which is obtained by mapping an element of L onto its n-th component
for n = 1,2,-".

NOTE 1.1. For the rest of this section it is important to bear in mind that
every subalgebra of a free Lie algebra over Q is a free Lie algebra over Q (Theorem
of Sirsov [5] and Witt [7]).

THEOREM 1.2. Let L denote the above defined inverse limit of free Lie
algebras over Q,. Then L has a subalgebra with a countably infinite number
of generators which is not a free Lie algebra.

PROOF. We shall show that any subalgebra of L containing the elements

(*) We are grateful to Dr. D. W. Barnes for questioning the validity of [4] Lemma 2.1.
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X; and yt = xt + [x j + 1 ,x ;] + ••• + [xi+J,xi+j.lt—,x^ + •••

with i = 1,2, ••• cannot be a free Lie algebra. Suppose that to the contrary there
exists some subalgebra of L which is a free Lie algebra and contains all these
elements. As a free Lie algebra, this subalgebra has a natural grading. Hence a
homogeneous element of some positive degree is a well defined notion in this sub-
algebra. The degree of a nonzero element of the subalgebra is denned to be the largest
positive integer d such that the homogeneous component of degree d of this
element is nonzero. Suppose that the degree of yt is pt for i = 1,2, •••. Now

yi = xt + l>i+1. *,•]

and induction on r shows that

for every i = 1,2, ••• and r = 1,2, •••. As the degree of each x; is greater than

zero, we have that

Pi > Pt+r + r

for every / and r. Now take r = pt. This gives that

which contradicts the fact that the degree of every nonzero element of a free
Lie algebra is greater than zero. So every subalgebra of L which contains the
elements

xi>x2> • " > y ^ y z y • • •

cannot be a free Lie algebra.

COROLLARY 1.2.1. L is not a free Lie algebra.

We now turn to some positive results and start with the elementary

LEMMA 1.3. The inverse limit of the homogeneous subspaces of degree
I ofLn under <f>n (n = 2,3 •••) is a subspaceLU) of L for I = 1,2, •••. Every element
of L(l) has a unique representation of the form

where txueilfor all values of i and I. The element bt(l) runs through all the
basic monomials of degree I on the free generators xl,x2,--- of L (for fixed I).
In the unrestricted infinite sum Z*, the basic monomials of degree I are
ordered so that if

= bt(l) while O(n)(fc//)) = 0
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for some positive integer n, then b^l) appears before bj(l) in the unrestricted
sum £*.

PROOF. L(/) is obviously a subspace of L. The above representation for an
element of L(l) follows from the corresponding representation for the homogeneous
elements of degree / in Ln (n = 1,2, •••). The uniqueness of the representation
follows from the uniqueness of the representation in Ln on applying O(n) for a
sufficiently large value of n.

NOTATION 1.4. For fixed I, the subspace Em g , L(m) is a subalgebra of I .
Its closure in L will be denoted by (l)L. It is not difficult to see that (ljL is
the closure of lL in L, where 'L is /th member of the lower central series of L.

For the sake of completeness we repeat Construction 2.2 and a more detailed
version of Lemma 2.3 of Moran [4].

CONSTRUCTION 1.5. Since jL/i+1L is a vector space over Q, it is possible to
construct a set Ot for every i. Let Ov — Nx be a set of elements of L that is linearly
independent modulo 2L. Suppose that the sets Ov and Nv have already been defined
for all v < n (wheren > 1) and the elements of the sets Ov(v = l ,2 , - - ,n — l)have
been ordered so that an element of Ov is greater than an element of Ov. if v > v'.
We define Nn to be the set of all basic monomials on the elements of the sets
OuO2, •••,On_! which belong to nL but do not belong to n+1L. Finally On is a set
of elements of nL which is linearly independent modulo the subalgebra generated
by n + 1L and Nn.

LEMMA 1.6. Let OUO2, ••• ,OB_1 be finite sets. Then

(a) Nn is a set of linearly independent elements of nL modulo n+lL and

(b) O(P)(N,,) is a set of linearly independent elements of"Lp modulo "~1LP,

for all sufficiently large values of p, for n = 1,2, •••.

PROOF, (a) We proceed by induction on n. The result is true, by construction,
when n = 1. Suppose that the result is true for N, JV2,---,Nn_1. Now as these
sets are finite, for every m, where 1 ^ m ^ n — 1, there exist elements d£m)
of JL and positive integers p(m) and q{m) such that

(1.6.1) mL/m+1L = (Z {dim) + m+1L} ) 0 ( Z* {b,<m) + m+1L}\

and

(Nm U Om) + m+ ,L S "i {{dim) + m+1L}).
i = l

Here X and X* denote restricted and unrestricted direct sums respectively,

while Z*i>p(m) is to mean that those and only those basic monomials of weight

m on x1,x2,--- occur in the unrestricted direct sum which satisfy the condition
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(.(m)) = 0.
Suppose that contrary to our lemma, the elements of JVn are linearly dependent
modulo n+iL, then there exist scalars (not all zero) such that

c = 7B1cni + ••• +7nkcnk belongs to n+iL,

where every cni is an element of JVn. Let p denote the maximum of
), •••,p(n — 1) and apply the homomorphism <D(p) to c. Then

cni) + - +ynk&
p)(cnk) belongs to " + 1 L P .

This implies that for some 1 (^ n —1)

,) u O(p)(0()

must be a set of linearly dependent elements of (L modulo ( + 1L. Otherwise,
by a Theorem of Sirsov [5], the elements of the set

O ( p ) ( 0 , ) U O ( p ) ( 0 2 ) u ••• u $ ( p ) ( O n _ j )

freely generate a free Lie subalgebra of Lp . This contradicts the fact that d>(p)(c)
Lp.belongs to n+1Lp. Hence there exist scalars £,(,8^ (not all zero) such that

belongs to J + i i , where every alie0l and every clieNl. Thus the element

has the following properties:
(1) it does not belong to l+1L, by the induction hypothesis and Construction

1.5;
(2) it belongs to Zf>p({ft,(O+; + i^}) modulo J + 1L;
(3) it belongs to £j({dj(/) + J+IJL}) modulo l+1L.

The above three properties of the element 5, + ,+ 1L contradict the direct decom-
position (1.6.1) for tL/i+lL. This establishes part (a) of our lemma.

(b) We proceed by induction on n as in part (a) and use the direct decompo-
sition (1.6.1) for m = 1,2, ••-,« together with Lemma 1.6(a). In fact suppose that

VBlO
(p(B))(cni) + - +yn^

lpw\cj belongs to n + 1 L p ( n ) .

Then the element (where we are using the same notation as in (a))

c = ynicni + -- +ynkcnk

modulo n+1L belongs to

I * ({*>*(«) + •+ iL}) and "i {{din) + n+1L}).
• >P(n) ( = 1
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This implies that c belongs to n+1L, which contradicts Lemma 1.6(a). Hence
the required result (b) follows.

THEOREM 1.7. Let Olt ••-,0, be subsets of L which are constructed as in Con-
struction 1.5. Then the elements of the set Ox U - - KjOt freely generate a free
Lie algebra over Q.

PROOF. It follows from Lemma 1.6(a)that the corresponding set Nn is linearly
independent modulo n + 1L, for every n. Hence the elements of the set

01u02u-u0l

form a set of free generators for a free Lie algebra over Q.
This gives rise immediately to the following

THEOREM 1.7.1. Every finitely generated subalgebra of L is a free Lie
algebra over Q.

NOTE 1.8. We now turn to a consideration of the subalgebra L* of L which
consists of all elements of finite degree together with the zero element. An element
of L is said to have degree m if and only if it belongs to Z n g m L(n) but not to
I n < m L ( n ) . Hence

L* = £ L w .
n = l

THEOREM 1.9. The subalgebra L* of L consisting of all elements of finite
degree is a free Lie algebra over Q..

PROOF. Let O1,O2,--,On,-- be maximal sets satisfying the conditions of
Construction 1.5 and also the conditions On<=L(n) for n = l,2, •••. Then
U"=i On is a set of generators for L*. The elements of the set Nn are linearly
independent modulo n+lL, for n = 1,2, •••. For, by Lemma 1.6(a), every finite
subset of Nn is linearly independent modulo n+iL. Hence the set U"=i0 n is a
set of free generators for L*.

We now quickly outline the corresponding result in the nilpotent case.

THEOREM 1.10. Let kL denote the closure of k-th member of the lower
central series of L in L. Then LjkL is isomorphic to a subalgebra ofafree(k — l)-th
nilpotent Lie algebra over Q.

PROOF. By Lemma 1.3 and Notation 1.4, every elements of LjkL has a unique
representation of the form

;?: ( i; •*»)
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modulo kL. Let O1,--,Ok_l be maximal subsets of L satisfying the conditions
of Construction 1.5 and such that OncL(n) for n = 1,2, •••,k — 1. Then
0 , U--- u O t . ( is a set of generators for L modulo kL. The fact that LjkL is
isomorphic to a subalgebra of a free (k — 1) th Lie algebra over £1 is now proved
as follows. One takes a free (k — 1) th nilpotent Lie algebra over Cl on free genera-
tors yaW, a(i) 6 M(i), with \M(i)\ = \Ot\ for i = 1,2, •••, fc-1. The isomorphism
is defined by mapping the distinct elements of Ot onto distinct simple basic mono-
mials with the last component being the least yx of weight i in the generators
yX{i), a(i)eM(i), for i = 1,2,•-•,fe—1. The mapping defined in this way is
obviously one-to-one and single-valued, by Lemma 1.6(a). The fact that it
preserves Lie products follows from Hall's Collecting Process.

NOTE 1.10.1. It is not difficult to verify that L\kL is isomorphic to Yim(Lnl
kLn)

under the homomorphisms of LJkLn -> Ln_JkLn_l induced by <pn: Ln -> Ln_,,
for n = 2 , 3 , " - .

2. Inverse limit of free associative algebras

Let An denote the free associative algebra with unit element on the free

generators x , , x ? , •••,xB with coefficients from the field Cl, for n = 1,2, •••. There

exists a natural projection

<pn:An-*An_l

which is defined by <j>n(x?) = xt for i < n and <pn(xn) = 0, for n == 2,3, •••. Let A
denote the corresponding inverse limit

lim An.

A contains a subalgebra naturally isomorphic to the free associative algebra A
with unit element on free generators x1,x2,--- over Q.. This is obtained by mapping
the variable xt in A onto the string of elements

of A, where xt appears first in ith place, for i = 1,2,••-. We shall identify A
with its image in A. Then A can be considered to be the closure of A in A under
the naturally defined topology in A. By O(n) we denote the natural projection
of A onto An, which is defined by mapping an element of A onto its nth compo-
nent, for n = 1,2,•••.

NOTE 2.1. In this section it is important to remember that not every sub-
algebra (with unit element) of a free associative algebra with unit element over Q.
is a free associative algebra with unit element over Q. The simplest counter-
example is given by the subalgebra with unit element generated by x2 and x
in fi[x].
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THEOREM 2.2. Let A denote the above defined inverse limit of free associative
algebras with unit element over Q. Then A has a subalgebra with unit element
which has a countably infinite number of generators but is not isomorphic
to a subalgebra of a free associative algebra (with unit element) over £1.

PROOF. We shall show that any subalgebra with unit element of A which
contains the elements

Xj a n d y t = xt + xxi+1xt + ••• + xt+J-xt+J.r-xl +•••

with i = 1,2, ••• cannot be contained in a free associative algebra with unit
element over Q. Suppose that to the contrary there exists some subalgebra with
unit element of A which can be isomorphically embedded in some free associative
algebra with unit element over Q and contains all these elements x^y^ Then
this subalgebra inherits a degree function from the free associative algebra with
unit element in which it is embedded. Suppose that the degree of yt is j8, for
i = 1,2, •••. Now

and induction on r shows that

y t = x t + x i + 1 - x t + ••• + x i + r _ 1 - x j + r _ 2 ••• x t + y i + r - x , + r _ 1 ••• x s

for every i = 1,2, ••• and r = 1,2, •••. As the degree of each xt ^ 1, we have that

Pt ^ f}i+r + r for every i and r ^ 1 .

Take r = pt. This gives that

Pi+Pi S 0

which contradicts the fact that every yt is not a scalar from Q. So every subalgebra
with unit element of A which contains the elements

XUX2, •••> .Vi> Vli • "

cannot be isomorphic to a subalgebra with unit element of a free associative
algebra with unit element over Q.

COROLLARY 2.2.1. A is not isomorphic to a subalgebra with unit element
of a free associative algebra with unit element over Q.

As before we have a result of the following form:

LEMMA 2.3. The inverse limit of the homogeneous subspaces of degree I
of An under </>„ (n = 1,2,•••) is a subspace /4(/) of A, for I = 1,2,•••. Every
element of A(l) has a unique representation of the form
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00

where aueQ. for all values of i and I. Here m,(0 runs through all the associative
monomials of degree I on the free generators x1,x2,--- (for fixed I) of A. In
the unrestricted direct sum Z * the monomials of degree I are ordered so that if

O(B)(njj(0) = ™i(0 while O(n)(m/0) = 0

for some positive integer n, then m;(/) appears before mj(l) in the unrestricted
sum £ * .

NOTATION 2.4. E i g i A(i) is a subalgebra of A. Its closure in A will be
denoted by ,A . It is not difficult to see that tA is the closure of dA)1 in A, where

XA is the augmentation ideal of A and d/4)' is the ideal of ^A generated by all
finite products of more than (/ — 1) elements in t A .

CONSTRUCTION 2.5. Since iA/i+1A is a vector space over Q, it is possible
to construct the following sets 0 , . Let Ot = Nt be a set of elements of XA that
is linearly independent modulo 2A. Suppose that the sets Ov and Nv have already
been defined for all v < n (where n 2: 1) and the elements of the sets Ov

(v = 1,2,-•-,n — 1) have been ordered so that an element of Ov is greater than
an element of Ov if v > v'. We define Nn to be the set of all monomials on the
elements of the set 0 2 u 0 2 u ••• u On_l which belong to nA but do not belong
to n+1A. Finally On is a set of elements of nA which is linearly independent mo-
dulo the subalgebra generated by n+1A and Nn.

In order to establish a result similar to Lemma 1.6, we have to introduce
a new concept.

DEFINITION 2.6. Let x be a nonzero element of ±A. Then x belongs to tA
but not to I+1A, for some positive integer / . By Lemma 2.3, the element x will
have a unique representation of the form

where/i(Z — 1) is an element of,_ t A, for i — 1,2, • • •. The element x belonging to a
subalgebra B (with unit element) of A is said to be right stable in B if and only
if / i (Z-l) belongs to B modulo ,A, for i = 1,2, •••.

LEMMA 2.7. Let OUO2,--,()„,••• be sets of elements in A defined as in
Construction 2.5. Suppose also that UOn is a right stable set of elements in
the subalgebra (with unit element) generated by the elements of U On in A.
Then U On freely generates a free associative algebra with unit element over
Q in A.
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PROOF. It is sufficient to show that if ol,o2,---,ok are distinct elements of

u On with OjSxjA but Oj^^.+^A for j = l,2,---,k and / , (o ) is an associative

polynomial on the elements of U On with fj{d)e^.A but fj(o)<£Bj+lA for

j = 1,2,—,k wi tht

ccj + Pj = n

for j = l,2,---,k, then

k

S Oj-fj{o) does not belong to n+lA.
7 = 1

Suppose that this latter result does not hold. Then
k

Z oj-fj(o) belongs to n+lA.

Every /?,• ^ 1, otherwise this would contradict the construction of the set On.
Since U On is right stable, we have that

k co

X Oj Z* fji(o)-Xi belongs to n+1A,
7 = 1 i=l

where /^(o) is an associative polynomial in the elements of U On which belongs
to Bl-iA for j = l,2,---,/c and i = 1,2,---. Now, by the uniqueness of the re-
presentation as explained in Definition 2.6, we have that

k

E Oj-fjlo) belongs to nA.
j = i

Induction on n and Construction 2.5 now completes the proof. The case n = 1,
follows at once from the construction of the set O t .

NOTE 2.7.1. Th3re exists a similar result to the above emma when right
stable is replaced by left stable.

NOTE 2.8. We now consider the subalgebra A* with unit element which
consists of all elements of finite degree in A. An element of A is said to have de-
gree m if and only if it belongs to Z n g m AM but does not belong to Z n < m A(n).
Hence

A* = n+ £ AW.
n = l

THEOREM 2.9. The subalgebra A* of A which consists of all elements
of finite degree is a free associative algebra with unit element over Q.

PROOF. Let O1,O2,--,On,••• be maximal subsets of A* satisfying the con-

ditions of Construction 2.5 and also the conditions On c AM for n = 1,2, •••.

t By induction we may assume that all the jS; are calculated in the natural way.
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Then it follows at once that U On is a right stable set of generators for A* .
The required result now follows from Lemma 2.4.

We now consider the nilpotent case.

THEOREM 2.10. Let xA
k denote the closure of the kth power of the aug-

mentation ideal tA in A. Then A\xA
k is isomorphic to a subalgebra with unit

element of a free (k—l)th nilpotent associative algebra with unit element
over Q.

PROOF. By Lemma 2.3 and Notation 2.4, every element of 1A/1A
k has a

unique representation of the form

*S (ha,-m(l))
1 = 1 \j = i ll ' )

modulo tA
k = kA. Let O,,O2, •••,Ot_1 be maximal subsets of A satisfying the

conditions of Construction 2.5 and such that On <= AM for n = 1,2, ••-,& — 1.
Then Ot UO 2 U--- u O t _ , is a set of generators for A modulo kA. The fact
that A^A* is isomorphic to a subalgebra with unit element of a free {k — l)th
nilpotent associative algebra with unit element over Q is shown as follows. One
takes a free (k — l)th nilpotent associative algebra with unit element over Q on
free generators ya(i), a(i)eM(i), with |M(i) | = | O ; | , for i = 1,2,••-,& — 1. The
appropriate isomorphism is defined by mapping an element of O, onto the cor-
responding ya'(n, for / = 1,2, •••,fe-l. The above defined mapping is one-to-one
and single-valued by Lemma 2.7. It obviously preserves sums and products.

NOTE 2.10.1. It is not difficult to verify that A/kA is isomorphic to
lim(Xn/1A*') under the homomorphisms of AJ-^A^ onto An_1jA

l^_1 induced by
4>n-An^An^1 for n = 2,3,--- .

3. Inverse limit of polynomial algebras

Let C = Q\_xltxz, •••,xnj be the usual algebra of polynomials in the variables

xux2,•••,xn with coefficients from the field Q , for n = 1,2,•••. There exists a

natural projection

which is defined by (f>n(x,) = *i for i < n and (j)n(xn) — xn, for n = 2 , 3 , • • • .

Let C denote the corresponding inverse limit

lim C n .

C contains a subalgebra naturally isomorphic to C = Q[x1,x2,---,xn,•••]. We

shall identify C with its image in C . Then C is the closure of C in C under the

naturally defined topology in C .
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NOTE 3.1. Every subalgebra with unit element of Cl\_xx; <xeM] is not of the
same form. The counter example given in Note 2.1 works also here.

THEOREM 3.2. Let C denote the above defined inverse limit of polynomial
algebras with unit element over Q. Then C has a subalgebra with unit element
which has a countably infinite number of generators but is not isomorphic
to a subalgebra with unit element of an algebra of polynomials in some set
of variables over Q .

PROOF. The proof given for Theorem 2.2 works also here.

COROLLARY 3.2.1. The algebra C is not isomorphic to a subalgebra with unit
element of an algebra of polynomials in some set of variables over Q.

As before we have a result of the following form:

LEMMA 3.3. The inverse limit of the homogeneous subspaces of degree I
of Cn under <j)n (n = 1,2, •••) is a subspace C(I) of C, for I = 1,2, •••. Every
element of C(/) has a unique representation of the form

00

E* ^.mll),
i = l

where <xa e €lfor all values of i and I. Here mfj) runs through all the monomials
of degree I on the free generators xt,x2, •••, (for fixed 1) of C. In the unrestricted
direct sum 2 * the monomials of degree I are ordered so that if mJJ) contains
one of the variables

but mc(l) does not, then m^T) appears before mj(l) in the unrestricted direct
sum L* .

NOTATION 3.4. Sj&jC(0 is a subalgebra of C. Its closure in C will be denoted
by ,C. It is not difficult to see that ,C is the closure of dC)' in C, where tC is the
augmentation ideal of C and (jC)' is the ideal of XC generated by all finite products
of more than (/ — 1) elements in tC.

CONSTRUCTION 3.5. We construct the sets Ot and N{ for i = 1,2, ••• in the
algebra C in the same way as they were constructed in Construction 2.5 for the
associative algebra A.

We now have the useful

LEMMA 3.6. Let OuO2,--,On be finite subsets o/C( 1 ) ,C( 2 ) , •••,CM respec-
tively constructed according to Construction 3.5. The set of elements of On U Nn

is linearly independent over Q if and only if* if $ ( s ) (On UiVJ is linearly in-
dependent over Q for all sufficiently large values of s.

denotes the natural projection of C onto C,.
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PROOF. By Fuchs [1] Theorem 47.1 proof, we have that

C(n) =

and

where, using the notation of Lemma 3.3, every monomial appearing as generator
in the unrestricted direct sum X* involves at least one of the variables

and all such monomials occur. Assume firstly that On U Nn is linearly independent
over fi. Suppose that

where a1; •••,&, are scalars from Q, every zi belongs to On UN,, and s is an in-
teger not less than s(n). By the above direct decomposition, we have that

a1z1 + - + a r z r = 0.

This implies that every at = 0, that is, O(s)(OnUJVJ is linearly independent
over il. Conversely it follows at once that if <D(s)(0n U NB) is linearly independent
over Q, then On U Nn cannot be linearly dependent over O.

NOTE 3.7. We now consider the subalgebra C* with unit element which
consists of all elements of finite degree in C. An element of C is said to have degree
m if and only if it belongs to EnSmC(n) but not to Zn < mC( n ) . Hence

c* = n + £ cw.
n = l

THEOREM 3.8. Let Q be afield of characteristic zero. Then the subalgebra
C* of elements of finite degree in C is an algebra of polynomials in some set
of variables (taken from C) over Q.

PROOF. Let O1,O2,--,On,-- be maximal subsets of C* satisfying the con-
ditions given in Coustruction 3.5 and such that On <= C(n) for every n. Then it
follows at once from the maximality condition that U On is a set of generators
for C*. We shall now prove by induction on n that the elements of Nn are linearly
independent over il. This result is trivially true by construction for n = 1.
Suppose that it is true for Nm, whenever m < n.

Suppose that contrary to the assertion of the theorem we have a homogeneous
relation in C(n) of the form
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(3.8.1) i fiu) • u\ = 0
i = 0

where ft(u) is a homogeneous polynomial on a finite number of elements from
0 1 U - - u 0 n _ 1 but not involving ur which belongs to the same set, for
i = 0,1, •••, k. Further we have that ur is an element of highest degree occurring
in (3.8.1) and that both fo(u) and/fc(u) are not equal to zero. Apply the homo-
morphism <5(s) to (3.8.1). This gives that

(3.8.2) £ /i(O(s)(«)) • ($(s)(ur)y = 0
i = 0

in Cs. Differentiate (3.8.2) partially with respect to Xj, which gives that

* tdf- , cO(sVw VI ,\ _ i dfi v
(3.8.3) S ' ' + ! • / ; • — • (O(s)("r))' + V^ ' ($ («O) = 0

Now by the induction hypothesis and Lemma 3.6, equation (3.8.3) gives that

(3.8.4) i r " = ° a n d ^r1- + i'fi' C%' ( " y ) = 0
dJCy dxj dXj

f o r ; = 1,2, ••-,&, for all sufEciently large values of s and j = 1,2, • • • , s . Equation

(3.8.4) implies that fk(<5>(s){u)) is a nonzero scalar from Q and

fe -A(O(S)(M)) • $(s)("r) = -//c-i(*<s)("))

for all sufficiently large values of s. By Lemma 3.6, this contradicts Construction
3.5 for the sets Ot, and thus gives the required results.

The nilpotent case is dealt with ast in §2.

THEOREM 3.9. Let xC
k denote the closure of the k-th power ideal of tC

in C. Then C\-fik is isomorphic to a subalgebra with unit element of a free
(k — l)th nilpotent associative commutative algebra with unit element over Q,
provided that Q is a field of characteristic zero.

NOTE 3.9.1. It can be shown that C\^Ck is isomorphic to lin^C^C*) under
the homomorphisms of Cn\xC

k
n onto Cn^1j1C

k_l induced by <j>n: Cn -* C,,^1,
f o r n = 2 , 3 , •••.

4. The interrelations between L, A and C

By Poincare-Birkhoff-Witt Theorem, we have the following commutative
diagram

t See also the proof of Theorem 3.8.
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L
I

A

1 *

r

1

, ^ 2

> 2

The inverse

i

K
-^2<

limit of some

- L,

i
-A,

free

i - i ^

» m - l

algebras

: ^ n
1

<

4-1
Further one has a Lie algebra monomorphism i: L/A. Hence if if denotes the
enveloping algebra of L and £ the natural injection of L into Le, then one has an
algebra homomorphism \i defined by the following commutative diagram

(4.1)

NOTE 4.2. The homomorphism /i defined by (4.1) is not onto when char
fi 9* 2. In fact one can show that

X = < X t X 2 + X3X4 + ••• + X 2 n _ i X 2 n >

is an element of A which does not belong to ft(If). This follows from Poincare
Birkhoff-Witt Theorem, reducing modulo 3A + i(2L) (hence we are working in
the algebra Cj3C as is shown in (4.8) and (4.9) below) and using an elementary
argument concerning the rank of quadratic forms. For if x belongs to n(Le)
then $(2n)(x) + (3A + i(2L)) has finite rank, which is bounded above by a number
independent of n. However

XjX2 + x 3 x 4 + ••• + x2n_1x2n + (3A + i(2L))

has rank In.
As one would hope one has the following

THEOREM 4.3. The algebra homomorphism fi, which is given in (4.1), is
a monomorphism.

PROOF. Let z , , a e M be a basis of the vector space L over Q. Then, by
Poincare-Birkhoff-Witt Theorem, the set of all ascending products

with cxl ^ a2 g ••• ^ ak form a basis for the vector space Leover Q. Suppose
that the element z of Lebelongs to the kernel of fi. Then z can be expressed in
terms of a finite number of the elements zx. This finite subset generates a free
Lie algebra B in L over £2, by Theorem 1.7.1. Let yy, yeN, be a set of free
generators for B. Then z belongs to Be and Be is a free associative algebra with
unit element over Q on the free generators yy, yeN. Now we can write z as a
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finite sum of the form

where every A7 belongs to il and bj(yyi,---,yys) denotes an ascending product
of basic Lie monomials on the elements yy, y e N. This follows from Hall [2]
and Poincare-Birkhofl-Witt Theorem. Because of the usual identifications, we
have that

0 = n(z) = £

in A. Apply the homomorphism <1>(P): A -> Ap to this equation. This gives that

E A, .b/O^J^,O^^.--- ,<I>( p )G^)) = 0.

This contradicts Lemma 1.6 (b) for sufficiently large values of p if z is nonzero.
We now look at the relationship between A and C. We have the following

commutative diagram

4>z
A2<

(4.8) Pil \Pi•I

This defines an epimorphism p: A -> C. By Hall [2] and Poincare-Birkhoff-Witt
Theorem, we have that every element of kerp has a representation of the form

(4.9) S* E* «,(/)• &X0,
I I

where every a / / ) belongs to Q, the symbol / denotes an ascending sequence

i1 ^ i2 ^ ••• ^ Jk of positive integers and fc/(Q denotes the product bhbh---bie

of basic Lie monomials on the elements xt,x2, ••• of total degree I in A* and at

least one of bil,bh,---,bik having degree greater than 1. This is to hold for all

terms of the sum.

5. Concluding remarks

We have not entered into the proofs of the corresponding results on the
inverse limit of free nonassociative algebras over a field Q to those proved in § 1
for Lie algebras. The methods of proof are similar but technically simpler to those
employed in the case of Lie algebras. Instead of using Theorem of Sirsov [5]
and Witt [7], one uses the simple Theorem of Witt [6].

Theorem 1.7.1, which states thatL is a locally free Lie algebra over Q and
the corresponding result for the free nonassociative case can be deduced from
a much more general result.
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THEOREM 5.0. Let U be a variety of Q-groups* such that the free algebras
of this variety satisfy the following conditions:

(1) every free algebra of finite rank is hopfian, that is, is not isomorphic
to a proper homomorphic image;

(2) the free algebras satisfy Schreier's condition, that is, every subalgebra
of a free algebra is a free algebra (in t t ) .

Then the inverse limit of an inverse system of locally free VL-algebras
and homomorphisms is a locally free VL-algebra.

PROOF. AS in Higman [3], whsre this is proved for the class of all groups.
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